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1. Introduction. In the number-theoretic setting, low-discrepancy se-
quences are usually compared with each other by looking at the asymp-
totic behavior of bounds on their discrepancy. More precisely, the term low-
discrepancy sequences refers to sequences X satisfying the bound D∗(N,X)
≤ cs(logN)s + O((logN)s−1) (see Section 1.1). A better understanding of
the properties of such bounds provides useful insights into the corresponding
sequences in applications to numerical analysis and to (quasi-) Monte Carlo
methods. Among many publications on both these areas, the reader can
consult the recent monographs [3, 12, 18] and [14] for a complete overview.

Two well-known families of multi-dimensional low-discrepancy sequences
are the Halton sequences [9] and the so-called (t, s)-sequences introduced by
Sobol’ [21], Faure [5] and generalized by Niederreiter [13]. Recently, there
has been a renewed interest in Halton sequences due to an important im-
provement discovered by Atanassov [1]. His results provided a drastic change
in our understanding of how bounds on the discrepancy vary with the di-
mension s for these sequences (for readers who do not have access to [1], we
recommend [3, Theorem 3.36] where a detailed proof of [1, Theorem 2.1] is
given in a slightly less general form, and [23] for a complete investigation
of the proofs of Theorems 2.1 and 2.2 from [1]). For (t, s)-sequences in di-
mension s ≥ 2, another recent improvement was provided by Kritzer in [11],
who was able to reduce by a factor of about two the leading constant cs
obtained in [13]. His results are presented in Section 1.3 below. In the same
paper, Kritzer also states a conjecture for (t, s)-sequences in even bases that
would substantially improve his own bounds. A careful comparison of these
improved bounds—through the constant cs—for both Halton sequences and
(t, s)-sequences can be found in [7, Section 2.3].

One of the objectives of our study is to closely approach the conjecture
of Kritzer for even bases (within a factor of about 1/2). To this end, we
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enhance the process from [8] which consists in using Atanassov’s method for
Halton sequences to obtain discrepancy bounds for (t, s)-sequences. We also
provide a new result for the discrepancy of (t, 1)-sequences and extend to a
larger class of (t, s)-sequences the bounds presented in [8, 11].

The paper is organized as follows. The rest of this first section is used
to cover background material on discrepancy bounds for (t, s)-sequences
together with previously known results on cs. Section 2 is devoted to the
one-dimensional case, where we provide a new result for the discrepancy
bound for (t, 1)-sequences. Section 3 describes how to use Atanassov’s ap-
proach to study the discrepancy of (t, s)-sequences (in the “broad sense”,
a terminology to be defined shortly), closely following the recent study [8].
The important improvement mentioned above for even bases b is given in
Section 4, along with some numerical comparisons showing how this result
improves upon the previously established best bounds from [11].

1.1. Discrepancy. We start with a review of the notion of discrepancy,
which will be used throughout the paper. Various types exist but here, for
short, we only consider the so-called extreme discrepancy, which corresponds
to the worst case error in the domain of complexity of multivariate problems.
Assume we have a point set PN = {X1, . . . , XN} ⊆ Is := [0, 1]s and denote
by J (resp. J ∗) the set of intervals J of Is of the form J =

∏s
j=1[yj , zj),

where 0 ≤ yj < zj ≤ 1 (resp. J =
∏s
j=1[0, zj)). Then the discrepancy

function of PN on such an interval J is the difference

E(J ;N) = A(J ;PN )−NV (J),

where A(J ;PN ) = #{n ; 1 ≤ n ≤ N,Xn ∈ J} is the number of points in PN
that fall in the subinterval J , and V (J) =

∏s
j=1(zj − yj) is the volume of J .

Then, the star (extreme) discrepancy D∗ and the (extreme) discrepancy
D of PN are defined by

D∗(PN ) = sup
J∈J ∗

|E(J ;N)| and D(PN ) = sup
J∈J
|E(J ;N)|.

It is well known that D∗(PN ) ≤ D(PN ) ≤ 2sD∗(PN ). For an infinite se-
quence X, we denote by D(N,X) and D∗(N,X) the discrepancies of its
first N points. Note that several authors have a 1/N factor when defining
the above quantities.

A sequence satisfying D∗(N,X) ∈ O((logN)s) is typically considered to
be a low-discrepancy sequence. But the constant hidden in the O notation
needs to be made explicit to make comparisons possible across sequences.
This is achieved in many papers with an inequality of the form

(1) D∗(N,X) ≤ cs(logN)s +O((logN)s−1).

The constant cs in this inequality is the main object of our study, as in
many other papers dealing with theoretical comparisons of low-discrepancy
sequences.
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1.2. Review of (t, s)-sequences. The concept of (t, s)-sequences has
been introduced by Niederreiter [13] to give a general framework for vari-
ous constructions including Sobol’ sequences [21], Faure sequences [5], and
later a more general class of constructions referred to as Niederreiter–Xing
sequences [17].

Definition 1. Given an integer b ≥ 2, an elementary interval in Is is
an interval of the form

∏s
i=1[aib

−di , (ai+1)b−di) where ai, di are nonnegative
integers with 0 ≤ ai < bdi for 1 ≤ i ≤ s.

Given integers t,m with 0 ≤ t ≤ m, a (t,m, s)-net in base b is an s-
dimensional set with bm points such that any elementary interval in base b
with volume bt−m contains exactly bt points of the set.

An s-dimensional sequence (Xn)n≥1 in Is is a (t, s)-sequence if the subset
{Xn; kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base b for all integers k ≥ 0
and m ≥ t.

In order to make new important constructions meaningful, Tezuka [22]
and then Niederreiter and Xing [16, 17] introduced a new definition using
the so-called truncation operator that we now recall.

Truncation: Let x =
∑∞

i=1 xib
−i be a b-adic expansion of x ∈ [0, 1], with

the possibility that xi = b − 1 for all but finitely many i. For every integer
m ≥ 1, we define the m-truncation of x by [x]b,m =

∑m
i=1 xib

−i (depending
on x via its expansion). In the case where X ∈ Is, the notation [X]b,m means
that m-truncation is applied to each coordinate of X.

Definition 2. An s-dimensional sequence (Xn)n≥1, with prescribed b-
adic expansions for each coordinate, is a (t, s)-sequence (in the broad sense)
if the subset {[Xn]b,m; kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base b for
all integers k ≥ 0 and m ≥ t.

The former (t, s)-sequences are now called (t, s)-sequences in the narrow
sense and the others just (t, s)-sequences (Niederreiter–Xing [17, Defini-
tion 2 and Remark 1]); in this paper, we will sometimes use intentionally
the expression in the broad sense to emphasize the difference.

1.3. Review of bounds for the discrepancy of (t, s)-sequences.
Bounds for the discrepancy of (t, s)-sequences in the narrow sense have been
established by Niederreiter in [13] with the constant cs in (1):

(2) cNi
s =

bt

s!

b− 1

2bb/2c

(
bb/2c
log b

)s
.

In the same paper an improved bound with

cNi
s =

bt

s

(
b− 1

2 log b

)s
is obtained for s = 2, for s = 3 and b = 2, and for s = 4 and b = 2.
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More recently, Kritzer [11], still for (t, s)-sequences in the narrow sense
and in dimension s ≥ 2, obtained the constants

cKr
s =

bt

s!

b− 1

2(b+ 1)

(
b

2 log b

)s
when b is an even base,(3)

cKr
s =

bt

s!

1

2

(
b− 1

2 log b

)s
when b is an odd base,(4)

hence improving the constants from [13] by a multiplicative factor of 1/2 for
an odd b and of b/2(b+ 1) for an even b (apart from the special cases where
b = 2 and b ≥ 4 even, when s = 2).

In the same paper, Kritzer conjectures that, when the base b is even, the
constant cs for s ≥ 2 should be

(5) cconjs =
bt

s!

b2

2(b2 − 1)

(
b− 1

2 log b

)s
.

As for (t, s)-sequences (in the broad sense), Niederreiter and Xing [16]
showed that the constant cNi

s in (2) is still valid, but Kritzer [11] did not
take into account this generalization.

2. The one-dimensional case. In [11], Kritzer obtains improved
bounds for dimensions s ≥ 2. His method is based on a result for (t,m, 2)-
nets (shown in [2]), and thus it cannot be used to get corresponding improved
bounds in one dimension. Hence, this section is devoted to the special case
s = 1, for which the corresponding bounds are obtained in Corollary 1 (note
the slight subtlety in the case of an even base). Furthermore, we believe
that Theorem 1 and Corollary 1 below are likely to be the starting point
for proving Kritzer’s conjecture. But until now we could not manage to in-
sert our better bounds in one dimension into our proof using the method
of Atanassov. See the remarks at the end of Sections 2 and 4 for further
details.

Before presenting our results (Section 2.2), we must review known facts
about the discrepancy of one-dimensional sequences (Section 2.1).

2.1. Review of van der Corput sequences. Generalized van der
Corput sequences have been introduced in [4] to improve the behavior of
the original van der Corput sequence in base 2.

Definition 3. Let b ≥ 2 be an integer. For integers n and N with n ≥ 1
and 1 ≤ N ≤ bn, write N − 1 =

∑∞
r=0 ar(N)br in the b-adic system (so that

ar(N) = 0 if r ≥ n) and let Σ = (σr)r≥0 be a sequence of permutations
of {0, 1, . . . , b− 1}. Then the generalized van der Corput sequence in base b
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associated with Σ is defined by

SΣb (N) =
∞∑
r=0

σr(ar(N))

br+1
·

If σr = σ for all r ≥ 0, we write SΣb = Sσb . The original van der Corput
sequence in base b, Sid

b , is obtained with the identical permutation id.

The study of van der Corput sequences involves two more precise notions
of discrepancy defined as follows:

D+(N,X) = sup
0≤α≤1

E([0, α);N ;X), D−(N,X) = sup
0≤α≤1

(−E([0, α);N ;X)).

These discrepancies are linked to the preceding ones by the relations D =
D+ +D− and D∗ = max(D+, D−).

Reminders on asymptotic results for Sid
b . We only recall here the results

about van der Corput sequences useful for the statement of Corollary 1.

For any permutation σ, there exists an effectively computable constant
ασb such that

lim sup
N→∞

D(N,Sσb )

logN
=

ασb
log b

and

D(N,Sσb ) ≤
ασb

log b
logN + ασb + 2 for all N ≥ 1.

Moreover, for any sequence of permutations Σ, we have

D(N,SΣb ) ≤ D(N,Sid
b ) = D∗(N,Sid

b ) for all N ≥ 1,

i.e., the original van der Corput sequence Sid
b is the worst distributed among

SΣb sequences with respect to both the discrepancy D and the star discrep-
ancy D∗. Since

αid
b

log b
=

b− 1

4 log b
if b is odd and

αid
b

log b
=

b2

4(b+ 1) log b
if b is even,

these constants are the worst possible leading constants for the discrepancies
D and D∗ of SΣb sequences. All these results come from [4].

Reminders on van der Corput sequences towards (0, 1)-sequences. These
results come from [6]. First, recall the relation between these two families:

Generalized van der Corput sequences SΣb are (0, 1)-sequences (in the
broad sense). Here, the truncation is required for sequences SΣb such that
σr(0) = b− 1 for all sufficiently large r [6, Proposition 3.1].

Next, a result about star discrepancy: The original van der Corput se-
quences Sid

b are the worst distributed with respect to star discrepancy among
all (0, 1)-sequences Xb (in the broad sense) and in arbitrary base b ≥ 2, that
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is [6, Theorem 5.1],

D∗(N,Xb) ≤ D∗(N,Sid
b ) = D(N,Sid

b ) for all N ≥ 1.

This theorem generalizes the same result from Kritzer [10] which was re-
stricted to (0, 1)-sequences (in the narrow sense).

Moreover, in the same paper examples are given showing that van der
Corput sequences Sid

b are not the worst distributed with respect to the dis-
crepancy D among all (0, 1)-sequences Xb (in the broad sense) for any base
b and among all digital (0, 1)-sequences X2 (in the broad sense) for base 2;
see [6, Theorems 5.3 and 5.2] for more details.

2.2. On the star discrepancy of (t, 1)-sequences. We extend the
above theorem to (t, 1)-sequences in base b, hence getting the worst possible
leading constants c1 for (t, 1)-sequences.

Theorem 1. For any base b, the original van der Corput sequences
are the worst distributed with respect to star discrepancy among all (t, 1)-
sequences Xt

b (in the broad sense), that is, for all N ≥ 1,

D∗(btN,Xt
b) ≤ btD∗(N,Sid

b ) = btD(N,Sid
b ).

Proof. The proof closely follows the proof of [6, Theorem 5.1] with the

sequence Sid,t
b consisting of bt copies of Sid

b instead of the sequence Sid
b . For

the sake of completeness, we give the main steps.

Let there be given an integer m ≥ 0 and the collection of elementary
intervals of length b−m. By construction (see [4, Property 3.1.2] with σn−1 =
id), the van der Corput sequence Sid

b is the unique (0, 1)-sequence whose
points are always placed, in increasing order, as far to the left as possible
within the given collection of elementary intervals and satisfy the elementary
interval property.

Let τ be the permutation defined by τ(k) = b− 1− k for 0 ≤ k ≤ b− 1.
Then, by construction (see [4, Property 3.1.2] with σn−1 = τ), Sτb is the
unique (0, 1)-sequence whose points are always placed, in increasing order,
as far to the right as possible within the given collection of elementary
intervals and satisfy the elementary interval property.

Therefore, by the elementary interval property for Xt
b, for any real α ∈

[0, 1] and any integer N ≥ 1 we have

A([0, α); btN ;Xt
b) ≤ A([0, α); btN ;Sid,t

b ) = btA([0, α);N ;Sid
b ),

A([0, α); btN ;Xt
b) ≥ A([0, α); btN ;Sτ,tb ) = btA([0, α);N ;Sτb ),

where Sτ,tb consists of bt copies of Sτb .

Now, from the definitions of D+ and D−, we get

D+(btN,Xt
b) ≤ btD+(N,Sid

b ) and D−(btN,Xt
b) ≤ btD−(N,Sτb ).
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Finally, we have D−(N,Sτb ) = D+(N,Sid
b ) (see [6, proof of Theorem 5.1] for

details), so that

D∗(btN,Xt
b) = max(D+(btN,Xt

b), D
−(btN,Xt

b))

≤ btD+(N,Sid
b ) = btD∗(N,Sid

b ).

(Notice, from [4], that D−(N,Sid
b ) = 0, D+(N,Sτb ) = 0 and therefore

D∗(N,Sid
b ) = D(N,Sid

b ) = D∗(N,Sτb ) = D(N,Sτb ).)

Remark 1. The main idea of the proof is in the first sentence; it was
already used by Dick and Kritzer [2] in the context of Hammersley two-
dimensional point sets and by Kritzer [10]. But in the latter paper, Kritzer
only considers (0, 1)-sequences in the narrow sense and his proof is longer.
Here, the use of Sτb together with the good control of discrepancy by means
of so-called ϕ-functions permits a shorter proof and a more general result.

Corollary 1. For all (t, 1)-sequences Xt
b (in the broad sense) and for

all N ≥ 1 we have

D∗(btN,Xt
b) ≤ bt

(
b− 1

4 log b
logN +

b− 1

4
+ 2

)
if b is odd,

D∗(btN,Xt
b) ≤ bt

(
b2

4(b+ 1) log b
logN +

b2

4(b+ 1)
+ 2

)
if b is even.

Hence, the constants cKr
s in (4) and cconjs in (5) are valid for s = 1, but cKr

s

in (3) is not. Note that for s = 2, cconjs = cKr
s in (3).

Remark 2. 1. Corollary 1 shows that the conjecture of Kritzer is true
for s = 1 whereas the bound (3), valid for s ≥ 2, is false for s = 1. Indeed
this bound is equal to

bt(b2 − b)
4(b+ 1) log b

<
bt+2

4(b+ 1) log b

and (5) is reached with Sid,t
b , a contradiction. But for s = 2 the conjecture is

true and until now this is the only dimension for which it is known to hold.
2. As for one-dimensional sequences having the smallest star discrepancy

that are currently known, recent progress has been made by Ostromoukhov
[19] who improves the preceding ones of the first author [4] cited in [13,
Section 8] and [14, Chapter 3.1] (in the same paper, Ostromoukhov also
improves the discrepancy D).

3. The results mentioned at the end of Section 2.1 for (0, 1)-sequences,
[6, Theorems 5.3 and 5.2], should have analogs for (t, 1)-sequences, t > 0.

3. Discrepancy bound for (t, s)-sequences (s ≥ 2). In this section,
we extend to (t, s)-sequences (in the broad sense) the discrepancy bound
obtained in [8] for (t, s)-sequences in the narrow sense by using Atanassov’s



68 H. Faure and C. Lemieux

method first initiated for Halton sequences [1]. We also give more details
toward the end of the proof than we did for Theorem 1 in [8], where they
were omitted due to lack of space. In that way, apart from these slight
improvements, we prepare the proof of Section 4 concerning even bases.
In what follows, PN (X) denotes the set containing the first N points of
a sequence X, and until the end, we set n := blogN/log bc. Also, several
results in this section apply to the truncated version of the (t, s)-sequence
under consideration, a concept that we now define.

Definition 4. Let X be a (t, s)-sequence in base b, with its kth term

defined as Xk = (X
(1)
k , . . . , X

(s)
k ), for k ≥ 1. Let

[PN (X)] = {([X(1)
k ]b,∆, . . . , [X

(s)
k ]b,∆); 1 ≤ k ≤ N}, where ∆ = n+ 1.

We refer to [PN (X)] as the first N points of a truncated version of the
sequence X.

The next result would be trivial without the truncation operator.

Lemma 1. Let X be a (t, s)-sequence in base b and J=
∏s
i=1[bib

−di , cib
−di)

with integers bi, ci satisfying 0 ≤ bi < ci ≤ bdi. Then for N ≥ bd1 · · · bds,
A(J ; [PN (X)]) is a nondecreasing function of N .

Proof. If N ≥ bd1 · · · bds , then ∆ ≥ di for all i. Therefore as N increases,
there cannot be fewer points (from the truncated sequence) inside a par-
ticular interval J . The reason why we have to make sure ∆ ≥ di for all i
is that otherwise, as N increases, some points could leave the interval J as
more precision is added to their digital expansion, but once the precision
∆ is not less than the precision di used to define the interval, this can no
longer happen.

The next lemma directly follows from the definition of (t, s)-sequences,
but it requires some adaptation due to the truncation operator.

Lemma 2. Let X be a (t, s)-sequence. Let J =
∏s
i=1[bib

−di , cib
−di) where

bi, ci are integers satisfying 0 ≤ bi < ci ≤ bdi . Then for any integers N ≥ 1
and u ≥ 0 we have

A(J ; [PN (X)]) = ubt(c1 − b1) · · · (cs − bs) where N = ubtbd1 · · · bds ,

|A(J ; [PN (X)])−NV (J)| ≤ bt
s∏
i=1

(ci − bi),

A(J ; [PN (X)]) ≤ bt
s∏
i=1

(ci − bi) if N < btbd1 · · · bds .

Proof. To prove the first statement, we observe that from the definition
of a (t, s)-sequence, the sets {[Xk]b,m; lbm ≤ k < (l+1)bm} are (t,m, s)-nets
for 0 ≤ l < u, where u ≥ 1. The sets {[Xk]b,M ; lbm ≤ k < (l + 1)bm} are
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also (t,m, s)-nets for 0 ≤ l < u and M > m, which proves the result since
∆ > m in the case N = ubm.

For the second statement, let l ≥ 1 be such that lbtbd1 · · · bds ≤ N <
(l + 1)btbd1 · · · bds . Then, using Lemma 1, we get

A(J ; [PN (X)])−NV (J)

≤ (l + 1)bt
s∏
i=1

(ci − bi)− lbt
s∏
i=1

bdi(ci − bi)b−di = bt
s∏
i=1

(ci − bi).

A similar argument shows that NV (J)−A(J ; [PN (X)]) ≤ bt
∏s
i=1(ci − bi).

For the third statement, in the case where N < btbd1 · · · bds , we define
d̃i = min(∆, di), where ∆ = n+1. Let [J ] be defined as the smallest interval

of the form
∏s
i=1[b̃ib

−d̃i , c̃ib
−d̃i) with 0 ≤ b̃i ≤ c̃i ≤ bd̃i and such that J ⊆ [J ].

We can see that [J ] is obtained by using c̃i = dci/bd̃i−die and b̃i = bbi/bd̃i−dic.
It is easy to see that each interval of the form

∏s
i=1[lib

−d̃i , (li + 1)b−d̃i) has
at most bt points from [PN (X)]. Hence

A(J ; [PN (X)]) ≤ A([J ]; [PN (X)]) ≤ bt
s∏
i=1

(c̃i − b̃i) ≤ bt
s∏
i=1

(ci − bi),

where the last inequality follows from the definition of b̃i and c̃i.

Lemma 3. Let b ≥ 2, N ≥ 1 and k ≥ 1 be integers. For integers j ≥ 0

and 1 ≤ i ≤ k, let c
(i)
j ≥ 0 be given numbers satisfying c

(i)
0 ≤ 1 and c

(i)
j ≤ c

for j ≥ 1, where c is some fixed number. Then

(6)
∑

{(j1,...,jk); bj1 ···bjk≤N}

k∏
i=1

c
(i)
ji
≤ 1

k!

(
c
logN

log b
+ k

)k
.

Proof. For each m ∈ {0, 1, . . . , k}, fix a subset L = {i1, . . . , im} of
{1, . . . , k} and consider the contributions of all the k-tuples j with jr > 0 for

r ∈ L, and jr = 0 for r /∈ L, with
∏k
i=1 b

ji =
∏
i∈L b

ji ≤ N . One can verify

as in [1, Lemma 3.2] (see also [3, Lemma 3.38]) that there are 1
m!

( logN
log b

)m
such k-tuples, each having a contribution of

k∏
i=1

c
(i)
ji

=
∏
i∈L

c
(i)
ji

∏
i/∈L

c
(i)
ji
≤
∏
i∈L

c
∏
i/∈L

1 = cm.

Expanding both sides of (6) now gives the result since 1
m! ≤

1
k!k

k−m.

Definition 5. Consider an interval J ⊆ Is. A signed splitting of J is
defined to be any collection of intervals J1, . . . , Jn and signs ε1, . . . , εn equal
to ±1 such that, for any (finitely) additive function ν on the intervals in Is,
we have ν(J) =

∑n
i=1 εiν(Ji).
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The following lemma, slightly reformulated, is taken directly from [1,
Lemma 3.5] (see also [3, Lemma 3.40]).

Lemma 4. Let J =
∏s
i=1[0, z

(i)) be an s-dimensional interval and, for

each 1 ≤ i ≤ s, let ni ≥ 0 be given integers. Set z
(i)
0 = 0, z

(i)
ni+1 = z(i) and,

if ni ≥ 1, let z
(i)
j ∈ [0, 1] be arbitrary given numbers for 1 ≤ j ≤ ni. Then

the collection of intervals
∏s
i=1[min(z

(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), with signs

ε(j1, . . . , js) =
∏s
i=1 sgn(z

(i)
ji+1 − z

(i)
ji

), for 0 ≤ ji ≤ ni, is a signed splitting
of J .

We can now prove the result announced at the beginning of Section 3:

Theorem 2. For any (t, s)-sequence X (in the broad sense) in any base
b and for any N ≥ 1 we have

(7) D∗(N,X) ≤ bt

s!

(⌊
b

2

⌋
logN

log b
+ s

)s
+ bt

s−1∑
k=1

b

k!

(⌊
b

2

⌋
logN

log b
+ k

)k
.

Proof. As in [5] and [1], we will use special numeration systems in base b,
using signed digits aj bounded by bb/2c, to expand reals in [0, 1). That is,
we write z ∈ [0, 1) as

(8) z=
∞∑
j=0

ajb
−j with

{
|aj | ≤ (b− 1)/2 if b is odd,

|aj | ≤ b/2, |aj |+ |aj+1| ≤ b− 1 if b is even.

The existence and uniqueness of such expansions are obtained by induction
(see [1, pp. 21–22] or [23, pp. 12–13] for more details). For later use, it is
worth pointing out that the expansion starts at b0, and as a result, it is easy
to see that a0 is either 0 or 1.

We can now begin the proof: Let z = (z(1), . . . , z(s)) ∈ [0, 1)s and consider

its b-adic expansion z(i) =
∑∞

j=0 a
(i)
j b
−j according to our numeration system

(8) above. Recall that n = blogN/log bc and define z
(i)
0 = 0 and z

(i)
n+1 = z(i).

If n ≥ 1, consider the numbers z
(i)
k =

∑k−1
j=0 a

(i)
j b
−j for k = 1, . . . , n. Applying

Lemma 4 with ni = n for all 1 ≤ i ≤ s, we split up J =
∏s
i=1[0, z

(i)) using

the numbers z
(i)
j , with 0 ≤ j ≤ n+ 1, and obtain the signed splitting

(9) I(j) :=

s∏
i=1

[min(z
(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)), 0 ≤ ji ≤ n,

with signs ε(j) =
∏s
i=1 sgn(z

(i)
ji+1 − z

(i)
ji

), where j = (j1, . . . , js).
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Since V and A( · ; [PN (X)]) are both additive, A(J ; [PN (X)]) −NV (J)
may be expanded as

(10) A(J ; [PN (X)])−NV (J)

=
n∑

j1=0

· · ·
n∑

js=0

ε(j)(A(I(j); [PN (X)])−NV (I(j))) =: Σ1 +Σ2,

where we rearrange the terms so that in Σ1 we put the terms j such that
bj1 · · · bjs ≤ N (that is, j1 + · · · + js ≤ n) and in Σ2 the rest. Notice that
in Σ1, the ji’s are small, so the corresponding I(j) is bigger. Hence, Σ1 deals
with the coarser part whereas Σ2 deals with the finer part.

Thanks to Lemmas 2 and 3, it is easy to deal with Σ1: from Lemma 2,
we have

(11) |A(I(j); [PN (X)])−NV (I(j))| ≤ bt
s∏
i=1

|z(i)ji+1 − z
(i)
ji
|bji = bt

s∏
i=1

|a(i)ji |.

Then, applying Lemma 3 with k = s, c
(i)
j = |a(i)j | and c = bb/2c, we obtain

|Σ1| ≤
∑

{j; bj1 ···bjs≤N}

|A(I(j); [PN (X)])−NV (I(j))| ≤ bt

s!

(⌊
b

2

⌋
logN

log b
+ s

)s
,

which is the first part of the bound of Theorem 2.
The terms gathered in Σ2 give the second part of the bound of Theo-

rem 2, i.e., the part in O((logN)s−1). The idea of Atanassov for his proof
of Theorem 2.1 in [1] is to divide the set of s-tuples j in Σ2 into s disjoint
sets included in larger ones for which Lemma 3 applies and gives the desired
upper bound. The adaptation to (t, s)-sequences follows the same way. For
the sake of completeness, we now survey the proof, something we could not
achieve in [8] due to lack of space.

Recall that in Σ2, we are summing over the set of all s-tuples j such
that bj1 · · · bjs > N with 0 ≤ ji ≤ n for all 1 ≤ i ≤ n. We split this set a
priori into s disjoint sets B0, . . . , Bs−1, where B0 = {j; bj1 > N} and

Bk = {j; bj1 · · · bjk ≤ N < bj1 · · · bjkbjk+1} for k ≥ 1.

But we immediately observe that B0 = ∅, since bj1 > N implies j1 > n,
which is in contradiction with the definition of the signed splitting in (9). For
the same reason, the corresponding set B0 in the proof for Halton sequences
is also empty, a remark that was skipped in papers dealing with Atanassov’s
Theorem 2.1 [1, 23, 3].

Hence we only have to deal with 1 ≤ k ≤ s−1. For such a fixed k and for
a fixed k-tuple (j1, . . . , jk) with bj1 · · · bjk ≤ N , define r as the largest integer
such that bj1 · · · bjkbr−1 ≤ N. Then the s-tuple j = (j1, . . . , jk, jk+1, . . . , js)
∈ Bk if and only if jk+1 ≥ r, the remaining integers jk+2, . . . , js being
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arbitrary in the interval [0, n]. Still for fixed k and (j1, . . . , jk) as above,

define K1 =
∏k
i=1[min(z

(i)
ji
, z

(i)
ji+1),max(z

(i)
ji
, z

(i)
ji+1)) and

K = K1 × [min(z(k+1)
r , z(k+1)),max(z(k+1)

r , zk+1))×
s∏

i=k+2

[0, z(i)).

Coming back to the sum of terms in Σ2 that belong to Bk, we obtain by a
simple case analysis

(12) ± (A(K; [PN (X)])−NV (K))

=
∑

{(jk+1,...,js); j∈Bk}

ε(j)(A(I(j); [PN (X)])−NV (I(j)))

where ± = sgn(z(k+1) − z(k+1)
r ). Now, since

|z(k+1) − z(k+1)
r | =

∣∣∣ ∞∑
j=r

a
(k+1)
j b−j

∣∣∣ ≤ ⌊ b
2

⌋
1

br
b

b− 1
≤ 1

br−1
,

it follows that [min(z
(k+1)
r , z(k+1)),max(z

(k+1)
r , z(k+1))) ⊆ [m1b

−r,m2b
−r)

for some nonnegative integers m1,m2 satisfying 0 ≤ m2−m1 < b. Hence K
is contained in the interval K ′ = K1× [m1b

−r,m2b
−r)× [0, 1)s−k−1. Thanks

to this inclusion we can bound A(K; [PN (X)]) using Lemma 2 (observe that
N < bj1 · · · bjkbr ≤ btbj1 · · · bjkbr):

A(K; [PN (X)]) ≤ A(K ′; [PN (X)]) ≤ bt(m2 −m1)
k∏
i=1

bji | z(i)ji+1 − z
(i)
ji
|

≤ bt · b
k∏
i=1

| a(i)ji |.

But on the other hand,

NV (K) ≤ btbj1 · · · bjkbr · V (K ′) = bt(m2 −m1)
k∏
i=1

|a(i)ji | ≤ b
t · b

k∏
i=1

|a(i)ji |,

so that |A(K; [PN (X)])−NV (K)| ≤ bt · b
∏k
i=1 |a

(i)
ji
|.

Finally, collecting everything in one sum, we get

|Σ2| =
∣∣∣ s−1∑
k=1

∑
{(j1,...,jk); bj1 ···bjk≤N}

∑
{(jk+1,...,js); j∈Bk}

ε(j)(A(I(j);N)−NV (I(j))
∣∣∣

=
∣∣∣ s−1∑
k=1

∑
{(j1,...,jk); bj1 ···bjk≤N}

±(A(K;N)−NV (K))
∣∣∣

≤ bt
s−1∑
k=1

b
∑

{(j1,...,jk); bj1 ···bjk≤N}

k∏
i=1

| a(i)ji | ≤ b
t
s−1∑
k=1

b

k!

(⌊
b

2

⌋
logN

log b
+ k

)k
,
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where we applied Lemma 3 with c = bb/2c and 1 ≤ k ≤ s − 1. This is the
second part of the bound of Theorem 2.

So far, we have proved (7) only for the truncated version of the sequence
but, as shown in [15, Lemma 4.2], when we go from the truncated to the
untruncated version of the sequence, the bound for the discrepancy remains
the same. Thus if a bound of the form (1) applies to the truncated version of
a (t, s)-sequence, it applies to the untruncated version as well with the same
constant cs. Notice that [15, Lemma 4.2] is a nice improvement over [16,
Rem. 2], the latter saying that going from the truncated to the untruncated
version adds at most s to the discrepancy of the nets involved.

From Theorem 2 we can derive the following result for the constant cs,
which for the case where b is odd is the same as the constant cNi

s , while in
the case where b is even, it is larger than cNi

s by a factor of b/(b− 1).

Corollary 2. The discrepancy of a (t, s)-sequence X in base b satisfies
(1) with

cs =


bt

s!

(
b− 1

2 log b

)s
if b is odd,

bt

s!

(
b

2 log b

)s
if b is even.

Remark 3. So far, we have not been able to include in our proof the
improvements in one dimension from Section 2. Hence we are not able to
reach the constants cKr

s obtained by Kritzer [11]. However, for even bases
we are able to substantially improve upon cKr

s in (3) and get quite close to

cconjs conjectured in (5). This new result is the topic of the next section.

4. Discrepancy bound for (t, s)-sequences in an even base. The
technique used to get our improved bounds for (t, s)-sequences in even bases
is an adaptation of the one used by Atanassov in [1] to handle the case of
an even base in Halton sequences. The result is as follows:

Theorem 3. For any (t, s)-sequence X (in the broad sense) in an even
base b and for any N ≥ bs we have

D∗(N,X) ≤ bt

s!

(
b− 1

2

logN

log b
+ sb

)s
+ sbt

(
b

2

)s( logN

log b

)s−1
(13)

+ bt
s−1∑
k=1

b

k!

(
b

2

logN

log b
+ k

)k
.

Proof. The proof is the same as that for Theorem 2 until equation (10)
for the discrepancy function A(J ; [PN (X)])−NV (J). The end of the proof,
concerning Σ2, is the same too and gives the last term in the bound (13).
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Hence, it remains to deal withΣ1.To this end, we split up the set{(j1, . . . , js);
bj1 · · · bjs ≤ N} into two parts:

S′ ={(j1, . . . , js); bj1 · · · bjs ≤ N/bs},
S′′ ={(j1, . . . , js); N/bs < bj1 · · · bjs ≤ N}.

The part S′ provides the biggest contribution to the bound and hence gives
the leading term in (13): using (11), we need to prove∑

(j1,...,js)∈S′

s∏
i=1

|a(i)ji | ≤
1

s!

(
(b− 1) logN

2 log b
+ s

)s
.

To do so, we proceed in three steps:

First, we define integers c
(i)
j = |a(i)2j−1|+ |a

(i)
2j | for j ≥ 1 and c

(i)
0 = 1. We

have, for j ≥ 1,

|a(i)j | ≤

 |a
(i)
j−1|+ |a

(i)
j | = c

(i)
h = c

(i)
j/2 if j = 2h is even,

|a(i)j |+ |a
(i)
j+1| = c

(i)
h = c

(i)
(j+1)/2 if j = 2h− 1 is odd,

and for j = 0, a
(i)
j is either 0 or 1 so that a

(i)
0 ≤ c

(i)
0 . Hence

s∏
i=1

|a(i)ji | ≤
s∏
i=1

|c(i)
j′i
|

with

(14) j′i =

{
ji/2 if ji is even,

(ji + 1)/2 if ji is odd.

Secondly, we apply Lemma 3 to the numbers c
(i)
j with k = s, b̃ = b2 and

c =
√
b̃ − 1 = b − 1 (observe that, according to the numeration system (8)

in the case of b even, we have c
(i)
j = |a(i)2j−1| + |a

(i)
2j | ≤ b − 1). Hence we get

(observe that log b̃ = 2 log b)

(15)
∑

{(l1,...,ls); b̃l1 ···b̃ls≤N}

s∏
i=1

c
(i)
li
≤ 1

s!

(
(b− 1) logN

2 log b
+ s

)s
.

Finally, we show that for (j1, . . . , js) ∈ S′ the s-tuple (j′1, . . . , j
′
s) defined in

(14) verifies b̃j
′
1 · · · b̃j′s ≤ N . Indeed, we have

b̃j
′
1 · · · b̃j′s = b

2(
∑
{ji;ji=2h}

ji
2
+
∑
{ji;ji=2h−1}

ji+1

2
)
= b

∑
ji ·b

∑
{ji;ji=2h−1}1≤N

bs
bs=N.

(Recall that we are estimating the sum for (j1, . . . , js) ∈ S′, i.e., such that
b
∑
ji ≤ N/bs). Hence, the s-tuples (j′1, . . . , j

′
s) derived from the s-tuples

(j1, . . . , js) ∈ S′ as in (14) belong to the set {(l1, . . . , ls); b̃l1 · · · b̃ls ≤ N}.
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Therefore, according to the first step and to (15), we can assert that∑
(j1,...,js)∈S′

s∏
i=1

|a(i)ji | ≤
∑

{(l1,...,ls); b̃l1 ···b̃ls≤N}

s∏
i=1

c
(i)
li
≤ 1

s!

(
(b− 1) logN

2 log b
+ s

)s
.

(there are two reasons for the first inequality: the inequality in the first step
and the fact that (j′1, . . . , j

′
s) ∈ {(l1, . . . , ls); b̃l1 · · · b̃ls ≤ N}). This concludes

the study of S′.

Now we deal with S′′ = {(j1, . . . , js); N/bs < bj1 · · · bjs ≤ N}. Taking
the logarithm, (j1, . . . , js) ∈ S′′ is equivalent to

n− s <
s∑
i=1

ji ≤ n with n =

⌊
logN

log b

⌋
.

Similarly to the proof of [1, Lemma 3.2] (see also [3, Lemma 3.38]), we can
show that the number of such s-tuples (j1, . . . , js) is at most sns−1 since we
have s relations

∑s
i=1 ji = m with n− s < m ≤ n. On the other hand, each

s-tuple j = (j1, . . . , js) contributes a term that is at most bt(b/2)s in the
estimate of the discrepancy function A(I(j);N)−NV (I(j)), as can be seen
in (11). Finally, the total contribution from S′′ is at most

bt
(
b

2

)s
s

(
logN

log b

)s−1
.

This is the second term in (13), which ends the main part of the proof
of Theorem 3 according to the outline given at the beginning. Going from
the truncated to the nontruncated version of the sequence results from the
arguments given in [15], as explained at the end of the proof of Theorem 2.

Corollary 3. The discrepancy of a (t, s)-sequence X in an even base
b satisfies (1) with

(16) cFLs =
bt

s!

(
b− 1

2 log b

)s
.

Remark 4. 1. Compared to the constant cKr
s of Kritzer in (3), we ob-

serve a significant improvement with

cFLs
cKr
s

=
2(b+ 1)

b

(
b− 1

b

)s−1
,

the most striking one being obtained with b = 2 where the ratio is 3/2s−1,
hence tending to 0 as s tends to infinity. But we have to take into account
the quality parameter t to compare sequences in different bases (see the
numerical results below).



76 H. Faure and C. Lemieux

2. Compared to the conjecture of Kritzer (5), we still have the gap

cconjs

cFLs
=

b2

2(b2 − 1)
.

As already noted, this gap comes from our inability to insert in our proof
(using Atanassov’s method) the better bounds in one dimension deduced
from our knowledge of van der Corput sequences. Until now, these better
bounds—translated in terms of two-dimensional Hammersley point sets—
can only be inserted in the method of Sobol’ [21], used later on in [5, 13, 11],
thanks to the double recursion onm and s involving (t,m, s)-nets. But on the
other hand, the ideas in the proof of Theorem 3 seem difficult to transpose
in the double recursion method. This is a challenge for future research.

Numerical results. At the end of [11], Kritzer devotes a section to numer-
ical results concerning the smallest possible constants cs obtained in each
dimension with specific sequences taking into account the best possible val-
ues of the quality parameter t. He gives two tables for dimensions between
2 and 20:

The first one (Table 2) uses values of t from [14] and logically, for s ≥ 3,
he obtains the same constants as in [14, Table 4.4] divided by 2 since all
bases are odd primes, except b = 9 for s = 8, 9. If s = 2 then b = 2 and the
constant from Table 4.4 is multiplied by b2/(2(b2 − 1)) = 2/3.

The second one (Table 3) uses the best known values of t from the
database MinT [20], a remarkable software containing updated information
on the best available constructions for a given set of parameters. For base
b = 2, these values already show a drastic improvement over Table 2, but the
best constants cKr

s are obtained in base b = 3 for all dimensions 3 ≤ s ≤ 20,
these constants being again half of the constants deduced from the constant
cNi
s in (2) with t-values from MinT.

In the following, we only give one table, corresponding to [11, Table 3],
where the smallest achievable constant cFLs —over all (t, s)-sequences
—for each dimension is given. The difference between our Table 1 and Ta-
ble 3 from [11] is that we use cFLs from formula (16) in the case of even
bases. Of course, we also use MinT to find the smallest possible value of
t for each base. We improve upon the results of Kritzer for all dimensions
listed there except s = 2, 3, 6, 50, and base 2 wins over base 3 except in
three cases. Note that if Kritzer’s conjecture is true, base 2 also wins for
s = 6 but not for s = 3 or 50. We observe too that the best sequence in
dimension 2 is a (0, 2)-Sobol’ sequence and the best one in dimension 3 is
a (0, 3)-Faure sequence, all others being (t, s)-Niederreiter–Xing sequences
with t > 0. Although not shown here, we performed calculations for all s
between 20 and 50, and observed that for these 24 additional cases, there
were only two cases (in dimension 27 and 49) where base 3 won over base 2.
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Table 1. The best value of cs is indicated in boldface. For cFL
s the base is always b = 2

and for cKr
s the base is always b = 3 except for s = 2 where b = 2.

s best cFL
s t best cKr

s t s best cFL
s t best cKr

s t

2 2.60e-1 0 0.173 0 15 1.87e-10 15 2.04e-10 7

3 1.25e-1 1 6.28e-2 0 16 8.42e-12 15 3.48e-11 8

4 2.26e-2 1 4.29e-2 1 17 2.86e-12 18 5.59e-12 9

5 6.51e-3 2 7.81e-3 1 18 2.29e-13 19 2.83e-13 9

6 1.57e-3 3 1.18e-3 1 19 8.69e-15 19 4.06e-14 10

7 3.23e-4 4 4.62e-4 2 20 1.25e-15 21 1.66e-14 12

8 5.82e-5 5 1.58e-4 3 25 3.93e-20 31 4.41e-20 15

9 9.33e-6 6 1.60e-5 3 30 1.15e-25 39 1.30e-25 19

10 2.69e-6 8 4.36e-6 4 35 1.48e-31 47 1.52e-30 25

11 3.53e-7 9 3.61e-7 4 40 4.67e-38 54 9.77e-37 29

12 4.24e-8 10 8.21e-8 5 45 1.28e-43 65 3.37e-43 33

13 4.71e-9 11 1.72e-8 6 50 4.01e-49 77 6.72e-50 37

14 9.71e-10 13 3.36e-9 7
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