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Introduction. In 1980 H. Yoshida ([Yo(80), p. 243]) proposed a two-
dimensional analog of the famous Shimura–Taniyama relation between
Hasse zeta functions of elliptic curves over the field of rational numbers and
Hecke zeta functions of elliptic modular forms. To confirm the Yoshida con-
jecture, R. Salvati-Manni and J. Top have considered in [SM-T(93)] a num-
ber of products of four Igusa theta constants with rational characteristics
which (in part hypothetically) are eigenfunctions of all regular Hecke oper-
ators with Andrianov zeta function coinciding (up to a finite number of Eu-
ler factors) with the Hasse zeta function of an appropriate two-dimensional
Abelian variety.

In this paper we begin to study the transformation properties of prod-
ucts of an even number of Igusa theta constants with rational characteristics
considered as Siegel modular forms. More specifically, we investigate their
transformations under modular substitutions and under the action of regular
Hecke operators. For this we interpret products of theta constants as multi-
ple theta functions of sums of squares and then apply explicit transformation
formulas for the action of modular substitutions and regular Hecke opera-
tors on theta functions of integral quadratic forms (obtained in [An(95)]
and [An(96)], respectively). In particular, if the class number of the sum
of 2k squares is equal to one, we obtain explicit transformation formulas
expressing images of the products of 2k theta constants with rational char-
acteristics under the action of regular Hecke operators in the form of linear
combinations of similar products (Theorem 4.1).
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In forthcoming works we intend to investigate the question of construc-
tion of common eigenfunctions for all regular Hecke operators on spaces
spanned by products of theta constants with rational characteristics and,
possibly, compute the corresponding zeta functions.

Notation. We reserve the letters N, Z, Q, R, and C for the set of positive
rational integers, the ring of rational integers, and the fields of rational
numbers, real numbers, and complex numbers, respectively. Amn is the set of
all m× n-matrices with entries in a set A, An = An1 , and An = A1

n.
If M is a matrix, tM always denotes the transpose of M . If the entries

of M belong to C, then M is the matrix with complex conjugate entries.
For a symmetric matrix Q we write Q[M ] = tMQM if the product on the
right is defined. 1g is the unit g × g-matrix, and

(0.1) Jg =
(

0 1g
−1g 0

)
.

We denote by

Em = {Q = (qαβ) ∈ Zmm | tQ = Q, q11, q22, . . . , qmm ∈ 2Z}
the set of all even m × m-matrices, i.e. of matrices of integral quadratic
forms in m variables q(X) = 1

2 · tXQX, where tX = (x1, . . . , xm).
We recall that the level of an invertible matrix Q ∈ Em (and of the

corresponding form) is the least positive integer q satisfying qQ−1 ∈ Em.

1. Products of theta constants as theta functions for sums of
squares. Let m = (m′,m′′) ∈ C2g with m′,m′′ ∈ Cg be a complex 2g-row
vector, and let Z belong to the upper half-plane of genus g:

Hg = {Z = X + iY ∈ Cgg | tZ = Z, Y > 0}.
The Igusa theta constant with characteristic m is defined by

θm(Z) =
∑

n∈Zg
exp(πi{(n + m′)Z · t(n + m′) + 2(n + m′) · tm′′}).

If the product AB of two matrices A and B is defined and is a square matrix,
then clearly BA is also defined and is a square matrix with the same trace
as that of AB. It follows that the theta constant can be rewritten in the
form

(1.1) θm(Z) =
∑

n∈Zg
e{Z · t(n + m′)(n + m′) + 2 · tm′′(n + m′)},

where for a square matrix A we set

(1.2) e{A} = exp(πi · σ(A)),

and σ(A) denotes the trace of A. Hence, it is easy to see that the product
of r theta constants with characteristics m1, . . . ,mr can be written in the
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form

(1.3)
r∏

j=1

θmj (Z)

=
∑

n1,...,nr∈Zg
e
{ r∑

j=1

(Z · t(nj + m′j)(nj + m′j) + 2 · tm′′j (nj + m′j))
}

=
∑

N∈Zrg

e{Z · t(N +M ′)(N +M ′) + 2 · tM ′′(N +M ′)},

where we set

N =




n1
...

nr


 , M ′ =




m′1
...

m′r


 , M ′′ =




m′′1
...

m′′r


 .

A product of the form (1.3) will be called a theta product of genus g with
characteristic matrix M = (M ′,M ′′). The following criterion for the vanish-
ing of theta products is a direct consequence of the Igusa result on vanishing
of theta constants ([Ig(72), Theorem 1, p. 174]).

Lemma 1.1. The theta product with characteristic matrix M=(M ′,M ′′)
∈ Cr2g is identically 0 if and only if there is a row mj = (m′j ,m

′′
j ) of M

satisfying

2mj ∈ Z2g, 2m′j
tm′′j 6∈ Z.

The main purpose of this paper is to study the action of Hecke operators
on the products of theta constants with rational characteristics. The action
of Hecke operators on theta functions of integral positive definite quadratic
forms of the form

(1.4) Θ(V,Z;Q) =
∑

N∈Zrg

e{Z ·Q[N − V2] + 2 · tV1QN − tV1QV2},

where V = (V1, V2) with V1, V2 ∈ Crg is the characteristic matrix of the
theta function, Z ∈ Hg, and where Q is an even positive definite matrix of
order r, i.e. the matrix of an integral positive definite quadratic form, was
considered in [An(96)]. The series (1.4) converges absolutely and uniformly
on compact subsets of the complex space Cr2g×Hg and therefore determines
a complex-analytic function on that space. The formula (1.3) implies that
a product of theta constants can be expressed through the theta function
(1.4) of the quadratic form qr(X) = x2

1 + · · ·+x2
r with the matrix Qr = 2 ·1r

by the formula
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e{−tM ′′M ′}
r∏

j=1

θmj (Z)

=
∑

N∈Zrg

e
{

1
2
Z(2 · 1r)[N +M ′] + 2 ·

t
(

1
2
M ′′

)
(2 · 1r)N

+
t
(

1
2
M ′′

)
(2 · 1r)M ′

}

= Θ

((
1
2
M ′′,−M ′

)
,

1
2
Z;Qr

)
,

which we shall use in the form

(1.5) θ(Z,M) =
r∏

j=1

θmj (Z) = δ(M) ·Θ
(
V (M),

1
2
Z;Qr

)
,

where, for M = (M ′,M ′′), we set

δ(M) = e{tM ′′M ′},(1.6)

V (M) = (V1(M), V2(M)) =
(

1
2
M ′′,−M ′

)
(1.7)

= M

(
1g 0
0 2 · 1g

)−1

Jg.

The following property of the function δ(M) on rational M is an easy con-
sequence of the definition:

(1.8) δ(M +M1) = δ(M) if dM ∈ Zr2g and M1 ∈ 2dZr2g with d ∈ N.

2. Modular transformations of theta functions and theta prod-
ucts. Here we shall recall basic transformation formulas for the theta func-
tions (1.4) of integral positive definite quadratic forms and then specialize
the formulas to the case of sums of squares.

First of all, note that for any matrix U ∈ GLr(Z) we have UZrg = Zrg
and so, by replacing N by UN in (1.4), we get the identity

(2.1) Θ(V,Z;Q) =
∑

N∈Zrg

e{Z ·Q[U ][N − U−1V2] + 2 · t(U−1V1)Q[U ]N

− t(U−1V1)Q[U ]U−1V2}
= Θ(U−1V,Z,Q[U ]).

In the case Q = Qr it implies the formula

(2.2) θ(Z,UM) = θ(Z,M) for every U ∈ Er,



Products of theta constants 117

where

(2.3) Er = E(Qr) = {U ∈ GLr(Z) | tUU = 1r}
is the group of units of Qr. In fact, by (1.5) and (2.1), we have

θ(Z,UM) = e{ t(UM ′′)UM ′} ·Θ
(
V (UM),

1
2
Z;Qr

)

= e{tM ′′M ′} ·Θ
(
V (M),

1
2
Z;Qr[U−1]

)
= θ(Z,M).

Next we mention that the function Θ(V,Z;Q) is quasiperiodic with re-
spect to the lattice (Q−1Zrg,Zrg) ⊂ Cr2g. More exactly, for every T1 ∈ Q−1Zrg
and T2 ∈ Zrg, we have

Θ((V1 + T1, V2 + T2), Z;Q)

=
∑

N∈Zrg

e{Z ·Q[N − V2 − T2] + 2 · t(V1 + T1)Q(N − T2 + T2)

− t(V1 + T1)Q(V2 + T2)}
= e{tV1QT2 − tT1QV2 + tT1QT2} ·Θ((V1, V2), Z;Q),

sinceN ′ = N−T2 ranges over Zrg along withN , and the matrices tT1QN
′ are

integral for all N ′ ∈ Zrg. In particular, using the above identity with Q = Qr,
and (1.7), we conclude that for each integral r × 2g-matrix S = (S ′, S′′) we
have

(2.4) θ(Z,M + S)

= e{ t(M ′′ + S′′)(M ′ + S′)} ·Θ
(
V (M) + V (S),

1
2
Z,Q

)

= e{ t(M ′′ + S′′)(M ′ + S′)− tM ′′S′ + tS′′M ′ − tS′′S′}

×Θ
(
V (M),

1
2
Z,Qr

)

= e{2 · tS′′M ′} · θ(Z,M).

The following formulas for integral symplectic transformations of theta
functions with respect to the variable Z are particular cases of those proved
in [An(95), Theorems 3.1 and 4.3].

Let Q be an even positive definite matrix of even order r = 2k, and q the
level of Q. Then the theta function Θ(V,Z;Q) of genus g of the matrix Q
satisfies the functional equation

(2.5) det(CZ +D)−k ·Θ(V, (AZ +B)(CZ +D)−1;Q)

= χQ(M) ·Θ(V · tM−1, Z;Q)
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for every matrix M =
(A B

C D

)
in the group

(2.6) Γ g0 (q) =
{
M =

(
A B
C D

)
∈ Z2g

2g

∣∣∣∣ tMJgM = Jg, C ≡ 0 (mod q)
}
,

where Jg is the matrix (0.1), with the character χ of the group defined by

χQ

((
A B
C D

))
=
{

1 if q = 1,

χQ(detD) if q > 1,

where χQ is the real Dirichlet character modulo q satisfying χQ(−1) =
(−1)k, and

χQ(p) =
(

(−1)k detQ
p

)
(the Legendre symbol)

for each odd prime p not dividing q.
Specialization of these formulas to the case of sums of squares allows us

to prove the following lemma.

Lemma 2.1. The product (1.5) of an even number r = 2k of theta con-
stants satisfies the functional equation

(2.7) det(CZ +D)−k · θ((AZ +B)(CZ +D)−1,M)

= χr(M)δ(M) δ(MM) · θ(Z,MM),

for every matrix M =
(
A B

C D

)
in the group

(2.8) Γ g00(2) =
{
M =

(
A B
C D

)
∈ Γ g = Γ g0 (1)

∣∣∣∣B ≡ C ≡ 0 (mod 2)
}
,

where

(2.9) χr(M) = χQr(M) = χk4(detD)

with the nontrivial Dirichlet character χ4 modulo 4, and where δ is the func-
tion (1.6).

Proof. By (1.5) we can write

det(CZ +D)−k · θ((AZ +B)(CZ +D)−1,M)

= δ(M) det
(

2C
(

1
2
Z

)
+D

)−k

×Θ
(
V (M),

(
A

(
1
2
Z

)
+

1
2
B

)(
2C
(

1
2
Z

)
+D

)−1

;Qr

)
.

Since, clearly,

M′ =
(
A′ B′

C ′ D′

)
=
(
A 1

2B
2C D

)
= ωMω−1 ∈ Γ g0 (4)
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with ω =
( 1g 0

0 2·1g
)
, and the level of Qr is 4, by the formula (2.5) for the

matrix M′, the last expression is equal to

δ(M)χQr(M′) ·Θ
(
V (M) t(M′)−1,

1
2
Z;Qr

)
.

By (1.7) and tM′JM′ = J in the form J t(M′)−1J−1 =M′, where J = Jg
is the matrix (0.1), we have

V (M) t(M′)−1 = Mω−1J t(M′)−1J−1ωω−1J = Mω−1M′ωω−1J

= V (MM).

Hence,

det(CZ +D)−k · θ((AZ +B)(CZ +D)−1,M)

= δ(M)χQr(detD) δ(MM) δ(MM) ·Θ
(
V (MM),

1
2
Z;Qr

)
,

which together with (1.5) for MM in place of M and with the above for-
mulas for χQr proves the lemma.

Now we recall some definitions. The general real positive symplectic group
of genus g consists of all real symplectic matrices of order 2g with positive
multipliers:

(2.10) Gg = GSp+
g (R) = {M ∈ R2g

2g | tMJgM = µ(M)Jg, µ(M) > 0},
where Jg is the matrix (0.1). It is a real Lie group which acts as a group of
analytic automorphisms on the g(g+1)/2-dimensional open complex variety
Hg by the rule

Gg 3 M =
(
A B
C D

)
: Z 7→ M〈Z〉 = (AZ +B)(CZ +D)−1 (Z ∈ Hg).

By acting on the upper half-plane Hg, the general symplectic group also
operates on complex-valued functions F on Hg by Petersson operators of
integral weights k,

(2.11) Gg 3 M =
(
A B
C D

)
: F 7→ F |kM = det(CZ +D)−kF (M〈Z〉).

The Petersson operators satisfy the rules

(2.12) F |kMM′ = (F |kM)|kM′ (M,M′ ∈ Gg).
Let Ω be a subgroup of Gg commensurable with the modular group of

genus g, Γ g = Γ g0 (1), χ a character of Ω, that is, a multiplicative homo-
morphism of Ω into nonzero complex numbers with kernel of finite index in
Ω, and let k be an integer. A complex-valued function F on H is called a
(Siegel) modular form of weight k and character χ for the group Ω if the
following conditions are satisfied:
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(i) F is a holomorphic function in g(g+ 1)/2 complex variables on Hg.
(ii) For every matrix M ∈ Ω, the function F satisfies the functional

equation

(2.13) F |kM = χ(M)F,

where |k is the Petersson operator of weight k.
(iii) If g = 1, then every function F |kM with M ∈ Γ 1 is bounded on

each subset of H1 of the form H1
ε = {x + iy ∈ H1 | y ≥ ε} with

ε > 0.
The set Mk(Ω,χ) of all modular forms of weight k and character χ for

the group Ω is a finite-dimensional linear space over C.

Theorem 2.2. The product of an even number r = 2k of theta constants
with rational characteristic matrix M ∈ 1

dZ
r
2g, where d ∈ N, satisfies the

functional equation

(2.14) θ(Z,M)|kM = χM (M)θ(Z,M) for every M ∈ Γ g(d) ∩ Γ g00(2),

where

Γ g(d) = {M ∈ Z2g
2g | tMJgM = Jg,M≡ 12g (mod d)},

is the principal congruence subgroup of level d of the modular group Γ g =
Γ g(1), Γ g00(2) is the group (2.8), and where

(2.15) χM (M) = χr(M)e{S(M) tMM}
with

(2.16) S(M) =
(
B + tB − A tB tD − A tD
D − 1g − C tB −C tD

)
, M =

(
A B
C D

)
;

the matrix S(M) is symmetric.
If the product θ(Z,M) is not identically zero, then the function χM :

M 7→ χM (M) is a character of the group Γ g(d)∩Γ g00(2) coinciding with χr
on Γ g(2d2); the theta product is a modular form of weight k and character
χM for the group Γ g(d) ∩ Γ g00(2).

Proof. SinceM∈ Γ g00(2), by the definition of the Petersson operators of
weight k, we can rewrite the functional equation (2.7) in the form

θ(Z,M)|kM = χr(M)δ(M) δ(MM) · θ(Z,MM).

SinceM =
(
A B

C D

)
∈ Γ g(d) and the matrix dM is integral, we conclude that

so is the matrix

T = (T ′, T ′′) = MM−M = M(M− 12g) = (M ′,M ′′)
(
A− 1g B
C D − 1g

)

= (M ′(A− 1g) +M ′′C,M ′B +M ′′(D − 1g)),
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where M = (M ′,M ′′). Therefore, by (2.4), we get

θ(Z,MM) = θ(Z,M + T ) = e{2 · tT ′′M ′} · θ(Z,M).

The equation (2.14) follows with

χM (M) = χr(M)δ(M) δ(MM) e{2 · t(M ′B +M ′′(D − 1g))M ′}.
In order to prove (2.15), it is sufficient to show that

(2.17) δ(M) δ(MM) e{2 · t(M ′B +M ′′(D − 1g))M ′} = e{S(M) tMM}
with S(M) defined by (2.16). Set

M = 12g +
(
A′ B′

C ′ D′

)
.

Then, by (1.6), we have

δ(MM) = δ

(
(M ′,M ′′)

(
1g + A′ B′

C ′ 1g +D′

))

= e{ t(M ′′ + (M ′B′ +M ′′D′))(M ′ + (M ′A′ +M ′′C ′))},
whence

δ(M) δ(MM) e{2 · t(M ′B +M ′′(D − 1g))M ′}
= e{tM ′′M ′ − t(M ′′ + (M ′B′ +M ′′D′))(M ′ + (M ′A′ +M ′′C ′))}
× e{2 · t(M ′B′ +M ′′D′)M ′}

= e{ t(M ′B′ +M ′′D′)M ′ − tM ′′(M ′A′ +M ′′C ′)}
× e{− t(M ′B′ +M ′′D′)(M ′A′ +M ′′C ′)}.

By standard properties of traces of square matrices, the last expression can
be rewritten in the form

e{tM ′(M ′B′+M ′′D′)− tM ′′(M ′A′+M ′′C ′)}e
{
−
t
(
M

(
B′

D′

))
M

(
A′

C ′

)}

= e
{
tMM

(
B′ −A′
D′ −C ′

)
− (tB′, tD′) tMM

(
A′

C ′

)}

= e
{(

B 1g − A
D − 1g −C

)
tMM −

(
A− 1g
C

)
(tB, tD − 1g) tMM

}

= e
{(

B + tB − A tB tD − A tD
D − 1g − C tB −C tD

)
tMM

}
,

which proves (2.15)–(2.17). To prove that the matrix S(M) is symmetric,
we note that the g × g blocks A, B, C, and D of every matrixM =

(A B

C D

)

with tMJgM = Jg satisfy

(2.18) A tB = B tA, C tD = D tC, A tD −B tC = 1g
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(see, e.g., [An(87), p. 6]). It follows that S(M) can be written in the form

(2.19) S(M) =
(
B + tB − A tB tD −A tD
D −D tA −C tD

)

and is symmetric.
If θ(Z,M) is not identically zero, it follows from (2.12) and (2.14) that

the function χM : M 7→ χM (M) is multiplicative. If M ∈ Γ g(2d2), then
S(M) is, clearly, divisible by 2d2. Therefore, S(M) tMM is integral and
divisible by 2, and so e{S(M) tMM} = 1. The rest for g > 1 follows from
the definition of modular forms; condition (iii) for g = 1 follows from [Ig(72),
Corollary, p. 176].

3. Action of Hecke operators on theta functions. Here we shall
recall basic notions and facts related to Hecke operators and specialize the
transformation formulas of general harmonic theta functions under the ac-
tion of regular Hecke operators obtained in [An(96)] to the case of theta
functions (1.4). For details and proofs see [An(87), Chapters 3 and 4], and
[An(96), §5].

Let ∆ be a multiplicative semigroup and Ω a subgroup of ∆ such that
every double coset ΩMΩ of ∆ modulo Ω is a finite union of left cosets ΩM′.
Consider the vector space over a field, say C, consisting of all formal finite
linear combinations with coefficients in C of symbols (ΩM) with M ∈ ∆
which are in one-to-one correspondence with left cosets ΩM of the set ∆
modulo Ω. The group Ω naturally acts on this space by right multiplication
defined on the symbols (ΩM) by

(ΩM)ω = (ΩMω) (M ∈ ∆, ω ∈ Ω).

We denote by
H(Ω,∆) = HSC(Ω,∆)

the subspace of all Ω-invariant elements. The multiplication of elements of
H(Ω,∆) given by the formula

(∑

α

aα(ΩMα)
)(∑

β

bβ(ΩNβ)
)

=
∑

α,β

aαbβ(ΩMαNβ)

does not depend on the choice of the representatives Mα ∈ ΩMα and
Nβ ∈ ΩNβ , and turns H(Ω,∆) into an associative algebra over C with
the unity element (Ω1Ω), called the Hecke–Shimura ring or HS-ring of ∆
relative to Ω (over C). The elements

(3.1) (M) = (M)Ω =
∑

Mi∈Ω\ΩMΩ

(ΩMi) (M ∈ ∆)

are in one-to-one correspondence with the double cosets of ∆ modulo Ω,
belong to H(Ω,∆), and form a basis of the ring over C. For brevity, the
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symbols (ΩM) and (M) will be referred to as left and double classes (of ∆
modulo Ω), respectively.

We consider the semigroup

Σg = Gg ∩ Z2g
2g = {M ∈ Z2g

2g | tMJgM = µ(M)Jg, µ(M) > 0}
and its subsemigroups

(3.2)

Σg
q = {M ∈ Σg | gcd(µ(M), q) = 1},

Σg
0 (q) =

{
M =

(
A B
C D

)
∈ Σg

q

∣∣∣∣C ≡ 0 (mod q)
}
,

Σg
00(q) =

{
M =

(
A B
C D

)
∈ Σg

q

∣∣∣∣B ≡ C ≡ 0 (mod q)
}
,

Σg(q) =
{
M ∈ Σg

q

∣∣∣∣M≡
(
µ(M)1g 0

0 1g

)
(mod q)

}

with q ∈ N. According to [An(87), Lemma 3.3.5] and similar facts for the
groups Γ g00(q), for every q, q′ ∈ N with q | q′ the semigroups satisfy

Σg
0 (q) ∩Σg

q′ = Γ g0 (q)Σg(q′) = Σg(q′)Γ g0 (q),(3.3)

Σg
00(q) ∩Σg

q′ = Γ g00(q)Σg(q′) = Σg(q′)Γ g00(q),(3.4)

where

(3.5) Γ g00(q) =
{
M =

(
A B
C D

)
∈ Γ g = Γ g0 (1)

∣∣∣∣B ≡ C ≡ 0 (mod q)
}
.

If Ω is a subgroup of finite index of the modular group Γ g, then the pair
(Ω,Σg) satisfies the conditions of the definition of HS-rings, as also does each
pair (Ω,∆) with Ω ⊂ ∆ ⊂ Σg, and we can define the corresponding Hecke–
Shimura rings H(Ω,∆). We shall say that a group Ω satisfying Γ g(q) ⊂
Ω ⊂ Γ g is q-symmetric if ΩΣg(q) = Σg(q)Ω. For such Ω the HS-ring

Hreg(Ω) = H(Ω,R(Ω)) with R(Ω) = ΩΣg(q) = Σg(q)Ω

is called the regular HS-ring of the group Ω of level q. According to Theorem
3.3.3 of [An(87)], all regular HS-rings for given genus g and level q are
isomorphic to each other. In particular, by (3.3) and (3.4) with q′ = q, the
groups Γ g0 (q) and Γ g00(q) are q-symmetric, and the regular HS-rings of the
groups Γ g0 (q), Γ g00(q), and Γ g(q),

(3.6)

Hg0(q) = Hreg(Γ g0 (q)) = H(Γ g0 (q), Σg
0(q)),

Hg00(q) = Hreg(Γ g00(q)) = H(Γ g00(q), Σg
00(q)),

Hg(q) = Hreg(Γ g(q)) = H(Γ g(q), Σg(q))

are naturally isomorphic. For example, the isomorphism of the first and
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third rings can be defined as follows. Let

T ′ =
∑

α

aα(Γ g0 (q)Mα) ∈ Hg0(q),

where the left classes (Γ g0 (q)Mα) with aα 6= 0 are distinct. Using (3.3),
without loss of generality one may assume that all representatives Mα of
the left cosets Γ g0 (q)Mα belong to Σg(q). Then, obviously, we have

(3.7) T =
∑

α

aα(Γ g(q)Mα) ∈ Hg(q),

and the map T ′ 7→ T is a homomorphic embedding of the ring Hg0(q) into
Hg(q). In fact, it is a ring isomorphism, with inverse

Hg(q) 3
∑

β

bβ(Γ g(q)Nβ) 7→
∑

β

bβ(Γ g0 (q)Nβ).

Note also that the map

(3.8) M 7→M′ = ω−1Mω with ω = ωg(q) =
(

1g 0
0 q · 1g

)

defines an isomorphism of the pair Γ g0 (q2) ⊂ Σg
0 (q2) with the pair Γ g00(q) ⊂

Σg
00(q), which induces an isomorphism

(3.9) ω = ωg(q) : Hg0(q2)→Hg00(q2).

The ring isomorphisms allow one to transfer various constructions from
one ring to another. For example, the Zharkovskaya homomorphisms Ψ g,n =
Ψg,nk,χ : Hg0(q)→Hn0 (q), where g > n ≥ 1, k is an integer, and χ is a Dirichlet
character modulo q satisfying χ(−1) = (−1)k, can be naturally carried over
to the corresponding HS-rings of principal congruence subgroups, so that
we get the homomorphisms

Ψg,n = Ψg,nk,χ : Hg(q)→Hn(q) (g > n ≥ 1)

satisfying the commutative diagram

Hg0(q) Hg(q)

Hn0 (q) Hn(q)

Ψg,r

��

η //

Ψg,r

��
η

//

We recall that the Zharkovskaya map from genus g to genus n,

(3.10) Ψg,n = Ψg,nk,χ : Hg0(q)→ Hn0 (q),

can be defined in the following way. Let T ′ =
∑
α aα(Γ g0 (q)Mα) ∈ Hg0(q).

One can assume that each representative Mα ∈ Γ g0 (q)\Σg
0 (q) is chosen in
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the form

Mα =
(
Aα Bα
0 Dα

)
with Dα =

(
D′α ∗
0 D′′α

)
, D′α ∈ Znn.

If Aα =
(
A′α ∗
∗ ∗

)
and Bα =

(
B′α ∗
∗ ∗

)
with r × r-blocks A′α and B′α, then

M′α =
(
A′α B′α
0 D′α

)
∈ Σr

0(q),

and we put

(3.11) Ψg,nk,χ (T ′) =
∑

α

aα|detD′′α|−kχ−1(|detD′′α|)(Γn0 (q)M′α).

Hecke–Shimura rings act on modular forms and on theta functions by
means of a linear representation given by Hecke operators.

First, consider the space F = F(r, g) of all real-analytic functions

F = F (V,Z) : Cr2g ×Hg → C
with even r = 2k and define an action of the semigroup Σg

0 (q), where q is
the level of an even positive definite matrix Q of order r, on F by

(3.12) Σg
0 (q) 3 M =

(
A B
C D

)
:

F 7→ F |M = j(M, Z)−1F (V · tM,M〈Z〉),
where

j(M, Z) = jQ(M, Z) = χQ(M) det(CZ +D)k,

χQ is the character associated with the matrix Q defined in the previous
section, and M〈Z〉 = (AZ +B)(CZ +D)−1. It is easy to see that

j(M,M′〈Z〉) · j(M′, Z) = j(MM′, Z)

for all M,M′ ∈ Σg
0 (q) and Z ∈ Hg. Hence,

(3.13) F |M|M′ = F |MM′ (F ∈ F , M,M′ ∈ Σg
0 (q)).

This property of the operators |M allows one to define the standard rep-
resentation of the Hecke–Shimura ring Hg0(q) = H(Γ g0 (q), Σg

0 (q)) on the
subspace

F(Γ g0 (q)) = {F ∈ F | F |γ = F, ∀γ ∈ Γ g0 (q)}
of all Γ g0 (q)-invariant functions of F . Namely, if

(3.14) T =
∑

α

aα(Γ g0 (q)Mα) ∈ Hg0(q)

and F ∈ F(Γ g0 (q)), then the function

(3.15) F |T =
∑

α

aαF |Mα
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does not depend on the choice of the representatives Mα ∈ Γ g0 (q)Mα and
again belongs to F(Γ g0 (q)). The operators |T are clearly linear. The map
T 7→ |T is linear and, as follows from (2.12) and the definition of multipli-
cation in HS-rings, it satisfies |T |T ′ = |TT ′. Thus, we get a linear represen-
tation of the ring Hg0(q) on the space F(Γ g0 (q)). The operators |T are called
the Hecke operators.

By (2.5), the theta function Θ(V,Z;Q) with an even positive definite
matrix Q of even order r = 2k and level q, considered as a function of V
and Z, belongs to the space F(Γ g0 (q)). By the above, its image

(3.16) Θ(V,Z;Q)|T =
∑

α

aαj(Mα, Z)−1Θ(V · tMα,Mα〈Z〉;Q)

under the action of the Hecke operator corresponding to (3.13) does not
depend on the choice of the representatives Mα ∈ Γ g0 (q)Mα and again
belongs to F(Γ g0 (q)). The formulas in [An(96), Theorem 4.1] express the
image of a theta function under the action of Hecke operators as a linear
combination with constant coefficients of similar theta functions. In order
to formulate the theorem we have to recall two related reductions.

The first reduction relates to each of the HS-rings H(Ω,Σ) with Ω ⊂ Γ g
and Σ ⊂ Σg. By the definition of the semigroup Σg, each matrix M ∈ Σg

satisfies tMJgM = µ(M)Jg, where µ(M) is a positive integer called the
multiplier of M. The multipliers satisfy

µ(MM′) = µ(M)µ(M′) (M,M′ ∈ Σg), µ(M) = 1 if M ∈ Γ g.
It follows that µ takes the same value on each left and each double coset of
Σ modulo Ω, so one can speak of the multipliers of the cosets. We say that
a nonzero formal finite linear combination T of left or double cosets of Σ
modulo Ω is homogeneous of multiplier µ(T ) = µ if all the entering cosets
have the same multiplier µ. It is clear that every finite linear combination
of cosets is a sum of homogeneous components having different multipliers,
and the components are uniquely determined. In particular, this allows one
to reduce the consideration of arbitrary Hecke operators |T to the case of
homogeneous T .

Another reduction is related to a special choice of representatives in left
cosetsΩM when Γ g0 (q) ⊂ Ω and inΣ ⊂ Σg

0 (q). By Lemma 3.3.4 in [An(87)],
each of the left cosets contains a representative of the form

(3.17) M =
(
A B
0 D

)

with A,B,D ∈ Zgg, tAD = µ(M)1g, tBD = tDB.

Such representatives are often convenient for computations with Hecke op-
erators and will be referred to as triangular representatives.
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The following particular case of Theorem 4.1 in [An(96)] expresses the
images of theta series (1.4) under the action of regular Hecke operators in the
form of linear combinations of similar theta series with coefficients explicitly
given in terms of certain trigonometric sums.

Theorem 3.1. Let Q be an even positive definite matrix of even order
r = 2k and level q. Let

T =
∑

α

aα(Γ g0 (q)Mα)

be a homogeneous element of the Hecke–Shimura ring Hg0(q) with µ(T ) = µ.
Assume that for g < r the element T belongs to the image of the ring Hr0(q)
under the Zharkovskaya map (3.11) from genus r to genus g with k = r/2
and with character χ = χQ defined in Section 2,

(3.18) T = Ψ r,gr/2,χQ(T ′) with T ′ ∈ Hr0(q) (g < r).

Then the image of a theta series (1.5) under the Hecke operator |T can be
written in the form

(3.19) Θ(V,Z;Q)|T
=

∑

D∈∆(Q,µ)/Λ

I(D,Q, Ψg,r(T ))Θ(µD−1V,Z;µ−1Q[D]),

where

∆(Q,µ) = {D ∈ Zrr | detD = ±µr/2, µ−1Q[D] ∈ Er}, Λ = Λr = GLr(Z),

Ψg,r(T ) = Ψg,rr/2,χQ(T ) =





Ψg,rr/2,χQ(T ) if g > r,

T if r = g,

T ′ ∈ (Ψr,gr/2,χQ)−1(T ) if g < r,
(3.20)

and I(D,Q, T ′), for T ′ written in the triangular form

T ′ =
∑

β

bβ

(
Γ r0 (q)

(
Aβ Bβ
0 Dβ

))
∈ Hr0(q) (tAβDβ = µ1r),

are trigonometric sums defined by

(3.21) I(D,Q, T ′)

=
∑

β;D tDβ≡0 (modµ)

bβ |detDβ|−r/2χ−1
Q (|detDβ |)e{µ−2Q[D] tDβBβ},

with e{. . .} being the exponent (1.2).

As to the condition (3.18), it follows from [An(87), Proposition 5.1.14]
that it can be replaced by a more explicit condition of the following lemma.

Lemma 3.2. In the notation of the theorem, a nonzero homogeneous el-
ement T ∈ Hg0(q) with multiplier µ(T ) = µ belongs to the image of the ring
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Hr0(q) for r > g under the Zharkovskaya map (3.10) from genus r to genus
g with k = r/2 and χ = χQ if and only if either g ≥ k, or g < k and
χQ(p) = 1 for each prime p entering the prime factorization of µ with an
odd power.

It is sometimes convenient to rewrite the above transformation formulas
in a somewhat different form. In order to do this we have to make several
preliminary remarks. We shall say that an even matrix Q′ is similar to
a nonsingular matrix Q ∈ Er, Q′ ∼ Q, if it can be written in the form
Q′ = µ−1Q[D] with D ∈ ∆(Q,µ), where µ is coprime to the level q of Q. It
easily follows from the definition that the relation of similarity is symmetric.
Besides, it is clearly reflexive and transitive. Thus, the set of all nonsingular
matrices of Er is the disjoint union of s-classes

s{Q} = {Q′ ∈ Er | Q′ ∼ Q} (Q ∈ Er, detQ 6= 0).

It is easy to see that all matrices of the s-class of a matrix Q have the same
signature, determinant, level, and divisor as Q. Further, we recall that two
matrices Q, Q′ of Er are said to be equivalent, Q ' Q′, if Q′ = Q[U ] with
U ∈ Λr = GLr(Z). All matrices equivalent to a matrix Q form the e-class
of Q,

e{Q} = {Q′ = Q[U ] | U ∈ Λ}.
According to the reduction theory of integral quadratic forms, the s-class of
every nonsingular matrix Q ∈ Er is a finite union of e-classes:

s{Q} =
h(Q)⋃

j=1

e{Qj}.

The quantity h(Q) is called the class number of Q.
Now we can reformulate Theorem 3.1 in the following form:

Theorem 3.3. With the notation and assumptions of Theorem 3.1, the
formula (3.19) can be rewritten in the form

(3.22) Θ(V,Z;Q)|T

=
h+(Q)∑

j=1

∑

D∈R(Q,µQj)/E(Qj)

I(D,Q, Ψg,r(T ))Θ(µD−1V,Z,Qj),

where Q1, . . . , Qh(Q) is a system of representatives of all different e-classes
contained in the s-class of Q,

R(Q,Q′) = {M ∈ Zrr | Q[M ] = Q′} (Q,Q′ ∈ Er)
is the set of all integral representations of Q′ by Q, and
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E(Q′) = R(Q′, Q′) (Q′ ∈ Er, detQ′ 6= 0)

denotes the group of all units of Q′.
In particular , if the class number h(Q) of Q is equal to 1, then (3.22)

takes the form

(3.23) Θ(V,Z;Q)|T =
∑

D∈R(Q,µQ)/E(Q)

I(D,Q, Ψg,r(T ))Θ(µD−1V,Z,Q).

Proof. It is an easy consequence of the above definitions that the sums
(3.21) are independent of the choice of representatives in the decomposition
of T ′ and satisfy

(3.24) I(UDU ′, Q, T ′) = I(D,Q[U ], T ′) for all U,U ′ ∈ GLm(Z)

(see [An(96), Lemma 3.1]). From (2.1) and (3.24) we conclude that the
term of the sum on the right of (3.19) corresponding to a matrix D ∈
∆(Q,µ) depends only on the coset DΛ. On the other hand, each of the
matrices µ−1Q[D] with D ∈ ∆(Q,µ) is similar to Q and so is equivalent
to one of the matrices Q1, . . . , Qh(Q), say, µ−1Q[D] ' Qj . This means that
µ−1Q[D][U ] = µ−1Q[DU ] = Qj with U ∈ Λ. By replacing D by DU , we
can assume that D ∈ R(Q,Qj). If D′ = DU ′ is another such matrix, then,
clearly, Qj [U ′] = Qj , whence U ′ ∈ E(Qj). This proves the formulas.

Note that the sums (3.21) were explicitly computed in [An(91)] and
[An(93)] for certain generators of the rings Hr0(q) including, in particular,
all generators of H1

0(q) and H2
0(q).

4. Action of Hecke operators on theta products. Here we shall
consider the action of regular Hecke operators on products of an even number
r = 2k of theta constants with rational characteristics considered as modular
forms, assuming that the class number h(Qr) of the sum of r squares is equal
to 1.

Let F belong to the space Mk(Ω) = Mk(Ω,1) of modular forms of
integral weight k and trivial character χ = 1 for a subgroup Ω of finite
index in the modular group Γ g, and let

T =
∑

α

aα(ΩMα) ∈ H(Ω,Σg).

Then, as easily follows from the definitions of modular forms and HS-rings,
and the properties (2.12), (2.13) of the Petersson operators (2.11), the func-
tion

(4.1) F‖T = F‖kT =
∑

α

aαF |kMα

does not depend on the choice of the representativesMα ∈ ΩMα and again
belongs to the space Mk(Ω). These operators are called the Hecke operators
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(of weight k for the group Ω). The Hecke operators corresponding to ele-
ments of regular HS-rings are called regular. It follows from the definition of
multiplication in HS-rings and from (2.12) that the map T 7→ ‖T is a linear
representation of the ring H(Ω) on the space Mk(Ω).

According to Theorem 2.2, if r = 2k, M ∈ 1
dZ

r
2g, then the theta product

θ(Z,M) is a modular form of weight k and character χr for the group
Γ g(2d2). Assuming in addition that d is even, we have

(4.2) θ(Z,M) ∈Mk(Γ g(2d2)).

In this case the action (4.1) of the ring Hg(2d2) on the modular form
θ(Z,M) is correctly defined. In order to compute the corresponding im-
ages we also assume that h(Qr) = 1 and use the formulas (3.23) for the
image Θ(V ′, Z ′)|T ′ = Θ(V ′, Z ′, Qr)|T ′, where V ′ = V (M), Z ′ = 1

2Z, and

(4.3) T ′ =
∑

α

aα(Γ g0 (4)M′α) ∈ Hg0(4)

is a homogeneous element of multiplier µ(T ′) = µ coprime to d.
Under the assumptions of Theorem 3.3, by (3.23), we get

(4.4) Θ(V ′, Z ′)|T ′

=
∑

D∈R(Qr,µQr)/E(Qr)

I(D,Qr, Ψg,r(T ′))Θ(µD−1V ′, Z ′).

If M′α =
(A′α B′α
C′α D′α

)
∈ Σg

0 (4), then by (3.12) and (2.15) the left-hand side of
(4.4) can be rewritten in the form

Θ(V ′, Z ′)|T ′ =
∑

α

aαjQr(M′α, Z ′)−1Θ(V ′ · tM′α,M′α〈Z ′〉;Q).

Set

Mα =
(
Aα Bα
Cα Dα

)
= ω−1M′αω =

(
A′α 2B′α
1
2C
′
α D′α

)
∈ ω−1Σg

0 (4)ω ∈ Σg
00(2),

where ω = ωg(2) =
( 1g 0

0 2·1g
)

(see (3.8)). Then it follows directly from the
definitions that

jQr(M′α, Z ′) = χr(Mα) det(CαZ +Dα)k,

where χr is the character (2.15), and also

V ′ · tM′α = V (M) · tM′α = Mω−1Jg · tM′α = MµM−1
α ω−1Jg = V (M ·M∗α),

where M∗α = µM−1
α , and we have used the relations (1.7) along with the

fact that tM′JgM′ = µJg, and finally,

M′α〈Z ′〉 =
1
2
Mα〈Z〉.
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Hence, the left-hand side of (4.4) can be written in the form
∑

α

aαχr(Mα)−1 δ(MM∗α) det(CαZ +Dα)−k

× δ(MM∗α)Θ
(
V (MM∗α),

1
2
Mα〈Z〉

)

=
∑

α

aαχr(Mα)−1 δ(MM∗α)θ(Z,MM∗α)|kMα,

where we have used (1.5) and the definition (2.11) of Petersson operators.
On the other hand, since, clearly, µD−1V (M) = V (µD−1M), the right-hand
side of (4.4) can be rewritten in the form

∑

D∈R(Qr,µQr)/E(Qr)

I(D,Qr, Ψg,r(T ′)) δ(µD−1M) δ(µD−1M)

×Θ
(
V (µD−1M),

1
2
Z

)

=
∑

D∈R(Qr,µQr)/E(Qr)

I(D,Qr, Ψg,r(T ′)) δ(µD−1M) θ(Z, µD−1M)

=
∑

D∈E(Qr)\R(Qr,µQr)

I(µD−1, Qr, Ψ
g,r(T ′)) δ(DM)θ(Z,DM),

since D 7→ µD−1 maps R(Qr, µQr) into itself and sends right cosets modulo
E(Qr) to left cosets. Hence, (4.4) takes the form

(4.5)
∑

α

aαχr(Mα)−1 δ(MM∗α)θ(Z,MM∗α)|kMα

=
∑

D∈E(Qr)\R(Qr,µQr)

I(µD−1, Qr, Ψ
g,r(T ′)) δ(DM)θ(Z,DM).

The linear combination

ω(T ′) =
∑

α

aα(ω−1Γ g0 (4)ω · ω−1M′αω) =
∑

α

aα(Γ g00(2)Mα)

belongs to Hg00(2), being the image of T ′ under the map (3.9) for q = 2.
According to (3.4) for q = 2 and q′ = 2d2, we can assume without loss of
generality that all representativesMα ∈ Γ g00(2)Mα belong to the semigroup
Σg(2d2). Then the linear combination

T =
∑

α

aα(Γ g(2d2)Mα)

belongs to the ring Hg(2d2), it is a homogeneous element of multiplier
µ(T ) = µ, and each such element has this form for a homogeneous ele-
ment T ′ ∈ Hg0(4) of multiplier µ(T ′) = µ. For µ ∈ N we denote by [µ]g and
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[µ]g the 2g × 2g-matrices

(4.6) [µ]g =
(
µ · 1g 0

0 1g

)
, [µ]g =

(
1g 0
0 µ · 1g

)
.

Since Mα ∈ Σg(2d2), we have Mα ≡ [µ]g (mod 2d2), hence M∗α ≡ [µ]g
(mod 2d2), that is,

M∗α = [µ]g + 2d2N with N = Nα ∈ Z2g
2g

(it is easy to see that the map Gg 3 M 7→ M∗ = µ(M)M−1 is an anti-
automorphism of the semigroup Σg

q ). It follows that MM∗α = M [µ]g + 2dR
with the integral matrix R = (dMN ) = (R′, R′′). Since the matrix dM is
integral, by (1.8) we obtain δ(MM∗α) = δ(M [µ]g) and by (2.4) we have

θ(Z,MM∗α) = e(4d t(R′′M ′))θ(Z,M [µ]g) = θ(Z,M [µ]g).

Therefore, since clearly χr(Mα) = 1 for Mα ∈ Σg(2d2) with even d, we
can rewrite (4.5) in the form

(4.7) δ(M [µ]g)θ(Z,M [µ]g)‖kT
=

∑

D∈E(Qr)\R(Qr,µQr)

I(µD−1, Qr, Ψ
g,r(T ′)) δ(DM)θ(Z,DM).

After these considerations we come to the following theorem.

Theorem 4.1. Let r = 2k ∈ 2N be such that the class number h(Qr) of
the sum of r squares is equal to 1, g ∈ N, and M ∈ 1

dZ
r
2g with d ∈ 2N. Let

T =
∑

α

aα(Γ g(2d2)Mα) ∈ Hg(2d2)

be a homogeneous element with multiplier µ(T ) = µ, such that for the cor-
responding element

T ′ =
∑

α

aα(Γ g0 (4)(ωMαω
−1)) ∈ Hg0(4) with ω =

(
1g 0
0 2 · 1g

)

there exists an element of the form Ψg,r(T ′) ∈ Hr0(4) defined by (3.20). Then
the theta product θ(Z,M) is a modular form of the space Mk(Γ g(2d2)), and
its image under the Hecke operator ‖kT is again a linear combination of
theta products:

(4.8) θ(Z,M)‖kT
=

∑

D∈E(Qr)\R(Qr,µQr)

I(µD−1, Qr, Ψ
g,r(T ′))θ(Z,DM [µ̃]g),

where I are trigonometric sums defined by (3.21), µ̃ ∈ N is an inverse of µ
modulo 2d2, and [µ̃]g is defined by (4.6).
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Proof. The first assertion follows from Theorem 2.2. The formula (4.8)
follows from (4.7) if we note that for D ∈ R(Qr, µQr),

δ(DM) = e{tM ′′ tDDM ′} = e{µ tM ′′M} = δ(M [µ]g)

by (1.6), and replace M by M [µ̃]g.

As to existence of elements Ψ g,r(T ′), specialization of Lemma 3.2 to the
case Q = Qr and χQ = χ4 gives us the following lemma.

Lemma 4.2. Under the notation of Theorem 4.1, the element Ψ g,r(T ′) ∈
Hr0(4) exists if and only if either g ≥ k, or g < k and each prime p entering
the prime factorization of µ = µ(T ′) with an odd power satisfies p ≡ 1
(mod 4).
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