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The prime number theorem in short intervals for
automorphic L-functions

by

Y. Qu (Beijing) and J. Wu (Jinan and Nancy)

1. Introduction. The well known Legendre conjecture states that there
is at least one prime number between n2 and (n + 1)2 for each positive
integer n. A related problem is the existence of primes in short intervals.
Denote, as usual, by ζ(s) the Riemann zeta-function, and define the von
Mangoldt function Λ(n) by

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns
(σ > 1),

where s = σ + iτ . Then

Λ(n) =

{
log p if n = pν with ν ≥ 1,

0 otherwise.

Write

ψ(x) :=
∑
n≤x

Λ(n).

It is known that, under the Riemann Hypothesis (RH in brief) for ζ(s),

ψ(x) = x+O
(
x1/2(log x)2

)
(x ≥ 2).

From this we immediately deduce that, under RH,

(1.1) ψ(x+ h(x))− ψ(x) ∼ h(x) (x→∞)

for any increasing functions h(x) ≤ x satisfying

h(x)

x1/2(log x)2
→∞ as x→∞.

It seems an interesting problem to determine how short h(x) can be. Ac-
cording to Cramér’s model, we could take h(x)/(log x)2 →∞ as x→∞. In
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1943, Selberg [12] partially confirmed this by showing that under RH the
asymptotic relationship

(1.2)

X�

1

|ψ(x+ h(x))− ψ(x)− h(x)|2 dx = o(h(X)2X) (X →∞)

holds for any increasing function h(x) ≤ x satisfying

(1.3) h(x)/(log x)2 →∞ as x→∞.

This shows that, under RH, (1.1) holds for almost all x ≥ 2 provided (1.3)
is satisfied.

In order to better understand the connection between the distribution
of zeros of ζ(s) and that of primes, Montgomery [9] introduced the pair
correlation function

(1.4) FT (X) :=
∑

0<γ1,γ2≤T
W (γ1 − γ2)e2πiX(γ1−γ2),

where

W (u) :=
4

4 + u2

and γ runs over the imaginary parts =mρ of the nontrivial zeros ρ of ζ(s)
(counted according to multiplicity). Assuming RH and that

(1.5) FT

(
log x

2π

)
� T log T

uniformly for x(log x)−3 ≤ T ≤ x, Heath-Brown [2] showed that (1.2) holds
for any increasing function h(x) ≤ x satisfying

(1.6) h(x)/log x→∞ as x→∞.

In this paper, we shall investigate analogues of (1.2) for automorphic L-
functions. Let us fix our notation first. To each irreducible unitary cuspidal
representation π = ⊗πp of GLm(AQ) with m ≥ 2, one can attach a global
L-function

(1.7) L(s, π) =
∏
p<∞

Lp(s, πp)

converging for σ > 1 (see [5]), where the local factors are given by

(1.8) Lp(s, πp) =

m∏
j=1

(1− απ(p, j)p−s)−1.

The complete L-function Φ(s, π) is defined by

(1.9) Φ(s, π) = L(s, π)L∞(s, π∞),
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where Nπ ≥ 1 is an integer called the arithmetic conductor of π, and

(1.10) L∞(s, π∞) :=

(
Nπ

πm

)s/2 m∏
j=1

Γ

(
s+ µπ(j)

2

)
is the Archimedean local factor. Here {απ(p, j)}mj=1 and {µπ(j)}mj=1 are com-
plex numbers associated with πp and π∞, respectively, according to the
Langlands correspondence. Good bounds for these local parameters are of
fundamental importance for the study of automorphic L-functions. Thanks
to the work of Luo–Rudnick–Sarnak [8], it is known that

(1.11)

{
|απ(p, j)| ≤ pθ if π is unramified at p,

|<e µπ(j)| ≤ θ if π is unramified at ∞,

with θ = 1/2− 1/(m2 + 1). The Generalized Ramanujan Conjecture (GRC
in brief) asserts that (1.11) should hold with θ = 0. It also follows from
work of Shahidi [13–16] that the complete L-function Φ(s, π) has an analytic
continuation to the whole complex plane and satisfies the functional equation

(1.12) Φ(s, π) = επΦ(1− s, π̃),

where επ is the root number satisfying |επ| = 1, and π̃ is the representation
contragredient to π. The important quantity

Qπ := Nπ

m∏
j=1

(3 + |µπ(j)|)

is named the conductor of π.

Similarly to the classical case, we define Λπ(n) by taking logarithmic
differentiation in (1.7).

(1.13) − L′

L
(s, π) =

∞∑
n=1

Λπ(n)

ns
(σ > 1).

With the help of (1.8), it is easy to see that

(1.14) Λπ(n) =

{∑m
j=1 απ(p, j)ν log p if n = pν with ν ≥ 1,

0 otherwise.

The prime number theorem for L(s, π) concerns the asymptotic behavior of
the counting function

(1.15) ψ(x, π) :=
∑
n≤x

Λπ(n).

This problem was first studied by Liu & Ye [7] and Qu [10, 11]. In particular
Qu [11] proved that, under the Generalized Riemann Hypothesis (GRH in
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brief) for L(s, π), we have

(1.16)

X�

1

|ψ(x+ h(x), π)− ψ(x, π)|2 dx = o(h(X)2X) (X →∞)

for any increasing function h(x) ≤ x satisfying

h(x)

xθ(log x)2
→∞ as x→∞,

where θ is given by (1.11).

The first aim of this paper is to improve the above result by remov-
ing xθ, which offers an exact generalization of Selberg’s (1.2) and (1.3) to
automorphic L-functions.

Theorem 1.1. Let π be an irreducible unitary cuspidal representation
of GLm(AQ) with m ≥ 2. Assume GRH for L(s, π). Then for X ≥ 2 we
have

(1.17)

X�

1

|ψ(x+ h(x), π)−ψ(x, π)|2 dx� h(X)X log2(QπX) +

(
logQπ
logX

)4

for any increasing function h(x) ≤ x, where the implied constant depends
only on m. In particular, (1.16) holds for any increasing function h(x) ≤ x
satisfying

(1.18) h(x)/(log x)2 →∞ as x→∞.
Our second aim in this paper is to consider the analogue of Heath-

Brown’s (1.2) and (1.6). Similar to (1.4), we can also define

F πT (X) :=
∑

0<γ1,γ2≤T
W (γ1 − γ2)e2πiX(γ1−γ2),

where γ runs over imaginary parts =mρ of the nontrivial zeros ρ of L(s, π)
(counted according to multiplicity).

Theorem 1.2. Let π be an irreducible unitary cuspidal representation
of GLm(AQ) with m ≥ 2. Assume GRH for L(s, π), and

(1.19) F πT

(
logX

2π

)
� T log(QπT )

uniformly for T ≤ (X logX)2. Then for X ≥ 2 we have

X�

1

|ψ(x+ h(x), π)− ψ(x, π)|2 dx� h(X)X log(QπX)(1.20)

+X log2(QπX) +

(
logQπ
logX

)4
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for any increasing functions h(x) ≤ x, where the implied constant depends
only on m. In particular, (1.16) holds for any increasing function h(x) ≤ x
satisfying

(1.21) h(x)/log x→∞ as x→∞.

Theorem 1.1 (resp. Theorem 1.2) shows that, under GRH (resp. under
GRH and (1.19)) for almost all x ≥ 2, we have

ψ(x+ h(x), π)− ψ(x, π) = o(h(x)) (x→∞),

provided (1.18) (resp. (1.21)) is satisfied. Thus the sequence {Λπ(n)}n≥1
changes sign (unlike in the classical case {Λ(n)}n≥1). Very recently, Liu,
Qu & Wu [6] showed that if Λπ(n) is real for all n ≥ 1, then there is some
n satisfying

n�m,ε Q
1+ε
π

such that Λπ(n) < 0. The implied constant depends only on m and ε. In
particular, this result is true for any self-contragredient irreducible unitary
cuspidal representation π for GLm(AQ) with trivial central character.

The main new ideas for proving Theorems 1.1 and 1.2 are a delicate ap-
plication of Iwaniec–Kowalski’s mean value estimate (cf. (3.3) below) and an
explicit formula in a more precise form adapted to our purpose (cf. Lemma
3.1 below).

2. Preliminary lemmas. In view of (1.10) and the fact that L(s, π)
and Φ(s, π) are entire, it is not difficult to see that the trivial zeros of L(s, π)
and the poles of L∞(1− s, π̃∞) are

µ := −2n− µπ(j) for n = 0, 1, . . . ; j = 1, . . . ,m,(2.1)

Pn,j := 2n+ 1 + µπ̃(j) for n = 0, 1, . . . ; j = 1, . . . ,m,(2.2)

respectively. As in [7], we let C(m) denote the complex plane with the discs

|s− Pn,j | < (8m)−1 for n = 0, 1, . . . ; j = 1, . . . ,m

removed. Thus, for any s ∈ C(m), the quantity (1 − s + µπ̃(j))/2 is away
from all poles of Γ (s) by at least (16m)−1. For j = 1, . . . ,m, denote by
β(j) the fractional part of <e µπ̃(j). In addition, let β(0) = 0 and β(m+ 1)
= 1. Then all β(j) are in [0, 1], and hence there exist β(j1), β(j2) such that
β(j2)− β(j1) ≥ 1/(3m) and there is no β(j) lying between β(j1) and β(j2).
Consequently, for all n = 0, 1, . . . , the strips

(2.3) S−n := {s ∈ C : −n+β(j1)+(8m)−1 ≤ <e s ≤ −n+β(j2)− (8m)−1}
are subsets of C(m).

The following assertions (i) and (ii) are Lemmas 4.3(d) and 4.4 of [7],
respectively.
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Lemma 2.1. Let π be an irreducible unitary cuspidal representation of
GLm(AQ) with m ≥ 2.

(i) For T ≥ 2, there exists τT with T ≤ τT ≤ T + 1 such that

−L
′

L
(σ ± iτT , π)� log2(QπT ) (|σ| ≤ 2).

(ii) If s is in some strip S−n as in (2.3) with n ≥ 2, then

−L
′

L
(s, π)� 1.

The implied constants depend only on m.

The next lemma is about the distribution of zeros of L(s, π). For its
proof, one is referred to Lemma 4.3 of Liu & Ye [7], or Theorem 5.8 of
Iwaniec & Kowalski [3].

Lemma 2.2. Let π be an irreducible unitary cuspidal representation of
GLm(AQ) with m ≥ 2. All the nontrivial zeros of Φ(s, π) are in the critical
strip 0 ≤ σ ≤ 1. Let N(T, π) be the number of its nontrivial zeros within the
rectangle 0 ≤ σ ≤ 1 and |τ | ≤ T . Then

N(T, π)� T log(QπT ),(2.4)

N(T + 1, π)−N(T, π)� log(QπT ),(2.5)

where the implied constants are absolute.

3. An explicit formula. Explicit formulae of different forms were es-
tablished by many authors. In particular, under GRC, explicit formulae for
general L-functions were proved in [3, (5.53)]. The explicit formula below is
unconditional, and plays a key role in the proofs of Theorems 1.1 and 1.2.

Lemma 3.1. Let π be an irreducible unitary cuspidal representation of
GLm(AQ) with m ≥ 2, and let A > 0. Then, for x ≥ 2 and 2 ≤ T ≤ xA, we
have

(3.1) ψ(x, π) = −
∑
|γ|≤T

xρ

ρ
−

∑
κ′<λ<κ
|ν|≤T

xµ

µ
− L′

L
(0, π) +O(Rπ(x, T )),

where

Rπ(x, T ) :=
∑

|n−x|≤x/
√
T

|Λπ(n)|+ x(logQπ) log(Qπx)√
T

+
x log2(Qπx)

T
+

log T

x
,

−2 < κ′ < −1, κ = 1 + 1/log x, and µ (resp. ρ) runs over the trivial zeros
µ = λ + iν (resp. the nontrivial zeros ρ = β + iγ) of L(s, π). The implied
constant depends only on A and m.
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Proof. Since the series (1.13) converges absolutely for σ > 1, we can
apply the Perron formula [17, Theorem II.2.2] with κ = 1 + 1/log x, so that

ψ(x, π) =
1

2πi

κ+iT�

κ−iT
−L

′

L
(s, π)

xs

s
ds(3.2)

+O

(
xκ

∞∑
n=1

|Λπ(n)|
nκ(1 + T |log(x/n)|)

)
.

In order to treat the O-term, we split the sum into two parts according
to whether

|x− n| ≤ x/
√
T or |x− n| > x/

√
T .

By the Cauchy–Schwarz inequality, it follows that∑
|x−n|>x/

√
T

|Λπ(n)|
nκ(1 + T |log(x/n)|)

� 1√
T

∞∑
n=1

|Λπ(n)|
nκ

� 1√
T

( ∞∑
n=1

|Λπ(n)|2

nκ

)1/2( ∞∑
n=1

1

nκ

)1/2

.

According to [3, (5.48)], we have

(3.3)
∑
n≤u
|Λπ(n)|2 � m2u log2(Qπu) (u ≥ 1),

where the implied constant is absolute. Thus a simple integration by parts
gives us

∞∑
n=1

|Λπ(n)|2

nκ
=

∞�

1−

1

uκ
d
(∑
n≤u
|Λπ(n)|2

)
�m

∞�

1

log2(Qπu)

uκ
du

�m
log2Qπ
κ− 1

+
1

(κ− 1)3
.

Similarly but more easily, we have
∞∑
n=1

1

nκ
� 1

κ− 1
.

Combining these estimates, we find that

(3.4) xκ
∑

|x−n|>x/
√
T

|Λπ(n)|
nκ(1 + T |log(x/n)|)

� x(log x) log(Qπx)√
T

.

Next, we shall evaluate the integral on the right-hand side of (3.2). For
this purpose, we shift the contour of integration to the left. Choose κ′ with
−2 < κ′ < −1 such that the vertical line σ = κ′ is contained in the strip
S−2 ⊂ C(m); this is guaranteed by the structure of C(m). Without loss of
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generality, let T ≥ 2 be a large number such that T and −T can be taken
as the τT in Lemma 2.1(i). Now we consider the contour L1 ∪L2 ∪L3 with

L1 := [κ′− iT, κ− iT ], L2 := [κ′− iT, κ′+ iT ], L3 := [κ′+ iT, κ+ iT ].

By Lemma 2.2 and (2.1), certain nontrivial zeros ρ = β + iγ and trivial
zeros µ = λ+ iν of L(s, π), as well as s = 0 are passed by the shifting of the
contour.

Computing the residues, we have

1

2πi

κ+iT�

κ−iT
−L

′

L
(s, π)

xs

s
ds = −

∑
|γ|≤T

xρ

ρ
−

∑
κ′<λ<κ
|ν|≤T

xµ

µ
− L′

L
(0, π)(3.5)

− 1

2πi

�

L1∪L2∪L3

−L
′

L
(s, π)

xs

s
ds.

The integral on L1 can be estimated by Lemma 2.1(i) as

1

2πi

�

L1

−L
′

L
(s, π)

xs

s
ds�

κ�

κ′

log2(QπT )
xσ

T
dσ � x log2(QπT )

T
,

and the same upper bound also holds for the integral on L3. By Lemma
2.1(ii),

1

2πi

�

L2

−L
′

L
(s, π)

xs

s
ds�

T�

−T

xκ
′

|τ |+ 1
dt� log T

x
.

Therefore, (3.5) becomes

1

2πi

κ+iT�

κ−iT
−L

′

L
(s, π)

xs

s
ds = −

∑
|γ|≤T

xρ

ρ
−

∑
κ′<λ<κ
|ν|≤T

xµ

µ
− L′

L
(0, π)

+O

(
x(log x) log(Qπx)√

T
+
x log2(QπT )

T
+

log T

x

)
.

Inserting the above formula and (3.4) into (3.2), we obtain the required
result.

4. Gallagher lemma and proof of Theorem 1.1. Our main tool is
the following lemma of Gallagher [1, Lemma 1].

Lemma 4.1. Let U > 0 and δ = ϑ/U with 0 < ϑ < 1, and let

S(u) :=
∑
ν

c(ν)e2πiνu
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be absolutely convergent, where c(ν) ∈ C, and the frequencies ν run over an
arbitrary sequence of real numbers. Then

U�

−U
|S(u)|2 du�ϑ U

2
+∞�

−∞

∣∣∣ ∑
t<ν≤t+δ

c(ν)
∣∣∣2 dt.

Now we prove Theorem 1.1. Let 104 ≤ X ≤ x ≤ 2X, and take T =
(X logX)2 in the explicit formula (3.1) of Lemma 3.1. Since the length of
the interval (x− x/(X logX), x+ x/(X logX)] is 2x/(X logX) ≤ 1/2, this
interval contains at most one integer; we denote this possible integer by nx.
Thus our explicit formula becomes

ψ(x, π) = −
∑

|γ|≤(X logX)2

xρ

ρ
−

∑
κ′<λ<κ

|ν|≤(X logX)2

xµ

µ
− L′

L
(0, π)

+O

(
|Λπ(nx)|+ log(QπX) +

(logQπ)2

X(logX)2

)
,

where the implied constant depends only on m. From this we can write

ψ(x+ h, π)− ψ(x, π) = A+B +O

(
C + log(QπX) +

(logQπ)2

X(logX)2

)
,

where h ≤ 2X ≤ 2x and

A := −
∑

|γ|≤(X logX)2

(x+ h)ρ − xρ

ρ
,

B := −
∑

κ′<λ<κ
|ν|≤(X logX)2

(x+ h)µ − xµ

µ
,

C := |Λπ(nx+h)|+ |Λπ(nx)|.

Clearly,

2X�

X

|ψ(x+ h, π)− ψ(x, π)|2 dx�
2X�

X

(|A|2 + |B|2 + |C|2) dx(4.1)

+X log2(QπX) +
(logQπ)4

X(logX)4
.

We start from A. In A, we split the sum over |γ| at T , with 4 ≤ T ≤
(X logX)2 a parameter that will be specified later, and define

S1(y) :=
∑
|γ|≤T

yiγ and S2(y) :=
∑

T<|γ|≤(X logX)2

yiγ

ρ
.
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Under GRH, the sum in A runs over the nontrivial zeros ρ = 1/2 + iγ of
L(s, π) with |γ| up to (X logX)2. Thus we can write

A = −
∑
|γ|≤T

(x+ h)ρ − xρ

ρ
−

∑
T<|γ|≤(X logX)2

(x+ h)ρ − xρ

ρ

= −
∑
|γ|≤T

x+h�

x

yρ−1 dy −
∑

T<|γ|≤(X logX)2

(x+ h)1/2+iγ − x1/2+iγ

ρ

= −
x+h�

x

S1(y)

y1/2
dy − (x+ h)1/2S2(x+ h) + x1/2S2(x) =: A1 +A2 +A3,

say. By the Cauchy–Schwarz inequality,

|A1|2 ≤ h
x+h�

x

|S1(y)|2

y
dy.

In view of h ≤ 2X, the contribution from |A1|2 is estimated as
2X�

X

|A1|2 dx� h

2X�

X

( x+h�

x

|S1(y)|2

y
dy

)
dx� h2

4X�

X

|S1(y)|2

y
dy.

Changing variable y = Xe2πu and applying Lemma 4.1 and (2.5), it follows

2X�

X

|A1|2 dx� h2
(log 2)/π�

0

∣∣∣ ∑
|γ|≤T

Xiγe2πiγu
∣∣∣2 du(4.2)

� h2
+∞�

−∞

( ∑
|γ|≤T, t<γ≤t+1

1
)2
dt

� h2
T�

0

( ∑
t<γ≤t+1

1
)2
dt� h2T log2(QπT ).

The contribution from |A2|2 can be estimated as

2X�

X

|A2|2 dx� X2
4X�

X

|S2(x)|2

x
dx(4.3)

= X2

(log 2)/π�

0

∣∣∣∣ ∑
T<|γ|≤(X logX)2

Xiγ

ρ
e2πiγu

∣∣∣∣2 du
� X2

+∞�

−∞

( ∑
T<|γ|≤(X logX)2, t<γ<t+1

1

|γ|

)2

dt

� X2

(X logX)2�

T−1

( ∑
t<γ≤t+1

1

|γ|

)2

dt.
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By using (2.5) and (2.4) of Lemma 2.2, a simple integration by parts gives∑
t<γ≤t+1

1

|γ|
=

t+1�

t

1

u
dN(u, π)� log(Qπt)

t
.

Thus

(4.4)

2X�

X

|A2|2 dx� X2

(X logX)2�

T−1

log2(Qπt)

t2
dt� X2 log2(QπT )

T
.

Similarly, after taking x+ h = y, we have

(4.5)

2X�

X

|A3|2 dx�
X2 log2(QπT )

T
.

We conclude from (4.2), (4.4) and (4.5) that

(4.6)

2X�

X

|A|2 dx� h2T log2(QπT ) +
X2 log2(QπT )

T
.

For the mean-value of |B|2, we apply (2.1) and (1.11) to get

2X�

X

|B|2 dx =

2X�

X

∣∣∣∣ ∑
κ′<λ<κ

|ν|≤(X logX)2

(x+ h)µ − xµ

µ

∣∣∣∣2 dx(4.7)

�
2X�

X

( ∑
κ′<λ<κ

|ν|≤(X logX)2

xλ−1h
)2
dx�

2X�

X

(xθ−1h)2 dx� h2.

It remains to estimate the contribution of |C|2. We have

2X�

X

|C|2 dx =

2X�

X

(|Λπ(nx+h)|+ |Λπ(nx)|)2 dx

�
[2X]∑
j=[X]

j+1�

j

(|Λπ(nx+h)|2 + |Λπ(nx)|2) dx.

Since h(x) is increasing and h(x) ≤ x, we have trivially, for j ≤ x ≤ j + 1,

j − 1 ≤ nx+h(x) ≤ 2(j + 2), j − 1 ≤ nx ≤ j + 2.

Thus,

(4.8)

2X�

X

|C|2 dx�
3[2X]∑

j=[X]−1

|Λπ(j)|2 � X log2(QπX),

by applying (3.3).
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Finally inserting (4.6)–(4.8) to (4.1), and taking T = X/h(2X), we find

2X�

X

|ψ(x+ h, π)− ψ(x, π)|2 dx� h(2X)X log2(QπX) +
(logQπ)4

X(logX)4

for any increasing function h(x) satisfying 1 ≤ h(x) ≤ x. A splitting-up
argument then gives the required inequality (1.17).

5. Pair correlation of zeros and proof of Theorem 1.2. The proof
of Theorem 1.2 is very similar to that of Theorem 1.1. The only difference
is in estimating the contribution of |Ai|2 with the help of hypothesis (1.19)
instead of Gallagher’s lemma and Lemma 2.2. We retain the notation of
Section 4. According to the first line of (4.2), we have

2X�

X

|A1|2 dx� h2
(log 2)/π�

0

∣∣∣ ∑
|γ|≤T

Xiγe2πiγu
∣∣∣2 du.

In view of the trivial inequality e−4π|u| � 1 (0 ≤ u ≤ 1) and the classical
formula

2π

+∞�

−∞
e−4π|u|+2πitu du = W (t),

we can deduce

2X�

X

|A1|2 dx� h2
(log 2)/π�

0

e−4π|u|
∣∣∣ ∑
|γ|≤T

Xiγe2πiγu
∣∣∣2 du(5.1)

� h2
+∞�

−∞
e−4π|u|

∣∣∣ ∑
0<γ≤T

Xiγe2πiγu
∣∣∣2 du

� h2
∑

0<γ1,γ2≤T
Xi(γ1−γ2)

+∞�

−∞
e−4π|u|e2πi(γ1−γ2)u du

� h2
∑

0<γ1,γ2≤T
Xi(γ1−γ2)W (γ1 − γ2)

= h2F πT

(
logX

2π

)
.

Assuming (1.19), we have

(5.2)

2X�

X

|A1|2 dx� h2T log(QπT ).
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Next we estimate the contribution of |A2|2. By partial summation,∑
T<γ≤(X logX)2

Xiγ

ρ
e2πiγu =

(X logX)2�

T

1

1/2 + it
d
(∑
γ≤t

Xiγe2πiγu
)

=
∑

γ≤(X logX)2

Xiγe2πiγu

1/2 + i(X logX)2
−
∑
γ≤T

Xiγe2πiγu

1/2 + iT

+ i

(X logX)2�

T

∑
γ≤t

Xiγe2πiγu
dt

(1/2 + it)2
.

Thus∣∣∣∣ ∑
T<γ≤(X logX)2

Xiγ

ρ
e2πiγu

∣∣∣∣2 � 1

X4

∣∣∣ ∑
γ≤(X logX)2

Xiγe2πiγu
∣∣∣2

+
1

T 2

∣∣∣∑
γ≤T

Xiγe2πiγu
∣∣∣2

+

(X logX)2�

T

∣∣∣∑
γ≤t

Xiγe2πiγu
∣∣∣2 log2(2t/T )

t3
dt,

where we have used the estimate( (X logX)2�

T

∣∣∣∑
γ≤t

Xiγe2πiγu
∣∣∣ dt
t2

)2

�
(X logX)2�

T

dt

t log2(2t/T )

(X logX)2�

T

∣∣∣∑
γ≤t

Xiγe2πiγu
∣∣∣2 log2(2t/T )

t3
dt

�
(X logX)2�

T

∣∣∣∑
γ≤t

Xiγe2πiγu
∣∣∣2 log2(2t/T )

t3
dt.

In view of the first two lines of (4.3) and the estimate above, we can write

2X�

X

|A2|2 dx� X2

{
1

X4

(log 2)/π�

0

∣∣∣ ∑
γ≤(X logX)2

Xiγe2πiγu
∣∣∣2 du

+
1

T 2

(log 2)/π�

0

∣∣∣∑
γ≤T

Xiγe2πiγu
∣∣∣2 du

+

(X logX)2�

T

( (log 2)/π�

0

∣∣∣∑
γ≤t

Xiγe2πiγu
∣∣∣2 du) log2(2t/T )

t3
dt

}
.
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From this, a similar argument to (5.1) allows us to deduce

2X�

X

|A2|2 dx� X2

(
1

T
+

(X logX)2�

T

log2
(

2t

T

)
dt

t2

)
sup

T≤t≤(X logX)2

1

t
F πt

(
logX

2π

)
� X2

T
sup

T≤t≤(X logX)2

1

t
F πt

(
logX

2π

)
.

Assuming (1.19), it follows that

2X�

X

|A2|2 dx�
X2

T
sup

T≤t≤(X logX)2
log(Qπt)�

X2 log(QπX)

T
.

The same estimate also holds for
	2X
X |A3|2 dx.

From these conclusions and (5.2), we get

(5.3)

2X�

X

|A|2 dx� h2T log(QπT ) +
X2 log(QπX)

T
.

Finally, inserting (5.3), (4.7) and (4.8) into (4.1), and taking T =
X/h(2X), we find that

2X�

X

∣∣ψ(x+ h, π)− ψ(x, π)
∣∣2 dx� h(2X)X log(QπX)

+X log2(QπX) +
(logQπ)4

X(logX)4

for any increasing function h(x) satisfying 1 ≤ h(x) ≤ x. A splitting-up
argument then gives the required inequality (1.20).
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Institut Élie Cartan Lorraine, CNRS
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