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1. Introduction. We let π(x; q, a) denote the number of primes less
than or equal to x which are congruent to a (mod q), for some real x > 0 and
positive coprime integers a, q. It is a classical theorem of Walfisz [24] based
on the work of Siegel that, for any fixed N > 0, uniformly for q ≤ (log x)N

and (a, q) = 1, as x→∞ we have

(1.1) π(x; q, a) ∼ x

φ(q) log x
.

It is generally believed that this asymptotic holds in a much wider range
of q. If we assume the Generalised Riemann Hypothesis (GRH), then the
asymptotic (1.1) holds uniformly in the larger range q ≤ x1/2−δ for any fixed
δ > 0. Montgomery [17] has conjectured that (1.1) holds uniformly in the
even larger range q ≤ x1−δ. Friedlander, Granville, Hildebrand and Maier
[5] have shown for any A, (1.1) cannot hold for all q ≥ x/(log x)A.

Any improvement in the range of q for which the asymptotic holds would
exclude the possibility of the existence of zeros of Dirichlet L-functions in
certain regions, but unfortunately such a result seems beyond our current
techniques. Without this type of improvement, however, we cannot hope to
prove results stronger than

(1.2) o

(
x

φ(q) log x

)
≤ π(x; q, a) ≤ 2x

φ(q) log x

when log x/log q is bounded.
Linnik [15], [16] gave a non-trivial lower bound for π(x; q, a) for a wider

range of q. He showed that there is a constant L > 0 such that, whenever
x > qL and q is sufficiently large, there is at least one prime in the arithmetic
progression {n ≤ x : n ≡ a (mod q)} for any a with (a, q) = 1. Pan [20]
showed that one can take L ≤ 10,000. This has subsequently been improved
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by many authors including (in chronological order) Chen [1], Jutila [13],
Chen [2], Jutila [14], Chen [3], Graham [9], Wang [25], Chen and Liu [4],
and Heath-Brown [11]. The best known result is due to Xylouris [26], which
shows that we can take L = 5.2.

Titchmarsh [23] used Brun’s sieve to show that for q < x we have the
upper bound

(1.3) π(x; q, a)� x

φ(q) log(x/q)
.

The implied constant can be made explicit, and has been estimated by
various authors. The strongest result of this type which holds for all ranges
of q is due to Montgomery and Vaughan [18], who used the large sieve to
obtain the following result.

Theorem 1.1 (Brun–Titchmarsh theorem). For x > q we have

π(x; q, a) ≤ 2

1− log q/log x

x

φ(q) log x
.

The constant 2/(1− log q/log x) of the Brun–Titchmarsh theorem should
be compared with the constant 1 + o(1) which Montgomery conjectures for
x > q1+ε.

Since it appears unlikely that we can prove an upper bound with a
constant less than 2 with the current techniques, any improvements are likely
to reduce the factor 1/(1− log q/log x). Several authors including Motohashi
[19], Goldfeld [7], Iwaniec [12] and Friedlander and Iwaniec [6] have made
improvements of this type for different ranges of q. If we put

(1.4) θ =
log q

log x
,

then we have

(1.5) π(x; q, a) ≤ (C + o(1))x

φ(q) log x
,

where

(1.6) C =


(2− ((1− θ)/4)6)/(1− θ), 2/3 ≤ θ,
8/(6− 7θ), 9/20 ≤ θ ≤ 2/3,

16/(8− 3θ), θ ≤ 9/20.

This improves the Brun–Titchmarsh bound of C=2/(1−θ) slightly through-
out the entire range of q. We note that in all cases we still have C > 2 for
θ > 0.

It has been known as a folklore amongst specialists that for θ less than
some fixed constant we should be able to take C = 2. In this paper we es-
tablish this, and give a quantitative bound for the range when this happens.
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We show that provided q is sufficiently large we can take

C = 2 if θ ≤ 1/8.

2. Notation. We will let p represent a generic prime. We will consider
the arithmetic progression where all terms are ≤ x and are congruent to a
(mod q). We will assume that q is larger than some fixed constant through-
out, and so may not explicitly say that we are assuming q to be sufficiently
large for a given statement to hold. χ will refer to a Dirichlet character
modulo q and χ0 to the principal character.

For the purposes of this paper we shall define an η-Siegel zero to be a
real zero ρ of a Dirichlet L-function L(s, χ) which lies in the region

1− η

log q
≤ <(ρ) ≤ 1.

3. Main result. We improve on the Brun–Titchmarsh constant for
some range of q. Instead of using sieve methods to count primes in arithmetic
progressions we will use the analytic techniques developed in the estimation
of Linnik’s constant.

In Linnik’s theorem one counts primes with a smooth weight, and esti-
mating this requires estimating corresponding weighted sums over the zeros
of Dirichlet L-functions. In the most successful work on Linnik’s theorem
only zeros of the form ρ = 1+O(1/log q) make a significant contribution. In
this paper we wish to count primes weighted by the characteristic function
of the interval [0, x], however, and this means we must consider all zeros
ρ = β+ iγ with γ � 1 in the corresponding weighted sums over zeros. Thus
the zero density estimates of Heath-Brown [11] are insufficient, and we need
to extend them to this larger range.

Theorem 3.1. There exists an effectively computable constant q1 such
that for q ≥ q1 and x ≥ q8 we have

π(x; q, a) <
2 Li(x)

φ(q)
.

We note that without excluding the possible existence of η-Siegel zeros
for some η > 0 this is the strongest possible bound which we can hope to
prove for log x/log q bounded.

We also obtain lower bounds which are essentially the strongest possible
for log x/log q bounded without excluding the existence of an η-Siegel zero.

Theorem 3.2. There exists an effectively computable constant q2 such
that for q ≥ q2 and x ≥ q8 we have

log q

q1/2
x

φ(q) log x
� π(x; q, a).
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Theorem 3.3. Let ε > 0. There exists an (ineffective) constant q3(ε)
such that for q ≥ q3(ε) and x ≥ q8 we have

q−εx

φ(q) log x
� π(x; q, a).

Theorem 3.4. Assume that there exists a constant η > 0 such that there
are no η-Siegel zeros. Then there exists an effectively computable constant
q4 such that for q ≥ q4 and x ≥ q8 we have

x

φ(q) log x
� π(x; q, a) <

2x

φ(q) log x
.

Thus the number of primes in an arithmetic progression is close to the
expected order predicted by GRH, provided log x/log q ≥ 8 and q is suffi-
ciently large. If there are no zeros exceptionally close to 1 then the number
of primes has the same order as the asymptotic predicted by GRH.

In order to establish Theorems 3.1–3.4 we prove the following proposi-
tion.

Proposition 3.5. There are fixed constants ε > 0 and η > 0 such that:

• There exists an effectively computable constant q5 such that if there is
an η-Siegel zero ρ1 = 1 − λ1/log q to modulus q ≥ q5 then for x ≥ q7

we have ∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ < (1− λ1)x
φ(q)

.

• There exists an effectively computable constant q6 such that if there
are no η-Siegel zeros to modulus q ≥ q6 then for x ≥ q7.999 we have∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ < (1− ε)x
φ(q)

.

We now establish the theorems assuming the proposition.
By partial summation we have, for any constant 7 ≤ A < 8,

(3.1) π(x; q, a) =
θ(x; q, a)

log x
+

x�

2

θ(t; q, a)

t log2 t
dt

=
θ(x; q, a)

log x
+

x�

qA

θ(t; q, a)

t log2 t
dt+

qA�

q2

θ(t; q, a)

t log2 t
dt+

q2�

2

θ(t; q, a)

t log2 t
dt.

The Brun–Titchmarsh theorem for q2 ≤ t ≤ qA shows

(3.2) θ(t; q, a) ≤ (log t)π(t; q, a)� t

φ(q)
,

and trivially for t ≤ q2 we have

(3.3) θ(t; q, a) ≤ t log t.
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We also note that

θ(x; q, a) = ψ(x; q, a) +O(x1/2).

Thus uniformly for x ≥ q8 and 7 ≤ A ≤ 8 we obtain

π(x; q, a) =
ψ(x; q, a)

log x
+

x�

qA

ψ(t; q, a)

t log2 t
dt+O

(
x1/2 +

qA

φ(q)

)
.(3.4)

This gives

(3.5)

∣∣∣∣π(x; q, a)− Li(x)

φ(q)

∣∣∣∣
≤ 1

log x

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣+

x�

qA

|ψ(t; q, a)− t/φ(q)|
t log2 t

dt

+O

(
x1/2 +

qA

φ(q)

)
.

If there is an η-Siegel zero (where η is the constant from Proposition 3.5)
then we choose A = 7 and by Proposition 3.5 uniformly for q ≥ q6 and
x ≥ q8 we have

(3.6)

∣∣∣∣π(x; q, a)− Li(x)

φ(q)

∣∣∣∣
≤ (1− λ1)x
φ(q) log x

+

x�

q7

1− λ1
φ(q) log2 t

dt+O

(
x1/2 +

q7

φ(q)

)

≤ (1− λ1) Li(x)

φ(q)
+O

(
x

qφ(q)

)
.

By Pintz [21, Theorem 3] we see that λ1 � (log q)/q1/2 (with the implied
constant effectively computable). Thus for q sufficiently large the error term
in (3.6) is at most

(3.7)
λ1 Li(x)

2φ(q)
.

Hence for q sufficiently large and x ≥ q8 we have

(3.8)
x log q

q1/2φ(q) log x
� λ1 Li(x)

2φ(q)
≤ π(x; q, a) ≤ (2− λ1/2) Li(x)

φ(q)
≤ 2 Li(x)

φ(q)
,

with all constants effectively computable.
By Siegel’s theorem [22], given any ε > 0 there is a constant C(ε) such

that if q ≥ C(ε) then λ1 ≥ 2q−ε. Here C(ε) is not effectively computable. In
this case, we have

xq−ε

φ(q) log x
≤ λ1 Li(x)

2φ(q) log x
< π(x; q, a).(3.9)
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If there is no η-Siegel zero then we instead choose A = 7.999. By Proposi-
tion 3.5 and (3.5) there exist ε > 0 and q5 such that uniformly for x ≥ q8

and for q ≥ q5 we have

(3.10)

∣∣∣∣π(x; q, a)− Li(x)

φ(q)

∣∣∣∣
≤ (1− ε)x
φ(q) log x

+

x�

q7.999

1− ε
φ(q) log2 t

dt+O

(
x1/2 +

q7.999

φ(q) log x

)

=
(1− ε) Li(x)

φ(q)
+O

(
x1−1/10 000

φ(q) log x

)
.

Thus for q sufficiently large and q8 ≤ x we get

(3.11)
x

φ(q) log x
� π(x; q, a) <

2x

φ(q) log x
.

Theorems 3.1–3.4 now follow immediately from (3.8), (3.9) and (3.11).

4. Case 1: Siegel zeros. We first consider the case when there are
zeros very close to 1. For this section we assume that η-Siegel zeros exist for
some small constant η > 0.

In order to establish Proposition 3.5 we will make use of the analytic
techniques developed in the estimation of Linnik’s constant. In particular,
there are three main results which we use:

Proposition 4.1 (Zero-free region). There is a constant c1 > 0 such
that, for q sufficiently large, ∏

χ (mod q)

L(σ + it, χ)

has at most one zero in the region

1− c1
log(q(2 + |t|))

≤ σ.

Such a zero, if it exists, is real and simple, and the corresponding character
must be a non-principal real character.

Proposition 4.2 (Deuring–Heilbronn phenomenon). There is a con-
stant c2 > 0 such that, if the exceptional zero ρ1 = 1− λ1/log q from Propo-
sition 4.1 exists, then for q sufficiently large, the function∏

χ (mod q)

L(σ + it, χ)

has no other zeros in the region

1− c2 log(λ−11 )

log(q(2 + |t|))
≤ σ ≤ 1.
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Proposition 4.3 (Log-free zero density estimate). For T ≥ 1 there are
constants c3 > 0 and C3 > 0 such that∑

χ (mod q)

N(σ, T, χ) ≤ C3(qT )c3(1−σ).

Here

N(σ, T, χ) = #{ρ : L(ρ, χ) = 0, <(ρ) ≥ σ, |=(ρ)| ≤ T}.
We recall that for the purposes of this article we are defining an η-Siegel

zero to be a real zero ρ of some Dirichlet L-function in the region

(4.1) 1− η

log q
≤ ρ ≤ 1

for a fixed small positive constant η.
We will choose η ≤ c1/2, so by Proposition 4.1 an η-Siegel zero, if it

exists, must be simple, and the corresponding character must be a real
character. Moreover, there can be at most one such zero. We label this
exceptional zero ρ1 = 1 − λ1/log q with corresponding character χ1. Thus
we have λ1 ≤ η. We will also make use of the fact that λ1 �ε q

−1/2−ε (with
the implied constant effectively computable), which follows from Dirichlet’s
class number formula.

We note that by [10] and [11, equation (1.4)] we can take

(4.2) c2 = 2/3− 1/1000, c3 = 12/5 + 1/1000,

provided η ≤ c4, some suitably small absolute constant.
We wish to prove

(4.3)

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ ≤ (1− λ1)x
φ(q)

.

We have

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
1

φ(q)

∑
χ (mod q)

χ(a)
(∑
n≤x

Λ(n)χ(n)
)
.(4.4)

We use the explicit formula

(4.5)
∑
n≤x

Λ(n)χ(n) = ε1(χ)x− ε2(χ)
xρ1

ρ1
−
∑
ρ

xρ

ρ
+O

(
x(log x)2

T

)
,

where

ε1(χ) =

{
1 if χ = χ0,

0 otherwise,
(4.6)

ε2(χ) =


1 if χ is a character corresponding to the possible

exceptional zero ρ1 of
∏
χ L(s, χ),

0 otherwise,

(4.7)
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and the sum
∑

ρ is over all non-exceptional non-trivial zeros ρ = β + iγ of
L(s, χ) in the region {0 < β < 1, |γ| < T}.

We choose T = q(log x)3/λ1 so that the last term is o(λ1x/φ(q)).
Recalling that ρ1 = 1− λ1/log q we have

(4.8)
xρ1

ρ1
= x exp

(
−λ1

log x

log q

)
+ o(λ1x).

Substituting (4.5) and (4.8) into (4.4) we obtain

(4.9)

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣
≤ x

φ(q)
exp

(
−λ1

log x

log q

)
+

1

φ(q)

∑
χ (mod q)

∑
ρ

∣∣∣∣xρρ
∣∣∣∣+ o

(
λ1x

φ(q)

)
.

We now bound the sum

(4.10)
∑

χ (mod q)

∑
ρ

∣∣∣∣xρρ
∣∣∣∣.

We first consider the case when log x > q1/3000.
Since λ1 � q−1/2−1/100 we have T � q3/2+1/100(log x)3 � (log x)4600.

By Proposition 4.1 (and recalling |ρ| � λ1/log q for all ρ) each zero in the
sum (4.10) contributes at most

(4.11)

∣∣∣∣xρρ
∣∣∣∣ ≤ x exp

(
−c log x

log log x

)
for some constant c > 0. By Proposition 4.3 the total number of zeros in the
sum is

(4.12) � (qT )12/5+1/1000 � (log x)20000.

Therefore

(4.13)
∑

χ (mod q)

∑
ρ

∣∣∣∣xρρ
∣∣∣∣� x(log x)20000 exp

(
−c log x

log log x

)
= o(λ1x).

Thus we see that for x sufficiently large and log x > q1/3000, the right hand
side of (4.9) is

(4.14)
x

φ(q)

(
exp

(
−λ1

log x

log q

)
+ o(λ1)

)
≤ (1− λ1)x

φ(q)
,

as required.
We now consider the case when log x ≤ q1/3000. In this case, since λ1 �

q−1/2−1/1000, we have T � q3/2+2/1000.
We begin by considering the contribution to the sum (4.10) from zeros

in the rectangle
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(4.15) 1− m+ 1

log q
≤ <(ρ) ≤ 1− m

log q
, n ≤ |=(ρ)| ≤ 2n,

where 1 ≤ n ≤ T and m ≤ 0.4 log q. By Proposition 4.2 with c2 =
2/3− 1/1000 there are no zeros in the rectangle unless

(4.16) m ≥
(

2

3
− 1

1000

)
log q

log (q(2 + T ))
log λ−11 ≥ 0.266 log λ−11 .

Recalling that m ≤ 0.4 log q, by Proposition 4.3 with c3 = 12/5 + 1/1000
there are

(4.17) � n0.97 exp(2.41m)

zeros in the rectangle.
If (4.16) holds then we see that each zero contributes∣∣∣∣xρρ

∣∣∣∣ ≤ x

n
exp

(
−m log x

log q

)
(4.18)

=
x

n
exp

(
−m

(
log x

log q
− 1

0.266

))
exp

(
− m

0.266

)
≤ λ1x

n
exp

(
−m

(
log x

log q
− 3.76

))
.

Thus the zeros in the rectangle give a total contribution of

(4.19) � λ1x

n0.03
exp

(
−m

(
log x

log q
− 6.17

))
.

From summing this bound over n = 2j with j ∈ N, we see that provided
q6.18 ≤ x, the contribution to the sum (4.10) from all non-exceptional zeros
in the region

(4.20) 0.6 ≤ <(ρ) ≤ 1, 1 ≤ |=(ρ)| ≤ T
is at most

(4.21) Cλ1x exp(−c log λ−11 ) ≤ Cλ1x exp(c log η)

for some constants C, c > 0. Since λ1 ≤ η we see that for η sufficiently small
(depending only on C, c) this is at most λ1x.

Similarly we consider the contribution to the sum (4.10) from the zeros
in the region

(4.22) 1− m+ 1

log q
≤ <(ρ) ≤ 1− m

log q
, |=(ρ)| ≤ 1,

with m ≤ 0.4 log q. As above, each zero contributes

(4.23) � λ1x exp

(
−m

(
log x

log q
− 3.76

))
.

The number of zeros in the rectangle is

(4.24) � exp(2.41m).
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Thus again the contribution of all zeros from the rectangles is at most

(4.25) Cλ1x exp(−c log λ−11 ) ≤ Cλ1x exp(c log η)

for some positive constants C, c. Hence for η sufficiently small this contri-
bution is at most λ1x.

Finally we consider zeros in the rectangles

0 ≤ <(ρ) ≤ 0.6, |=(ρ)| ≤
√
T ,(4.26)

0 ≤ <(ρ) ≤ 0.6,
√
T ≤ |=(ρ)| ≤ T.(4.27)

By symmetry of zeros around the line <(s) = 1/2 we have <(ρ)� λ1/log q
for all such ρ. Thus, since λ1 � q−1/2−1/100 and x > q, each zero satisfying
(4.26) contributes

(4.28)

∣∣∣∣xρρ
∣∣∣∣� x0.6,

and every zero satisfying (4.27) contributes

(4.29)

∣∣∣∣xρρ
∣∣∣∣ ≤ x0.6√

T
.

For q sufficiently large there are

(4.30) � (q
√
T )1+1/1000 ≤ q1.76

zeros satisfying (4.26), and

(4.31) � (qT )1+1/1000 ≤ q1.76
√
T

zeros satisfying (4.27). Thus the combined contribution is

(4.32) � x0.6q1.76 � λ1x
q2.27

x0.4
.

We see this is at most λ1x for q6 ≤ x and q sufficiently large.
Since we have now covered all possible zeros in our sum, we see that for

η sufficiently small and q6.18 ≤ x we have

(4.33)
∑

χ (mod q)

∑
ρ

∣∣∣∣xρρ
∣∣∣∣ ≤ 3λ1x.

Substituting this into (4.9) we get

(4.34)

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ ≤ x

φ(q)

(
exp

(
−λ1

log x

log q

)
+ 4λ1

)
.

We note that if q7 ≤ x and η < 1/10 then

(4.35) exp

(
−λ1

log x

log q

)
+ 4λ1 < 1− λ1,

since 1 − e−7t − 5t is zero and increasing at 0, has a unique turning point
and is positive at 1/10.
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Thus we have shown that for η sufficiently small, q7 ≤ x and log x ≤
q1/3000 we have

(4.36)

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ < (1− λ1)x
φ(q)

as required.

5. Case 2: no Siegel zeros. We now consider the case where there are
no η-Siegel zeros for some small fixed constant η > 0. In this case we have
λρ ≥ η for all zeros ρ with |=(ρ)| ≤ q2. Following the method in the previous
section and using this zero-free region, we can establish Proposition 3.5 if
log x/log q is sufficiently large. To obtain an explicit lower bound for the
range of log x/log q in which this holds, however, would require us to estimate
the constant C3 in Proposition 4.3, and would likely produce a very large
bound if done directly.

We will follow the work done on the estimation of Linnik’s constant to
obtain an explicit lower bound for log x/log q for which the result holds.
This section follows closely the method of Heath-Brown in [11, Section 13].

We define the following quantities which we shall use for the rest of the
paper:

M :=
log x

log q
,(5.1)

L := log q,(5.2)

φχ :=

{
1/4 for q cube-free or ord(χ) ≤ log q,

1/3 otherwise,
(5.3)

Z(χ) := {ρ : L(ρ, χ) = 0}.(5.4)

5.1. Weighted sum over primes. We wish to investigate

(5.5) ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n).

We fix a small positive constant ε > 0 and let

(5.6) f(t) =



0, t ≤ 1/2,
log x
ε (t− 1/2), 1/2 ≤ t ≤ 1/2 + ε/log x,

1, 1/2 + ε/log x ≤ t ≤ 1,

1− log x
ε (t− 1), 1 ≤ t ≤ 1 + ε/log x,

0, t ≥ 1 + ε/log x.

The Brun–Titchmarsh theorem for primes in short intervals (see [18], for
example) states that
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(5.7) π(x; q, a)− π(x− y; q, a) ≤ 2y

φ(q) log (y/q)
.

We replace the sum

(5.8)
∑
n≤x

n≡a (mod q)

Λ(n)

with the weighted sum

(5.9)
∞∑
n=1

n≡a (mod q)

Λ(n)f

(
log n

log x

)
.

By the Brun-Titchmarsh theorem for primes in short intervals and for ε
sufficiently small, the error introduced by making this change is

≤
∑

x≤n≤xeε
n≡a (mod q)

Λ(n) +
∑

n≤eεx1/2
Λ(n)(5.10)

≤ (log(xeε))(π(xeε; q, a)− π(x; q, a)) + eε(log x)x1/2 ≤ 4εx

φ(q)
.

Thus in order to prove

(5.11)

∣∣∣∣ψ(x; q, a)− x

φ(q)

∣∣∣∣ ≤ (1− ε)x
φ(q)

,

it is sufficient to prove that

(5.12)

∣∣∣∣ ∞∑
n=1

n≡a (mod q)

Λ(n)f

(
log n

log x

)
− x

φ(q)

∣∣∣∣ < (1− 5ε)x

φ(q)
.

We note also

(5.13)
∞∑
n=1

n≡a (mod q)

Λ(n)f

(
log n

log x

)

=
1

φ(q)

∑
χ (mod q)

χ(a)

( ∞∑
n=1

Λ(n)f

(
log n

log x

)
χ(n)

)
.

We now replace χ in the inner sum with the primitive character χ∗ which
induces it. This introduces an error

(5.14) � 1

φ(q)

∑
χ

∑
p|q

∑
x1/2≤pe≤xeε

log p�
∑
p|q

log x� qε log x ≤ εx

(recalling that x > q).
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Therefore it is sufficient to prove that

(5.15)

∣∣∣∣∑
χ

χ(a)
∞∑
n=1

Λ(n)χ∗(n)f

(
log n

log x

)
− x
∣∣∣∣ ≤ (1− 6ε)x.

5.2. Sum over zeros. We let F be the Laplace transform of f . Hence

F (s) =

∞�

0

exp(−st)f(t) dt(5.16)

= e−s
1− exp(s/2)

−s
1− exp((ε/log x)s)

(−ε/log x)s
exp

(
− ε

log x
s

)
.

From the Laplace inversion formula we have

(5.17) f

(
log n

log x

)
=

log x

2πi

2+i∞�

2−i∞
n−sF (−s log x) ds.

Therefore for χ 6= χ0 we obtain

(5.18)
∞∑
n=1

Λ(n)χ∗(n)f

(
log n

log x

)

=
log x

2πi

2+i∞�

2−i∞

(
−L

′

L
(s, χ∗)

)
(F (−s log x)) ds

=
log x

2πi

−1/2+i∞�

−1/2−i∞

(
−L

′

L
(s, χ∗)

)
(F (−s log x)) ds

− log x
∑
ρ

F (−ρ log x)

where
∑

ρ indicates a sum over all non-trivial zeros of L(s, χ).

On <s = −1/2 we have

(5.19)
L′

L
(s, χ∗)� log(q(1 + |s|)), F (−s log x)� x−1/4|s|−2(log x)−1.

Hence, recalling that q ≤ x,

(5.20)
log x

2πi

−1/2+i∞�

−1/2−i∞

(
−L

′

L
(s, χ∗)

)
(F (−s log x)) ds = O(x−1/4 log x).
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Thus

(5.21)
∑
χ 6=χ0

∣∣∣∣ ∞∑
n=1

Λ(n)χ∗(n)f

(
log n

log x

)∣∣∣∣
≤ log x

∑
χ 6=χ0

∑
ρ

|F (−ρ log x)|+O(qx−1/4 log x)

≤ log x
∑
χ 6=χ0

∑
ρ

|F (−ρ log x)|+ εx.

We now consider the case χ = χ0. We note that χ∗0 is identically 1. Hence
by the prime number theorem we have

(5.22)

∣∣∣∣ ∞∑
n=1

Λ(n)χ∗0(n)f

(
log n

log x

)
− x
∣∣∣∣ ≤ 3εx.

Thus putting together (5.21) and (5.22) we obtain

(5.23)

∣∣∣∣∑
χ

χ(a)

∞∑
n=1

Λ(n)χ∗(n)f

(
log n

log x

)
− x
∣∣∣∣

≤
∣∣∣∣ ∞∑
n=1

Λ(n)χ∗0(n)f

(
log n

log x

)
− x
∣∣∣∣+

∑
χ 6=χ0

∣∣∣∣ ∞∑
n=1

Λ(n)χ∗(n)f

(
log n

log x

)∣∣∣∣
≤ 4εx+ log x

∑
χ 6=χ0

∑
ρ

|F (−ρ log x)|.

In particular it is sufficient to prove that

(5.24) log x
∑
χ 6=χ0

∑
ρ

|F (−ρ log x)| ≤ (1− 10ε)x.

We now consider the contribution from the other characters where χ 6= χ0.
We begin by considering all zeros ρ = β+ iγ of all L-functions L(s, χ) (with
χ 6= χ0) in the rectangle

(5.25) 1− m+ 1

log q
≤ β ≤ 1− m

log q
, n ≤ |γ| ≤ 2n

for n ≥ 1.

We use the well-known zero density estimate

(5.26)
∑
χ

N(σ, χ, T )� q3(1−σ)(1 + T 3/2).

Thus there are

(5.27) � e3m(1 + n3/2)

such zeros in the rectangle.
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Each zero contributes

(5.28) log x|F (−ρ log x)| � x
exp(−m log x/log q)

εn2

to the right hand side of (5.23).
Thus, provided M > 3, there is a constant R (depending only on ε) such

that the contribution of all zeros in the rectangles with max(m,n) ≥ R is

(5.29) ≤ εx.
Similarly we consider zeros in the rectangle

(5.30) max

(
1

2
, 1− m+ 1

log q

)
≤ β ≤ 1− m

log q
, |γ| ≤ 1.

There are

(5.31) � e3m

such zeros, and each zero contributes

(5.32) � x
exp(−m log x/log q)

ε
.

Therefore again provided M > 3, the contribution from all zeros in the
rectangles with m ≥ R is ≤ εx.

We now consider the final rectangle

(5.33) 0 ≤ β ≤ 1/2, |γ| ≤ 1.

All zeros must have β ≥ q−1/2−1/100 for q sufficiently large (by symmetry of
zeros about the critical line and the non-existence of Siegel zeros which are
within q−1/2−1/100 of 1).

There are

(5.34) � q3/2

zeros in this rectangle, and each zero contributes

(5.35) � x1/2q2/100

ε
.

Therefore the contribution from these zeros is

(5.36) � x1/2q3/2+1/50

ε
≤ εx.

Thus at a cost of 3εx we only need to consider the contribution of zeros ρ
satisfying

(5.37) |1−<(ρ)| �ε
1

log q
, =(ρ)�ε 1.

For such ρ, and for ε sufficiently small and q sufficiently large, we have

(5.38)

∣∣∣∣1− x−ρ/2ρ
eερ
∣∣∣∣ ≤ 1 + 3ε.
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Also, for any z ∈ C with <(z) ≥ 0 we have

(5.39)

∣∣∣∣1− e−zz

∣∣∣∣ ≤ 1.

Thus, putting <(ρ) = 1− λρ/log q, and recalling that q7.999 ≤ x, we obtain

(5.40) log x|F (−ρ log x)|

= x exp(−(1− ρ) log x)

∣∣∣∣1− x−ρ/2ρ

1− e−ερ

ερ
eερ
∣∣∣∣

≤ x exp

(
−λρ

log x

log q

)
(1 + 3ε) = x exp(−Mλρ)(1 + 3ε).

As before, we have put

(5.41) M =
log x

log q
.

Thus we have shown that

(5.42)

∣∣∣∣ψ(x; q, a)− x

ψ(q)

∣∣∣∣
≤ 12ε

x

φ(q)
+ (1 + 3ε)

x

φ(q)

∑
χ 6=χ0

∑∗

ρ

exp(−Mλρ),

where
∑∗ represents a sum over all zeros of L(s, χ) in

(5.43) R =

{
z : 1− R

log q
≤ <(z) ≤ 1, =(z) ≤ R

}
,

with R a constant (independent of x and q).

6. Zero density estimates. We wish to estimate the sum

(6.1)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−Mλρ),

where

(6.2) Z(χ) := {ρ : L(ρ, χ) = 0}.
We do this by obtaining a zero density estimate for zeros in R by means of
different weighted sums over zeros of L(s, χ). We note that by the log-free
zero density estimate given in Proposition 4.3 this sum is finite for any
M ∈ R. We specifically wish to show that the sum is < 1 when M = 7.999.

Similar sums have been looked at in the estimation of Linnik’s constant.
We will broadly follow the approach of Heath-Brown in [11], but most of
the estimates must be extended to cover a region where =(ρ) � 1 instead
of =(ρ)� L−1.
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We split R vertically into smaller rectangles each with height 1/L. We
put

(6.3) Rm :=

{
z : 1− R

L
≤ <(z) ≤ 1,

m− 1/2

L
≤ |=(z)| ≤ m+ 1/2

L

}
.

We label our non-principal characters modulo q as χ(1), χ(2), . . . in some
order. For each character χ(j), and for each rectangleRm for which L(s, χ(j))
has a zero in Rm, we pick a zero of L(s, χ(j)) with greatest real part, which
we label ρ(j,m).

We introduce the notation

(6.4) ρ(j,m) = β(j,m) + iγ(j,m), 1− β(j,m) =
λ(j,m)

log q
, γ(j,m) =

ν(j,m)

log q
.

We also specifically label special zeros ρ1, ρ
′
1 and ρ2. We let ρ1 be a zero

of
∏
χ L(s, χ) which is in R and has largest real part. We let χ1 be the

corresponding character. We let ρ2 be a zero of
∏
χ 6=χ1,χ1

L(s, χ) which is in

R and has largest real part. We let ρ′1 be a zero of L(s, χ1) which is in R
and is not ρ1 or ρ1 but otherwise has largest real part. If ρ1 is not a simple
zero we simply have ρ′1 = ρ1.

For simplicity we argue as if ρ1, ρ
′
1, ρ2 all exist. Our argument is simpler

and stronger if any of these do not exist.

We now wish to estimate separately a weighted sum over rectangles and
a weighted sum over zeros in any such rectangle. Specifically we wish to
prove the following three lemmas:

Lemma 6.1. For any δ > 0 any m ∈ Z and any constant K > 0 we
have, for q > q0(δ), ∑

ρ∈Rm∩Z(χ(j))

B1(λρ) ≤ C1(λ
(j,m))

where

B1(λ) =
(1− exp(−Kλ))2

λ2 + 1/4
,

C1(λ) =
φχ(1− exp(−2Kλ))

2λ
+

2Kλ− 1 + exp(−2Kλ)

2λ2
+ δ.

Lemma 6.2. Let (χ(i))i∈I be a set of characters modulo q. Then for any
δ > 0 and q > q0(δ) we have∑

m∈Z, i∈I
B2(λ

(i,m)) ≤ C2
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where

B2(λ) =

(
e2λx1 + e2λx0

x1 − x0
+
e2λu1 + e2λu0

u1 − u0

)−1
,

C2 =
x1 + x0 − v − u1

2w(v − u1)
(1 +G2) + δ,

G2 will be defined in (6.55),

and x1, x0, v, u1, u0, w are all constants > 0 satisfying

x1 > x0, x0 > v + w + 1/3, v > u1, u1 > u0, u0 > 2w + 1/3.

In particular,∑
j,m

(
e3.243...λ

(j,m)
+ e2.823...λ

(j,m)

0.21
+
e1.238...λ

(j,m)
+ e1.126...λ

(j,m)

0.056

)−1
≤ 11.826 . . . .

Lemma 6.3. Let g : [0,∞)→ R be a non-negative continuous function,
supported on [0, x0) for some x0 > 0, which is twice differentiable on (0, x0)
and has a bounded second derivative on (0, x0). Moreover, assume the La-
place transform G of g satisfies <(G(z)) ≥ 0 for <(z) ≥ 0. Let 0 ≤ λ11 ≤ λ1
and 0 ≤ λ ≤ 2 be such that

G(λ− λ11) > g(0)/6 and (G(λ− λ11)− g(0)/6)2 > G(−λ11)g(0)/6.

Then for any δ > 0 and q > q0(δ, g) we have∑
j,m

λ(j,m)≤λ

1 ≤ G(−λ11)G3

(G(λ− λ11)− g(0)/6)2 −G(−λ11)g(0)/6
+ δ.

Here G3 will be defined in (6.90).

We will now proceed to prove each of these lemmas in turn.

We note here that we can easily ensure the L given in [11, Lemma 6.1]
satisfies R ≤ L ≤ 1

10L rather than just L ≤ 1
10L by following exactly the

same argument but with this restriction. This means that all the results of
Heath-Brown [11] and Xylouris [26] which are concerned with zeros in the
region

(6.5) 1− log logL
3L

≤ σ ≤ 1, |t| ≤ L

also apply to the zeros which we consider in R.

6.1. First zero density estimate. We now consider zeros within one
of the rectangles Rm. We follow almost identically the argument of Heath-
Brown in [11, Lemma 13.3].
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We put

h1(t) =

{
sinh((K − t)λ), 0 ≤ t ≤ K,
0, t ≥ K,

(6.6)

H1(z) =

∞�

0

e−zth1(t) dt =
1

2

(
eKλ

λ+ z
+
e−Kλ

λ− z
− 2λe−Kz

λ2 − z2

)
,(6.7)

H2(z) =

(
1− e−Kz

z

)2

,(6.8)

for some constants K ∈ R and λ ∈ C, which will be declared later.
We note that

(6.9) <(H1(it)) =
λeKλ

2

∣∣∣∣1− e−K(λ+it)

λ+ it

∣∣∣∣2 =
λeKλ

2

∣∣∣∣H2(λ+ it)

∣∣∣∣.
Since H1(z) and H2(λ+ z) tend uniformly to zero in <(z) ≥ 0 as |z| → ∞,
and <(H1(z)) = λeKλ|H2(λ+ z)|/2 when <(z) = 0, by [11, Lemma 4.1] we
have

(6.10) <(H1(z)) ≥
λeKλ

2
|H2(λ+ z)|

whenever <(z) ≥ 0.
We fix a character χ = χ(j) 6= χ0 and take λ = λ(j,m). Therefore L(s, χ)

has no zeros in the region {σ > 1− λ/L} ∩ Rm.
Thus

(6.11)
∑

ρ∈Rm∩Z(χ)

|H2((1− ρ+ im/L)L)|

≤ 2e−Kλ

λ

∑
ρ∈Rm∩Z(χ)

<(H1((s− ρ)L)),

where s = 1− λ/L+ im/L.
By [11, Lemma 5.2] and [11, Lemma 5.3] we have (recalling that |m| � L

so |=(s)| ≤ L for q sufficiently large), for any given δ > 0 and q > q(δ),

(6.12)
∑

ρ∈Rm∩Z(χ)

<(H1((s− ρ)L))

≤ h1(0)φχ
2

+ L−1
∣∣∣∣ ∞∑
n=1

Λ(n)<
(
χ(n)

ns

)
h1(L−1 log n)

∣∣∣∣+ δ

≤ h1(0)φχ
2

+ L−1
∞∑
n=1

Λ(n)
χ0(n)

n<(s)
h1(L−1 log n) + δ

≤ h1(0)φχ
2

+ |H1((<(s)− 1)L)|+ 2δ.
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This gives

(6.13)
∑

ρ∈Rm∩Z(χ)

∣∣∣∣1− e−Kλρ−iK(m−γρL)

λρ + i(m− γρL)

∣∣∣∣2
≤ φχ(1− e−2Kλ)

2λ
+

2Kλ− 1 + e−2Kλ

2λ2
+ 2δ.

Since ρ ∈ Rm we have |m − γρL| ≤ 1/2. Thus, recalling that χ = χ(j) and
λ = λ(j,m), we obtain

(6.14)
∑

ρ∈Rm∩Z(χ(j))

(1− e−Kλρ)2

λ2ρ + 1/4

≤ φχ(1− e−2Kλ(j,m)
)

2λ(j,m)
+

2Kλ(j,m) − 1 + e−2Kλ
(j,m)

2(λ(j,m))2
+ 2δ.

Hence Lemma 6.1 holds.

6.2. Second zero density estimate. We now prove Lemma 6.2. The
proof uses ideas originally due to Graham [9]. We follow the method of [11,
Section 11], but extend the result to a weighted sum over zeros rather than
just characters. We do this by using integrated exponential weights instead
of exponential weights, an idea originally due to Jutila [14].

We adopt similar notation to that of [11, Section 11]. We put

(6.15) U0 = qu0 , U1 = qu1 , X0 = qx0 , X1 = qx1 , V = qv, W = qw

with constant exponents 0 < w < u0 < u1 < v < x0 < x1 to be declared
later. We put

(6.16) U = qu, X = qx

with u0 ≤ u ≤ u1 and x0 ≤ x ≤ x1 parameters which we will integrate over.

We define

ψd =


µ(d), 1 ≤ d ≤ U1,

µ(d)
log(V/d)

log(V/U1)
, U1 ≤ d ≤ V ,

0, d ≥ V,

(6.17)

θd =

{
µ(d)

log(W/d)

logW
, 1 ≤ d ≤W ,

0, d ≥W.
(6.18)

We wish to study the sum

(6.19) J(ρ(j,m), χ) := wj,m

∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(n)n−ρ

(j,m)
j(n),
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where

(6.20) j(n) =

	x1
x0

	u1
u0

(e−n/X − e−nL2/U ) du dx

(u1 − u0)(x1 − x0)
and wj,m are some non-negative weights.

We start with the following weighted-sum result.

Lemma 6.4. For x0 > w + v + φχ(j) we have

w2
j,m ≤ (1 +O(L−1))|J(ρ(j,m), χ(j))|2.

Proof. The argument of [11, pp. 317–318] shows that

(6.21) 1+O(L−1) =

∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(j)(n)n−ρ

(j,m)
(e−n/X−e−nL2/U )

for x0 > w + v + φχ(j) . We note that in [11] the definition of ψd is slightly
different (it uses constants labelled U and V rather than U1 and V as in our
case), but this does not affect the argument in any way since U1 ≥ U .

Multiplying the above expression by weights wj,m and integrating over
x ∈ [x0, x1] and u ∈ [u0, u1] gives

(6.22) wj,m = (1 +O(L−1))J(ρ(j,m), χ(j)).

Squaring both sides of the above expression leads to the result.

We sum the expression of Lemma 6.4 over all zeros ρ(j,m). We let
∑

j,m
denote this sum.

Thus

(6.23)
∑
j,m

w2
j,m ≤ (1 +O(L−1))

∑
j,m

|J(ρ(j,m), χ(j))|2.

We now use the well-known duality principle, which we will state here for
convenience.

Lemma 6.5 (Duality principle). If∑
n

∣∣∣∑
j,m

an,j,mCj,m

∣∣∣2 ≤ B∑
j,m

|Cj,m|2

for all choices of the coefficients Cj,m, then∑
j,m

∣∣∣∑
n

an,j,mbn

∣∣∣2 ≤ B∑
n

|bn|2

for any choice of bn.
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We wish to use Lemma 6.5 with

an,j,m = wj,mχ
(j)(n)n1/2−ρ

(j,m)
(∑
d|n

θd

)
j(n)1/2,(6.24)

bn =
(∑
d|n

ψd

)
n−1/2j(n)1/2(6.25)

to bound this sum. We note that

(6.26)

∞∑
n=1

an,j,mbn = J(ρ(j,m), χ(j)).

First we evaluate
∑
b2n.

Lemma 6.6. For x0 > v we have
∞∑
n=1

|bn|2 = (1 +O(L−1 logL))
x1 + x0 − u1 − v

2(v − u1)
.

Proof. The argument leading to equation (11.14) of [11, p. 319] shows
(recalling that our definition of ψd used parameters U1 and V rather than
U and V ) that provided x > v we have

(6.27)

∞∑
n=1

(∑
d|n

ψd

)2
n−1(e−n/X − e−nL2/U )

= (1 +O(L−1 logL))
2x− u1 − v
2(v − u1)

.

Since x ≥ x0 > v, this holds in our case.

Therefore, integrating with respect to x ∈ [x0, x1] and u ∈ [u0, u1] and
dividing through by (x1 − x0)(u1 − u0) gives

(6.28)

∞∑
n=1

(∑
d|n

ψd

)2
n−1

	x1
x0

	u1
u0

(e−n/X − e−nL2/U ) du dx

(x1 − x0)(u1 − u0)

= (1 +O(L−1 logL))
x1 + x0 − u1 − v

2(v − u1)
.

Hence the result holds.

Therefore in order to use Lemma 6.5 we want to find a bound B such
that

(6.29)

∞∑
n=1

∣∣∣∑
j,m

an,j,mCj,m

∣∣∣2 ≤ B∑
j,m

|Cj,m|2

for any possible choice of Cj,m.
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Expanding the left hand side, terms are of the form

(6.30)
∞∑
n=1

an,j1,m1an,j2,m2Cj1,m1Cj2,m2

= Cj1,m1Cj2,m2wj1,m1wj2,m2

×
∞∑
n=1

(∑
d|n

θd

)2
χ(j1)(n)χ(j2)(n)n1−ρ

(j1,m1)−ρ(j2,m2)
j(n).

To ease notation we let

(6.31) ρ(1) = ρ(j1,m1), ρ(2) = ρ(j2,m2),

and correspondingly define χ(1), χ(2), β(1), β(2), λ(1), λ(2), γ(1), γ(2).

We first deal with the terms when χ(1) 6= χ(2).

We put

(6.32) J2(s, χ) =
∑

w1,w2≤W
θw1θw2χ([w1, w2])[w1, w2]

−s.

(Here [a, b] denotes the least common multiple of a and b.) By the inverse
Laplace transform of the exponential function we have

(6.33)

∞∑
n=1

(∑
d|n

θd

)2
χ(1)(n)χ(2)(n)n1−ρ(1)−ρ(2)(e−n/X − e−nL2/U )

=
1

2πi

1+i∞�

1−i∞
L(s+ ρ(1) + ρ(2) − 1, χ(1)χ(2))(X

s − (UL−2)s)

× Γ (s)J2(s+ ρ(1) + ρ(2) − 1, χ(1)χ(2)) ds

=
1

2πi

2−β(1)−β(2)−1/k+i∞�

2−β(1)−β(2)−1/k−i∞

L(s+ ρ(1) + ρ(2) − 1, χ(1)χ(2))(X
s − (UL−2)s)

× Γ (s)J2(s+ ρ(1) + ρ(2) − 1, χ(1)χ(2)) ds.

where k > 10 is a fixed constant (to be declared later).

On <(s) = 2− β(1) − β(2) − 1/k with χ 6= χ0 we have

L(s+ ρ(1) + ρ(2) − 1, χ)�k q
φχ/k+1/k2(1 + |t|),(6.34)

Γ (s)� e−|t|,(6.35)

J2(s+ ρ(1) + ρ(2) − 1, χ)�
∑

[w1, w2]
−1+1/k(6.36)

�
∑
n≤W 2

n−1+1/kd(n)2 �W 2/kL3.



272 J. Maynard

Thus, letting χ = χ(1)χ(2), we obtain

(6.37)
1

2πi

1−β(1)−β(2)−1/k+i∞�

1−β(1)−β(2)−1/k−i∞

L(s+ ρ(1) + ρ(2) − 1, χ)Γ (s)(Xs − (UL−2)s)

× J2(s+ ρ(1) + ρ(2) − 1, χ) ds

� (qφχW 2U−1L3)1/kq1/k2L2(UL−2)2−β(1)−β(2)

� (qφχW 2U−1)1/kq2/k
2
.

(Recall 1− β(1) and 1− β(2) are o(1).)

This is O(L−1) provided that k is chosen sufficiently large and (keeping
in mind φχ ≤ 1/3 for all χ) provided we have

(6.38) u0 > 2w + 1/3.

The terms with χ(1) 6= χ(2) therefore contribute

(6.39) � L−1
(∑
j,m

|Cj,m|wj,m
)2
� L−1

(∑
j,m

w2
j,m

)∑
j,m

|Cj,m|2.

We now consider the terms with χ(1) = χ(2). Such terms are of the form

(6.40) C(1)C(2)(w(1)w(2))
∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)j(n).

Lemma 6.7. For x > v we have∣∣∣ ∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)j(n)

∣∣∣
≤
∣∣∣∣ (1 +O(L−1 logL))

wL2(2− ρ(1) − ρ(2))2

∣∣∣∣
×
∣∣∣∣X2−ρ(1)−ρ(2)

1 −X2−ρ(1)−ρ(2)
0

x1 − x0
− U

2−ρ(1)−ρ(2)
1 − U2−ρ(1)−ρ(2)

0

u1 − u0

∣∣∣∣+O(L−1).

Proof. We observe that

(6.41)
∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)(e−n/X − e−nL2/U )

=
∑
d1,d2

θd1θd2χ0([d1, d2])[d1, d2]
1−ρ(1)−ρ(2)

×
∞∑
k=1

k1−ρ(1)−ρ(2)χ0(k)(e−k[d1,d2]/X − e−k[d1,d2]L2/U ).
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By the inverse Laplace transform of the exponential function again we
have

(6.42)
∞∑
k=1

χ0(k)k1−ρ(1)−ρ(2)(e−k[d1,d2]/X − e−k[d1,d2]L2/U )

=
1

2πi

1+i∞�

1−i∞
L(s+ ρ(1) + ρ(2) − 1, χ0)Γ (s)

×
((

X

[d1, d2]

)s
−
(

U

L2[d1, d2]

)s)
ds.

We again move the line of integration to

<(s) = 2− β(1) − β(2) − 1/k,

and by exactly the same reasoning, we find that the integral over this contour
is negligible when u0 > 2w. We encounter a pole at s = 2 − ρ(1) − ρ(2),
however, which contributes

(6.43)
φ(q)

q
Γ (2− ρ(1) − ρ(2))

×
((

X

[d1, d2]

)2−ρ(1)−ρ(2)
−
(

U

L2[d1, d2]

)2−ρ(1)−ρ(2))
.

Thus

(6.44)

∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)(e−n/X − e−nL2/U )

=
φ(q)

q
Γ (2− ρ(1) − ρ(2))(X2−ρ(1)−ρ(2) − (UL−2)2−ρ(1)−ρ(2))

×
∑
d1,d2

θd1θd2χ0([d1, d2])

[d1, d2]
+O(L−1).

We now perform the integrations with respect to x and u. We have

(6.45)
1

(x1 − x0)(u1 − u0)

x1�

x0

u1�

u0

(X2−ρ(1)−ρ(2) − (UL−2)2−ρ(1)−ρ(2)) du dx

=

(
X

2−ρ(1)−ρ(2)
1 −X2−ρ(1)−ρ(2)

0

x1 − x0
− U

2−ρ(1)−ρ(2)
1 − U2−ρ(1)−ρ(2)

0

u1 − u0

)
× 1

L(2− ρ(1) − ρ(2))
.

Thus
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(6.46)
∣∣∣ ∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)j(n)

∣∣∣
≤ φ(q)

Lq

∣∣∣∣Γ (2− ρ(1) − ρ(2))
2− ρ(1) − ρ(2)

∣∣∣∣× ∣∣∣∣∑
d1,d2

θd1θd2χ0([d1, d2])

[d1, d2]

∣∣∣∣
×
∣∣∣∣X2−ρ(1)−ρ(2)

1 −X2−ρ(1)−ρ(2)
0

x1 − x0
− U

2−ρ(1)−ρ(2)
1 − U2−ρ(1)−ρ(2)

0

u1 − u0

∣∣∣∣+O(L−1).

We now estimate the sum over d1, d2:

(6.47)
∣∣∣∑
d1,d2

θd1θd2 [d1, d2]
−1χ0([d1, d2])

∣∣∣
=

1

N

∣∣∣∣ ∑
d1,d2≤W

θd1θd2

(
q

φ(q)

∑
[d1,d2]|n
n≤N

(n,q)=1

1 +O(q)

)∣∣∣∣
=

q

φ(q)N

∑
n≤N

(n,q)=1

(∑
d|n

θd

)2
+O(qW 2N−1)

≤ q

φ(q)N

∑
n≤N

(∑
d|n

θd

)2
+O(qW 2N−1).

Graham [8] has shown that for N > q2W 2 we have

(6.48) N−1
∑
n≤N

(∑
d|n

θd

)2
=

1 +O(L−1)
logW

.

Hence, for N > q2W 2,

(6.49)
∣∣∣∑
d1,d2

θd1θd2 [d1, d2]
−1χ0([d1, d2])

∣∣∣ ≤ q

φ(q)N

∑
n≤N

(∑
d|n

θd

)2
+O(q−1)

=
(1 +O(L−1))q
φ(q) logW

= (1 +O(L−1)) q

φ(q)wL
.

Thus

(6.50)
∣∣∣ ∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−ρ(1)−ρ(2)j(n)

∣∣∣
≤ 1 +O(L−1)

L2w

∣∣∣∣Γ (2− ρ(1) − ρ(2))
2− ρ(1) − ρ(2)

∣∣∣∣
×
∣∣∣∣X2−ρ(1)−ρ(2)

1 −X2−ρ(1)−ρ(2)
0

x1 − x0
− U

2−ρ(1)−ρ(2)
1 − U2−ρ(1)−ρ(2)

0

u1 − u0

∣∣∣∣+O(L−1).
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We recall the Weierstrass product expansion of Γ (s):

(6.51) Γ (s) =
e−γs

s

∞∏
n=1

(
1 +

s

n

)−1
es/n.

When s = 2− ρ(1) − ρ(2), since 2− β(1) − β(2) = O(L−1 logL), we therefore
have

|Γ (s)| ≤ e−γ<(s)

|s|

∞∏
n=1

∣∣∣∣1 +
s

n

∣∣∣∣−1e<(s)/n(6.52)

≤ 1 +O(L−1 logL)

|s|

∞∏
n=1

(
1 +
<(s)

n

)−1
e<(s)/n

≤ 1 +O(L−1 logL)

|2− ρ(1) − ρ(2)|

∞∏
n=1

(
1 +O

(
<(s)

n2

))
≤ 1 +O(L−1 logL)

|2− ρ(1) − ρ(2)|
.

To simplify notation we put

(6.53) j2(a, b) :=
1

L2(2− a− b)2

∣∣∣∣X2−a−b
1 −X2−a−b

0

x1 − x0
− U2−a−b

1 − U2−a−b
0

u1 − u0

∣∣∣∣.
Thus the sum over all the terms of the form (6.40) with χ(1) = χ(2) is

≤ 1 +O(L−1 logL)

w

∑
ρ(1),ρ(2)
χ(1)=χ(2)

|C(1)C(2)w(1)w(2)j2(ρ(1), ρ(2))|(6.54)

+O
(
L−1

∑
ρ(1),ρ(2)
χ(1)=χ(2)

|C(1)C(2)w(1)w(2))|
)
.

We put

(6.55) G2 = max
ρ(1)

∑
ρ(2)

χ(2)=χ(1)

|w(1)w(2)j2(ρ(1), ρ(2))|.

Since 2|C(1)C(2)| ≤ |C(1)|2 + |C(2)|2, we have

(6.56)
∑

ρ(1),ρ(2)
χ(1)=χ(2)

|C(1)C(2)w(1)w(2)j2(ρ(1), ρ(2))| ≤ G2

∑
ρ(1)

|C(1)|2.
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Combining (6.39) and (6.56) gives

(6.57)
∞∑
n=1

∣∣∣∑
j,m

an,j,mCj,m

∣∣∣2
≤
(
G2

w
(1 +O(L−1 logL)) +O

(
L−1

∑
j,m

w2
j,m

))∑
j,m

|Cj,m|2

for any choice of the coefficients Cj,m.

Therefore by (6.23), Lemma 6.5 and Lemma 6.6 we have∑
j,m

w2
j,m ≤ (1 +O(L−1 logL))

(
G2

w
+O

(
L−1

∑
j,m

w2
j,m

))
(6.58)

× x1 + x0 − u1 − v
2(v − u1)

,

which gives

(6.59)
∑
j,m

w2
j,m ≤ (1 +O(L−1 logL))

x1 + x0 − u1 − v
2w(v − u1)

G2.

We are therefore left to choose suitable weights wj,m, bound G2 and choose
suitable constants w, u0, u1, v, x0, x1.

We note that, using Cauchy’s inequality, we have

(6.60)

∣∣∣∣X2−ρ(1)−ρ(2)
1 −X2−ρ(1)−ρ(2)

0

x1 − x0
− U

2−ρ(1)−ρ(2)
1 − U2−ρ(1)−ρ(2)

0

u1 − u0

∣∣∣∣
≤ e(λ(1)+λ(2))x1 + e(λ(1)+λ(2))x0

x1 − x0
+
e(λ(1)+λ(2))u1 + e(λ(1)+λ(2))u0

u1 − u0

≤
(
e2λ(1)x1 + e2λ(1)x0

x1 − x0
+
e2λ(1)u1 + e2λ(1)u0

u1 − u0

)1/2

×
(
e2λ(2)x1 + e2λ(2)x0

x1 − x0
+
e2λ(2)u1 + e2λ(2)u0

u1 − u0

)1/2

.

Also ∑
ρ(2)

|L−2(2− ρ(1) − ρ(2))−2| =
∑
ρ(2)

1

(λ(1) + λ(2))2 + (v(1) − v(2))2
(6.61)

≤ 2
∞∑
m=0

1

(λ(1) + λ(2))2 +m2
,

since |=(ρ(j,m1)) − =(ρ(j,m2))| ≥ (|m1 − m2| − 1)/L by our choice of the
rectangles Rm.
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Motivated by these observations we choose

(6.62) wj,m =

(
e2λ

(j,m)x1 + e2λ
(j,m)x0

x1 − x0
+
e2λ

(j,m)u1 + e2λ
(j,m)u0

u1 − u0

)−1/2
.

We assume from here on that we are only considering zeros ρ(j,m) with
λ(j,m) ≥ λmin, for some fixed value of λmin.

We now wish to estimate G2, and so bound
∑

ρ(2)
|w(1)w(2)j2(ρ(1), ρ(2))|.

We assume ρ(1) is in a rectangle Rm1 and then consider the contributions
G2,c from zeros in rectangles Rm2 where |m1 − m2| = c ∈ Z (since we
have picked a fixed zero in each rectangle, there are at most two zeros
corresponding to each choice of c).

We first consider c = 0. In this case ρ(2) = ρ(1) (and there is only one
zero). This contributes at most

(6.63) G2,0 ≤ sup
ρ(1)

|j(ρ(1), ρ(1))w2
(1)|

= sup
ρ(1)

(
X

2−2β(1)
1 −X2−2β(1)

0

x1 − x0
− U

2−2β(1)
1 − U2−2β(1)

0

u1 − u0

)

×
(
X

2−2β(1)
1 +X

2−2β(1)
0

x1 − x0
+
U

2−2β(1)
1 + U

2−2β(1)
0

u1 − u0

)−1
(2λ(1))

−2

= sup
λ(1)≥λmin

(
e2x1λ(1) − e2x0λ(1)

x1 − x0
− e2u1λ(1) − e2u0λ(1)

u1 − u0

)

×
(
e2x1λ(1) + e2x0λ(1)

x1 − x0
+
e2u1λ(1) + e2u0λ(1)

u1 − u0

)−1
(2λ(1))

−2.

We now deal with the case 1 ≤ c ≤ 6. This means that

c− 1 ≤ |=(ρ(1))−=(ρ(2))| ≤ c+ 1,

and there are at most two zeros ρ(2). These zeros contribute at most

(6.64) 2 sup
λ(1),λ(2)≥λmin

c−1≤t≤c+1

(
e2x1λ(1) + e2x0λ(1)

x1 − x0
+
e2u1λ(1) + e2u0λ(1)

u1 − u0

)−1/2

×
(
e2x1λ(2) + e2x0λ(2)

x1 − x0
+
e2u1λ(2) + e2u0λ(2)

u1 − u0

)−1/2
((λ(1) + λ(2))

2 + t2)−1

×
∣∣∣∣ex1(λ(1)+λ(2)+it) − ex0(λ(1)+λ(2)+it)x1 − x0

− eu1(λ(1)+λ(2)+it) − eu0(λ(1)+λ(2)+it)

u1 − u0

∣∣∣∣.
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As in (6.60), it follows from Cauchy’s inequality that

(6.65)

(
e(λ(1)+λ(2))x1 + e(λ(1)+λ(2))x0

x1 − x0
+
e(λ(1)+λ(2))u1 + e(λ(1)+λ(2))u0

u1 − u0

)2

≤
(
e2x1λ(2) + e2x0λ(2)

x1 − x0
+
e2u1λ(2) + e2u0λ(2)

u1 − u0

)
×
(
e2x1λ(1) + e2x0λ(1)

x1 − x0
+
e2u1λ(1) + e2u0λ(1)

u1 − u0

)
.

Hence

G2,c ≤ 2 sup
λ≥λmin

c−1≤t≤c+1

∣∣∣∣ex1(2λ+it) − ex0(2λ+it)x1 − x0
− eu1(2λ+it) − eu0(2λ+it)

u1 − u0

∣∣∣∣(6.66)

×
(
e2x1λ + e2x0λ

x1 − x0
+
e2u1λ + e2u0λ

u1 − u0

)−1
(4λ2 + t2)−1.

When c ≥ 7 we use the simple estimate

G2,c ≤ 2 sup
λ(1),λ(2)≥λmin

c−1≤t≤c+1

((λ(1) + λ(2))
2 + t2)−1 ≤ 2

4λ2min + (c− 1)2
.(6.67)

For given constants x1, x0, u1, u0, w, v and λmin we use Mathematica’s
NMaximize function to calculate the bounds above for G2,0 and G2,c for
1 ≤ c ≤ 6. We can estimate the bound given for G2,c when 7 ≤ c ≤ 101
exactly, and then for c ≥ 102 we use an integral comparison to see that∑

c≥102
G2,c ≤

∑
m≥101

2

4λ2min +m2
≤
∞�

100

2

4λ2min + t2
dt(6.68)

≤ tan−1(λmin/50)

λmin
.

We can then use this information to estimate G2:

(6.69) G2 ≤ G2,0 +
∑

1≤c≤6
G2,c +

∑
6≤m≤100

2

4λ2min +m2
+

tan−1(λmin/50)

λmin
.

As is the case in [11], it is optimal to choose u0 = 2w + 1/3 + δ and x0 =
w+ v+ 1/3 + δ with δ small. We will take δ = 2/3000 for our purposes. We
are then left to choose suitable positive constants w, u1 ≥ u0, v ≥ u1 and
x1 ≥ x0. We fix these now as

w = 0.115, u0 = 0.564, u1 = 0.620,(6.70)

v = 0.964, x0 = 1.413, x1 = 1.623.(6.71)

We consider λmin = 0.35. For this value we calculate that

(6.72) G2 ≤ 0.650.
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Putting everything together we obtain

(6.73)
∑
j,m

λ(j,m)≥0.35

(
e3.246λ

(j,m)
+ e2.826λ

(j,m)

0.210
+
e1.240λ

(j,m)
+ e1.128λ

(j,m)

0.056

)−1
≤ 11.9288.

6.3. Third zero density estimate. We now prove Lemma 6.3. The
proof uses the ideas from [11, Section 12] to obtain a stronger zero density
estimate close to 1, but agan we extend this to our slightly larger region
with =(ρ)� 1. Specifically we wish to estimate

(6.74) N∗(λ) := #{ρ(j,m) ∈ R : λ(j,m) ≤ λ}

in the range 0 ≤ λ ≤ 2. We note that from the log-free zero density bound,
for 0 ≤ λ ≤ 2 we know that N∗(λ) is uniformly bounded in q and λ.

Throughout this section we assume that we have a fixed non-negative
constant λ11 such that λ11 ≤ λ1. We put β11 = 1− λ11/L.

We adopt the notation of [11]. We put

(6.75) K(s, χ) :=
∞∑
n=1

Λ(n)<
(
χ(n)

ns

)
g(L−1 log n)

for some function g which satisfies:

Condition 1. g : [0,∞) → R is continuous, g is supported on [0, x0)
for some x0 > 0, g is twice differentiable on (0, x0) and g′′ is bounded on
(0, x0).

Condition 2. g is non-negative and its Laplace transform G satisfies
<(G(z)) ≥ 0 for <(z) ≥ 0.

We start with the following estimate:

Lemma 6.8. Let g be a function satisfying Conditions 1 and 2 and let
δ > 0. Then for q > q0(δ, g) and λ1 ≥ λ11, if

(6.76) G(λ− λ11) > g(0)/6, (G(λ− λ11)− g(0)/6)2 > G(−λ11)g(0)/6

then

N∗(λ) ≤ G(−λ11)G3

(G(λ− λ11)− g(0)/6)2 −G(−λ11)g(0)/6
+ δ,

where G3 will be defined in equation (6.90).

Proof. The first inequality of [11, Section 12] shows that for q > q0(g, δ1)
we have

(6.77) L−1K(β11 + iγ(j,m), χ(j)) ≤ g(0)φχ(j)/2 + δ1 −G(λ(j,m) − λ11).
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Therefore, for any zero ρ(j,m) with G(λ(j,m) − λ11) > g(0)φχ(j)/2 we obtain

(6.78) 0 < G(λ(j,m)−λ11)−g(0)φχ(j)/2 ≤ −L−1K(β11+iγ(j,m), χ(j))+δ1.

We note that G(λ(j,m) − λ11) is a decreasing function in λ(j,m) and recall
that φχ ≤ 1/3 for all characters χ. Therefore, if

(6.79) G(λ− λ11) > g(0)/6,

then for any λ(j,m) ≤ λ we see that

0 ≤ G(λ− λ11)− g(0)/6 ≤ G(λ(j,m) − λ11)− g(0)φχ(j)/2(6.80)

≤ −L−1K(β11 + iγ(j,m), χ(j)) + δ1.

We sum over all j,m for which λ(j,m) ≤ λ. Thus for q > q0(g, δ1) we have

(6.81) N∗(λ)(G(λ− λ11)− g(0)/6)

≤
∑
j,m

λ(j,m)≤λ

G(λ(j,m) − λ11)− g(0)/6

≤ −L−1
∑
j,m

λ(j,m)≤λ

K(β11 + iγ(j,m), χ(j)) +
∑
j,m

λ(j,m)≤λ

δ1

= −L−1
∞∑
n=1

Λ(n)n−β11g(L−1 log n)<
( ∑

j,m
λ(j,m)≤λ

χ(j)(n)n−iγ
(j,m)

)
+ δ2

≤ L−1
∞∑
n=1

Λ(n)n−β11χ0(n)g(L−1 log n)
∣∣∣ ∑

j,m
λ(j,m)≤λ

χ(j)(n)n−iγ
(j,m)

∣∣∣+ δ2

≤ Σ1/2
1 Σ

1/2
2 + δ2,

where

δ2 =
∑
j,m

λ(j,m)≤λ

δ1,(6.82)

Σ1 = L−1
∞∑
n=1

Λ(n)n−β11χ0(n)g(L−1 log n),(6.83)

Σ2 = L−1
∞∑
n=1

Λ(n)n−β11g(L−1 log n)
∣∣∣ ∑

j,m
λ(j,m)≤λ

χ(j)(n)n−iγ
(j,m)

∣∣∣2.(6.84)

By [11, Lemma 5.3] for q > q0(g, δ1) we have

Σ1 = L−1K(β11, χ0) ≤ G(−λ11) + δ1.(6.85)
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We expand the square in Σ2 and see that

Σ2 = <(Σ2)(6.86)

= L−1
∑

j1,j2,m1,m2

λ(j1,m1),λ(j2,m2)≤λ

K(β11 + i(γ(j1,m1) − γ(j2,m2)), χ(j1)χ(j2)).

By [11, Lemma 5.3] the terms with j1 = j2 contribute a total

(6.87) L−1
∑

j1,m1,m2

K(β11 + i(γ(j1,m1) − γ(j1,m2)), χ0)

≤
∑

j1,m1,m2

(|<(G(−λ11 + i(v(j1,m1) − v(j1,m2))))|+ δ1).

By [11, Lemma 5.2] the terms with j1 6= j2 contribute

(6.88) L−1
∑

j1 6=j2,m1,m2

K(β11 + i(γ(j1,m1) − γ(j2,m2)), χ(j1)χ(j2))

≤
∑

j1 6=j2,m1,m2

(g(0)/6 + δ1).

Putting these together we get

Σ2 ≤
∑

j1,m1,m2

λ(j1,m1),λ(j1,m2)≤λ

(|<(G(−λ11 + i(ν(j1,m1) − ν(j1,m2))))| − g(0)/6)(6.89)

+N∗(λ)2g(0)/6 + δ3.

We define

(6.90) G3 := sup
j1,m1

∑
m2

(|<(G(−λ11 + i(γ(j1,m1) − γ(j1,m2))))| − g(0)/6),

so

(6.91) Σ2 ≤ N∗(λ)2g(0)/6 +N∗(λ)G3 + δ3.

Combining (6.81), (6.85) and (6.91) we obtain

(6.92) N∗(λ)2(G(λ− λ11)− g(0)/6)2 ≤ Σ1Σ2 + δ2

≤ (G(−λ11) + δ1)(N
∗(λ)2g(0)/6 +N∗(λ)G3 + δ3) + δ2.

Since N∗(λ) is bounded uniformly for 0 ≤ λ ≤ 2 by the log-free zero density
estimate, all the sums and terms are finite. Hence, by a suitable choice of δ1
we deduce for given δ > 0 and q > q0(g, δ) that

(6.93) N∗(λ)((G(λ−λ11)− g(0)/6)2−G(−λ11)g(0)/6)2 ≤ G(−λ11)G3 + δ.

Therefore the lemma holds.

We are now left to choose a suitable function g and evaluate this expres-
sion. As in the work of Heath-Brown [11] and Xylouris [26] we choose
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(6.94) g(t) :=


	γ
t−γ(γ2 − x2)(γ2 − (t− x)2) dx

= − 1
30 t

5 + 2γ2

3 t3 − 4γ3

3 t2 + 16γ5

15 , t ∈ [0, 2γ),

0, t ≥ 2γ,

for some constant γ > 0.

We see that g is the convolution of max(0, γ2 − x2) with itself, and so
satisfies Condition 2, that is, <(z) ≥ 0 ⇒ <(G(z)) ≥ 0. We also see that g
is twice differentiable on (0, 2γ) and its second derivative is continuous and
bounded, and so also fulfills Condition 1.

We see the Laplace transform G is

G(z) =

∞�

0

e−ztg(t) dt(6.95)

=


16γ5

15 z−1 − 8γ3

3 z−3 + 4γ2(1 + e−2γz)z−4

+ 4(−1 + e−2γz + 2γze−2γz)z−6, z 6= 0,
8γ6

9 , z = 0.

We bound G3 in the same manner as we did in proving Lemma 6.2. We
recall

(6.96) G3(λ) = sup
m1,j1

∑
m2

(|<(G(−λ11 + i(v(j1,m1) − v(j2,m2))))| − g(0)/6).

As in the proof of Lemma 6.2 we consider the contribution G3,c of zeros
from rectangles Rm2 with |m1 −m2| = c ∈ Z.

We first consider G3,0. There is only one zero ρ(j1,m2) = ρ(j1,m1), if it
exists. Thus

(6.97) G3,0 ≤ G(−λ11)− g(0)/6.

For G3,c with 1 ≤ c ≤ 5 we see that there are at most two zeros both with
c− 1 ≤ |v(j1,m1) − v(j1,m2)| ≤ c+ 1. These contribute

(6.98) G3,c ≤ 2 max
(

sup
c−1≤t≤c+1

|<(G(−λ11 + it))| − g(0)/6, 0
)
.

We estimate them using Mathematica’s NMaximize function.

We use a simpler bound to estimate G3,c with c ≥ 6. Letting z = x+ iy
we have

|<(G(z))| ≤
∣∣∣∣16γ5

15
<(z−1)

∣∣∣∣+

∣∣∣∣8γ33 <(z−3)

∣∣∣∣+ 4γ2|<((1 + e−2γz)z−4)|(6.99)

+ 4|<((−1 + e−2γz + 2γze−2γz)z−6)|
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≤ 16γ5x

15(x2 + y2)
+

8γ3(|x|3 + 3|x|y2)
3(x2 + y2)3

+
4γ2(1 + e−2γx)

(x2 + y2)2

+ 4(1 + e−2γx + 2γ(x2 + y2)1/2e−2γx)(x2 + y2)−3

=: G4(x, y).

We see that G4(x, y) is decreasing in y, and so

G3,c ≤ 2 max
(

sup
c−1≤|t|≤c+1

|<(G(−λ11 + it))| − g(0)/6, 0
)

(6.100)

≤ 2 max(G4(−λ11, c− 1)− g(0)/6, 0).

We estimate this directly. We note that if G4(−λ11, c1 − 1) ≤ g(0)/6 then
G3,c ≤ 0 for all c ≥ c1.

Using these estimates we can then bound G3 for any given value of our
parameter γ and a given lower bound λ11 for λ1.

We consider separately the cases λ1 ≥ 0.35, λ1 ≥ 0.40, λ1 ≥ 0.44,
λ1 ≥ 0.52, λ1 ≥ 0.60, λ1 ≥ 0.66 and λ1 ≥ 6/7. In each case we choose
the value of γ ∈ {1.00, 1.01, . . . , 1.60} which gives the best bound whilst
ensuring that conditions (6.76) still hold.

We give the results in the following table. We note that in comparison
with [11, Table 13] these are worse by a factor of approximately 4, but are
counting the number of rectangles containing a zero rather than just the
number of characters.

Table 1. Third zero density estimate

Bound for N∗(λ)

λ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥
0.35 0.40 0.44 0.52 0.60 0.66 6/7

0.74 30 29 28 27 26 26 –

0.75 31 30 29 28 27 26 –

0.76 32 31 30 29 28 27 –

0.77 33 32 31 30 29 28 –

0.78 34 33 32 31 29 29 –

0.79 35 34 33 32 30 29 –

0.80 36 35 34 32 31 30 –

0.81 37 36 35 33 32 31 –

0.82 38 37 36 34 33 32 –

0.83 40 38 37 35 34 33 –

0.84 41 39 38 37 35 34 –

0.85 42 41 40 38 36 35 –

0.86 44 42 41 39 37 36 –

0.87 45 44 42 40 38 37 34
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Table 1 (cont.)

Bound for N∗(λ)

λ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥
0.35 0.40 0.44 0.52 0.60 0.66 6/7

0.88 47 45 44 41 39 38 35

0.89 49 47 45 43 41 39 36

0.90 51 49 47 44 42 40 37

0.91 53 50 49 46 43 42 38

0.92 55 52 51 47 45 43 39

0.93 57 54 52 49 46 44 40

0.94 59 57 55 51 48 46 41

0.95 62 59 57 53 49 47 43

0.96 65 61 59 55 51 49 44

0.97 68 64 61 57 53 51 45

0.98 71 67 64 59 55 52 47

0.99 74 70 67 61 57 54 48

1.00 78 73 70 64 59 56 50

1.01 82 77 73 67 62 58 51

1.02 86 80 76 70 64 61 53

1.03 91 84 80 73 67 63 55

1.04 96 89 84 76 70 66 57

1.05 101 94 88 80 73 68 59

1.06 108 99 93 83 76 71 61

1.07 114 105 98 88 79 74 63

1.08 122 111 104 92 83 78 65

1.09 131 118 110 97 87 81 68

1.10 141 127 117 103 91 85 71

1.11 152 136 125 109 96 89 73

1.12 164 146 134 115 101 94 76

1.13 179 157 143 122 107 98 80

1.14 197 171 155 130 113 104 83

1.15 218 186 167 139 120 110 87

1.16 243 205 182 150 128 116 91

1.17 274 226 199 161 136 123 95

1.18 313 253 220 175 146 131 100

1.19 365 286 244 190 156 140 105

1.20 435 328 274 208 169 149 110

1.21 536 383 312 229 183 160 116

1.22 695 458 361 255 199 173 123

1.23 981 568 426 286 218 187 130
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Table 1 (cont.)

Bound for N∗(λ)

λ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥ λ1 ≥
0.35 0.40 0.44 0.52 0.60 0.66 6/7

1.24 1642 742 518 326 241 203 138

1.25 4835 1063 658 377 268 222 146

1.26 ∞ 1844 895 446 301 245 156

1.27 6602 1382 543 343 272 167

1.28 ∞ 2967 690 397 305 179

1.29 ∞ 940 470 347 193

1.30 1457 573 400 208

1.31 3156 729 471 226

1.32 ∞ 995 569 247

1.33 1549 716 272

1.34 3398 958 302

1.35 ∞ 1433 338

1.36 2782 382

1.37 35205 438

1.38 ∞ 513

1.39 614

1.40 763

1.41 998

1.42 1430

1.43 2480

1.44 8791

1.45 ∞

7. Proof of Proposition 3.5. We wish to estimate∑
χ 6=χ0

∑
m∈Z

∑
ρ∈Rm∩Z(χ)

exp(−Mλρ).

We do this by Lemmas 6.1, 6.2 and 6.3.
We split the argument into two parts, when there is a zero close to 1 (in

which case it must be a real zero from a real character) and when there are
no zeros close to 1 (and so ρ1 or χ1 might be complex).

The work in this section follows that of [11, Sections 14 and 15].

7.1. A zero close to 1. We consider the case when η ≤ λ1 ≤ 0.35. By
[26, Table 11] we see that such a zero cannot exist if χ1 or ρ1 is complex, and
hence ρ1 must be a real zero corresponding to a real character. Moreover,
ρ1 is simple. Since χ1 is real we have φχ1 = 1/4.
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We first consider the contribution from characters χ(j) 6= χ1.

We note that

(7.1)
exp(−Mλ)

B1(λ)
=

(
λ

sinh(Kλ/2)

)2(
1 +

1

4λ2

)
e−(M−K)λ.

The first two terms in the product are decreasing in λ, and so for M ≥ K
this is a decreasing function of λ. Therefore for all ρ ∈ Rm ∩ Z(χ(j)), if
M ≥ K, we have

(7.2) exp(−Mλρ) ≤
exp(−Mλ(j,m))

B1(λ(j,m))
B1(λρ).

Thus by Lemma 6.1 we get∑
ρ∈Rm∩Z(χ(j))

exp(−Mλρ) ≤
exp(−Mλ(j,m))

B1(λ(j,m))

∑
ρ∈Rm∩Z(χ(j))

B1(λρ)(7.3)

≤ exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
.

We note that
exp(−2x1λ)

B2(λ)
and C1(λ)

are decreasing functions in λ. Thus for M ≥ 2x1 +K we see that

(7.4)
exp(−Mλ)C1(λ)

B1(λ)B2(λ)

is a decreasing function in λ. Since for χ(j) 6= χ1 we have λ(j,m) ≥ λ2, this
gives us

(7.5)
∑
j,m

χ(j) 6=χ1,χ0

∑
ρ∈Rm∩Z(χ(j))

exp(−Mλρ)

≤ exp(−Mλ2)C1(λ2)

B2(λ2)B1(λ2)

∑
j,m

χ(j) 6=χ1,χ0

B2(λ
(j,m)).

We now consider the contribution from the character χ1. We give the zero
ρ1 close to 1 special treatment, and so treat differently the rectangle R0

which contains ρ1 (ρ1 ∈ R0 since ρ1 is real).

We begin by considering the contribution from rectangles Rm with
m 6= 0. Using the same ideas as above we have

(7.6)
∑
m6=0

∑
ρ∈Rm∩Z(χ1)

exp(−Mλρ) ≤
exp(−Mλ′1)C1(λ

′
1)

B2(λ′1)B1(λ′1)

∑
m6=0

χ(j)=χ1

B2(λ
(j,m)).
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We now turn to the rectangle R0. We have

(7.7)
∑

ρ∈R0∩Z(χ1)

exp(−Mλρ)

≤ exp(−Mλ1) +
exp(−Mλ′1)

B1(λ′1)

∑
ρ∈R0∩Z(χ)

ρ 6=ρ1

B1(λρ)

≤ exp(−Mλ1) +
exp(−Mλ′1)

B1(λ′1)

∑
ρ∈R0∩Z(χ)

B1(λρ)

≤ exp(−Mλ1) +
exp(−Mλ′1)C1(λ1)

B1(λ′1)
.

We note that B2(λ) and C1(λ) are both decreasing in λ. Therefore

(7.8)
∑

ρ∈R0∩Z(χ1)

exp(−Mλρ) ≤ exp(−Mλ1) +
exp(−Mλ′1)C1(0)

B1(λ′1)B2(λ′1)
B2(λ1).

Combining this with (7.6) and using the fact the C1 is decreasing we obtain

(7.9)
∑
j,m

χ(j)=χ1

∑
ρ∈Rm∩Z(χ1)

exp(−Mλρ)

≤ exp(−Mλ′1)C1(0)

B1(λ′1)B2(λ′1)

∑
j,m

χ(j)=χ1

B2(λ
(j,m)) + exp(−Mλ1).

Now combining (7.9) and (7.5) we get

(7.10)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−Mλρ)

≤ exp(−Mλ1) + C4(λ
′
1, λ2)

∑
j,m

B2(λ
(j,m))

≤ exp(−Mλ1) + C4(λ
′
1, λ2)C2,

where

(7.11) C4(λ
′
1, λ2) = max

(
exp(−Mλ2)C1(λ2)

B1(λ2)B2(λ2)
,
exp(−Mλ′1)C1(0)

B1(λ′1)B2(λ′1)

)
.

By [11, Lemmas 8.4 and 8.8] for any δ > 0 and for all q ≥ q0(δ) we have

(7.12) λ′1, λ2 ≥
(

12

11
− δ
)

log(λ−11 ).

Also by [11, Tables 4 and 7] for λ1 ≤ 0.35 we see that

(7.13) λ′1 ≥ 2.19, λ2 ≥ 1.42.
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Thus, since C4(λ
′
1, λ2) is decreasing in λ′1 and λ2, we deduce for any constant

B with 0 ≤ B ≤M −K − 2x1 that

(7.14) C4(λ
′
1, λ2) ≤ exp

(
−
(

12

11
− δ
)
B log(λ−11 )

)
×max

(
exp(−1.42(M −B))C1(1.42)

B1(1.42)B2(1.42)
,
exp(−2.19(M −B))C1(0)

B1(2.19)B2(2.19)

)
.

We choose

(7.15) B = 1, δ = 0.01, K = 0.66

and as before

w = 0.115, u0 = 0.564, u1 = 0.620,(7.16)

v = 0.964, x0 = 1.413, x1 = 1.623.(7.17)

Given M we can now explicitly calculate the above quantities. For M = 7.5
we obtain

(7.18)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−7.5λρ) ≤ exp(−7.5λ1) + 2.38 · λ1.081 .

We see that the right hand side is a function which is 1 when λ1 = 0, and
is decreasing at 0. Moreover, it is convex (has positive second derivative)
on (0,∞) and so can have at most one turning point, which would be a
minimum should it exist. Therefore the right hand side is always < 1 for
λ1 ∈ [η, 0.35] if it is < 1 at 0.35.

Calculating this at 0.35 with M = 7.5 gives 0.8628 . . . , and so this is < 1
for λ1 ∈ [η, 0.35] provided M ≥ 7.5.

7.2. No zeros close to 1. We now consider the case when λ1 ≥ 0.35.

As above, for characters χ(j) 6= χ1, χ1 we have∑
ρ∈R∩Z(χ(j))

exp(−Mλρ) ≤
∑
m

exp(−Mλ(j,m))

B1(λ(j,m))

∑
ρ∈Rm∩Z(χ(j))

B1(λρ)(7.19)

≤
∑
m

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
.

We now consider the contributions for the character χ1 (and χ1 if χ1 com-
plex). We separate out the contribution of ρ1 (and ρ1 if it exists). To do this
we put

n1(χ1) =

{
2 for χ1 complex,

1 otherwise,
(7.20)
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n2(χ1) =

{
2 for χ1 real and ρ1 complex,

1 otherwise,
(7.21)

n3(χ1) =

{
2 for χ1 real and ρ1 complex and ρ1 /∈ R0,

1 otherwise.
(7.22)

Then

(7.23)
∑

ρ∈R∩Z(χ1)

exp(−Mλ1)

= n2(χ1) exp(−Mλρ) +
∑
m

∑
ρ∈Rm∩Z(χ1)

ρ6=ρ1,ρ1

exp(−Mλρ).

We separate out the contribution from the rectangle Rm1 which contains ρ1.
If χ1 is real and ρ1 is complex then we also separate the rectangleRm2 which
contains ρ1 if this is different from Rm1 . We note that all zeros in either of
these rectangles have either λρ = λ1 or λρ ≥ λ′1. The zeros in any other
rectangle Rm have λρ ≥ λ(j,m). We then use Lemma 6.1 again. This gives

(7.24)
∑

ρ∈R∩Z(χ1)

exp(−Mλρ)

= n2(χ1) exp(−Mλ1) +
∑

ρ∈(Rm1∪Rm2 )∩Z(χ1)
ρ6=ρ1,ρ1

exp(−Mλρ)

+
∑

m 6=m1,m2

∑
ρ∈Rm∩Z(χ1)

exp(−Mλρ)

≤
∑

m 6=m1,m2

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))

+
exp(−Mλ′1)

B1(λ′1)

∑
ρ∈(Rm1∪Rm2 )∩Z(χ1)

B1(λρ)

+ n2(χ1)

(
exp(−Mλ1)−

exp(−Mλ′1)

B1(λ′1)
B1(λ1)

)
≤

∑
m 6=m1,m2

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
+ n3(χ1)

exp(−Mλ′1)C1(λ1)

B1(λ′1)

+ n2(χ1)

(
exp(−Mλ1)−

exp(−Mλ′1)

B1(λ′1)
B1(λ1)

)
= (n2(χ1)B1(λ1)− n3(χ1)C1(λ1))

(
exp(−Mλ1)

B1(λ1)
− exp(−Mλ′1)

B1(λ′1)

)
+
∑
m

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
.
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If χ1 is complex we follow the same argument and obtain the same result
for χ1.

Putting together (7.19) and (7.24) we obtain

(7.25)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−Mλρ) ≤
∑
m,j

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
+A1,

where

A1 = n1(χ1)(n2(χ1)B1(λ1)− n3(χ1)C1(λ1))(7.26)

×
(

exp(−Mλ1)

B1(λ1)
− exp(−Mλ′1)

B1(λ′1)

)
.

We now use Lemmas 6.2 and 6.3 to estimate the sum on the right hand side
of (7.25). We fix a constant Λ (to be declared later) and consider separately
the terms with λ(j,m) > Λ and λ(j,m) ≤ Λ. We use Lemma 6.2 to estimate
the first set of terms, and Lemma 6.3 to estimate the second set.

We first consider the terms with λ(j,m) > Λ:

(7.27)
∑
j,m

λ(j,m)>Λ

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))

=
∑
j,m

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))B2(λ(j,m))
B2(λ

(j,m)).

Again we note that

exp(−Kλ)

B1(λ)
,

exp(−2x1λ)

B2(λ)
, and C1(λ)

are all decreasing functions of λ. Therefore, provided M ≥ K+ 2x1 we have

(7.28)
∑
j,m

λ(j,m)>Λ

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))

≤ exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

∑
j,m

λ(j,m)>Λ

B2(λ
(j,m))

=
exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

∑
j,m

B2(λ
(j,m))− exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

∑
j,m

λ(j,m)≤Λ

B2(λ
(j,m))

≤ exp(−MΛ)C1(Λ)C2

B1(Λ)B2(Λ)
− exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

∑
j,m

λ(j,m)≤Λ

B2(λ
(j,m)).
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Hence

(7.29)
∑
m,j

exp(−Mλ(j,m))C1(λ
(j,m))

B1(λ(j,m))
≤ exp(−MΛ)C1(Λ)C2

B1(Λ)B2(Λ)

+
∑
j,m

λ(j,m)≤Λ

(
exp(−Mλ(j,m))C1(λ

(j,m))

B1(λ(j,m))B2(λ(j,m))
− exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

)
B2(λ

(j,m)).

We therefore are left to evaluate

(7.30)
∑
j,m

λ(j,m)≤Λ

(
exp(−Mλ(j,m))C1(λ

(j,m))

B1(λ(j,m))B2(λ(j,m))
− exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

)
B2(λ

(j,m)).

To ease notation we put

(7.31) D(λ) =

(
exp(−Mλ)C1(λ)

B1(λ)B2(λ)
− exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)

)
B2(λ).

We note that D(λ) is a decreasing function of λ (and is non-negative for
λ ≤ Λ).

We separate the terms for λ1 and put λ∗ = min(λ′1, λ2). This gives

(7.32)
∑
j,m

λ(j,m)≤Λ

D(λ(j,m)) = n3(χ1)n1(χ1)D(λ1) +
∑
j,m

λ∗≤λ(j,m)≤Λ

D(λ(j,m)).

We further put Λr = Λ − (0.01)r and define s such that Λs+1 ≤ λ∗ < Λs.
We then split the sum into sums over the different ranges Λr+1 ≤ λ(j,m)

< Λr:

(7.33)
∑
j,m

λ∗≤λ(j,m)≤Λ

D(λ(j,m))

≤
s−1∑
r=0

∑
j,m

Λr+1≤λ(j,m)≤Λr

D(λ(j,m)) +
∑
j,m

λ∗≤λ(j,m)≤Λs

D(λ(j,m))

≤ (N∗(Λs)− n1(χ1)n3(χ1))D(λ∗)

+
s−1∑
r=0

(N∗(Λr)−N∗(Λr+1))D(Λr+1).

Note that we have used the fact that D(λ) is decreasing in λ.
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By Abel’s identity we have

(7.34)
∑
j,m

λ∗≤λ(j,m)≤Λ

D(λ(j,m))

≤ −n1(χ1)n3(χ1)D(λ∗) +N∗(Λs)(D(λ∗)−D(Λs))

+
s−1∑
r=0

N∗(Λr)(D(Λr+1)−D(Λr)),

since D(Λ) = 0.

Since D(Λr+1) ≥ D(Λr) and D(λ∗) ≥ D(Λs) we may replace N∗(λ) with
an upper bound, say N∗0 (λ). This gives∑

j,m
λ∗≤λ(j,m)≤Λ

D(λ(j,m)) ≤ −n1(χ1)n3(χ1)D(λ∗) +N∗0 (Λs)D(λ∗)(7.35)

+
s−1∑
r=0

(N∗0 (Λr)−N∗0 (Λr+1))D(Λr+1).

Hence ∑
j,m

λ(j,m)≤Λ

D(λ(j,m)) ≤ n1(χ1)n3(χ1)(D(λ1)−D(λ∗)) +N∗0 (Λs)D(λ∗)(7.36)

+
s−1∑
r=0

(N∗0 (Λr)−N∗0 (Λr+1))D(Λr+1).

Putting (7.25), (7.29) and (7.36) together we obtain

(7.37)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−Mλρ)

≤ exp(−MΛ)C1(Λ)C2

B1(Λ)B2(Λ)
+N∗0 (Λs)D(λ∗) +A′1

+

s−1∑
r=0

(N∗0 (Λr)−N∗0 (Λr+1))D(Λr+1),

where

A′1 = n1(χ1)n2(χ1)B1(λ1)

(
exp(−Mλ1)

B1(λ1)
− exp(−Mλ′1)

B1(λ′1)

)
(7.38)

+ n1(χ1)n3(χ1)(D(λ1)−D(λ∗))

− n1(χ1)n3(χ1)C1(λ1)

(
exp(−Mλ1)

B1(λ1)
− exp(−Mλ′1)

B1(λ′1)

)
.

We now wish to bound this when we consider λ1, λ
′
1 and λ2 constrained in

size. Specifically, we consider λ1 ∈ [λ11, λ12], λ2 ≥ λ21 and λ′1 ≥ λ′11.
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By definition N∗0 (Λs) ≥ n1(χ1)n3(χ1), and so the coefficient of D(λ∗)
is > 0. Since D is a decreasing function, the right hand side of (7.37) is
decreasing as a function of λ2. The term B1(λ1) occurs n2(χ1)/n3(χ1) times
in the sum ∑

ρ∈R0∩Z(χ1)

B1(λρ).

Since the sum is ≤ C1(λ1), and all terms in the sum are positive, we have

(7.39) n2(χ1)B1(λ1) ≤ n3(χ1)C1(χ1).

Therefore, by expanding out A′ we see that the right hand side of (7.37) is
also decreasing as a function of λ′1.

Therefore we may replace λ′1 and λ2 with their lower bounds λ′11 and λ21
respectively.

Considering this bound as a function of λ1 we find that the right hand
side equals

(7.40) n1(χ1)n3(χ1)

(
exp(−Mλ′11)

B1(λ′11)
C1(λ1)−

exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)
B2(λ1)

)
+ n1(χ1)n2(χ1)B1(λ1)

(
exp(−Mλ1)

B1(λ1)
− exp(−Mλ′11)

B1(λ′11)

)
+ C,

where C is independent of λ1. We see this is

(7.41) ≤ n1(χ1)n3(χ1)

(
exp(−Mλ′11)

B1(λ′11)
C1(λ11)−

exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)
B2(λ12)

)
+ 2B1(λ11)

(
exp(−Mλ11)

B1(λ11)
− exp(−Mλ′11)

B1(λ′11)

)
+ C.

Therefore

(7.42)
∑
χ 6=χ0

∑
ρ∈R∩Z(χ)

exp(−Mλρ)

≤ exp(−MΛ)C1(Λ)C2

B1(Λ)B2(Λ)
+N∗0 (Λs)D(λ∗) +A′′1

+

s−1∑
r=0

(N∗0 (Λr)−N∗0 (Λr+1))D(Λr+1),

where

(7.43) A′′1 = 2B1(λ11)

(
exp(−Mλ11)

B1(λ11)
− exp(−Mλ′11)

B1(λ′11)

)
+ n4

(
exp(−Mλ′11)

B1(λ′11)
C1(λ11)−

exp(−MΛ)C1(Λ)

B1(Λ)B2(Λ)
B2(λ12)−D(λ∗)

)
,

and n4 is chosen to be 1 or 2 so as to give the largest value for A′′1.
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We now proceed to estimate (7.42) for various ranges of λ1 which cover
the region λ1 ≥ 0.35. We consider

(7.44) M = 7.8.

For each range of λ1 we use the lower bounds for λ′1 and λ2 as given by [26,
Tables 2, 3, 7] and [11, Table 4 and 7]. We use the upper bounds for N∗0 as
calculated in Table 1.

We give these bounds on λ′1 and λ2, our choices of Λ and the calculation
of the right hand side of (7.42) in Table 2.

Table 2. Calculation of the RHS of (7.42) for different ranges of λ1

λ11 λ12 λ21 λ′11 Λ Total RHS of (7.42)

0.35 0.40 1.29 2.10 1.29 0.8579. . .

0.40 0.44 1.18 2.03 1.27 0.9821. . .

0.44 0.46 1.08 1.66 1.28 0.9213. . .

0.46 0.48 1.08 1.53 1.28 0.9120. . .

0.48 0.50 1.08 1.47 1.28 0.9041. . .

0.50 0.52 1.00 1.40 1.28 0.9304. . .

0.52 0.54 1.00 1.34 1.31 0.8049. . .

0.54 0.56 0.92 1.28 1.31 0.8427. . .

0.56 0.58 0.92 1.23 1.31 0.8385. . .

0.58 0.60 0.92 1.18 1.31 0.8349. . .

0.60 0.62 0.85 1.13 1.34 0.7782. . .

0.62 0.64 0.85 1.09 1.34 0.7756. . .

0.64 0.66 0.79 1.04 1.34 0.8363. . .

0.66 0.68 0.79 1.00 1.36 0.7652. . .

0.68 0.70 0.79 0.96 1.36 0.7636. . .

0.70 0.72 0.745 0.93 1.36 0.8241. . .

0.72 0.74 0.745 0.91 1.36 0.8229. . .

0.74 0.76 0.745 0.89 1.36 0.8219. . .

0.76 0.78 0.76 0.86 1.36 0.7988. . .

0.78 0.80 0.78 0.84 1.36 0.7708. . .

0.80 0.82 0.80 0.83 1.36 0.7463. . .

0.82 0.86 0.82 0.827 1.36 0.7243. . .

0.86 ∞ 0.86 0.86 1.44 0.5110. . .

We see that for each range of λ1 we obtain an upper bound for
(7.42) which is < 0.99. Since the expression is decreasing in M , this holds
for all M ≥ 7.8. We have therefore established Proposition 3.5 by taking
ε = 10−3.
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