On sums of two \(k \)th powers:
a mean-square asymptotics over short intervals

by

MANFRED KÜHLEITNER and WERNER GEORG NOWAK (Wien)

1. Introduction. For \(k \geq 2 \) a fixed integer, define the arithmetic function \(r_k(n) \) as the number of ways to write \(n \in \mathbb{N}^* \) as a sum of two \(k \)th powers of absolute values of integers, i.e.,
\[
 r_k(n) = \# \{(u_1, u_2) \in \mathbb{Z}^2 : |u_1|^k + |u_2|^k = n \}.
\]
To describe its average behaviour, one is interested in asymptotic results about the Dirichlet summatory function
\[
 R_k(u) = \sum_{1 \leq n \leq u^k} r_k(n),
\]
where \(u \) is a large real variable \(^1\).

For \(k = 2 \), the classic Gaussian circle problem, a detailed historical exposition can be found in the monograph of Krätzel [10]. The sharpest published results to date \(^2\) read
\[
\begin{align*}
(1.1) \quad & R_2(u) = \pi u^2 + P_2(u), \\
(1.2) \quad & P_2(u) = O(u^{46/73} (\log u)^{315/146}),
\end{align*}
\]
and \(^3\)
\[
\begin{align*}
(1.3) \quad & P_2(u) = \Omega_- (u^{1/2} (\log u)^{1/4} (\log \log u)^{1/4}) \times \exp(-c\sqrt{\log \log \log u}) \quad (c > 0), \\
(1.4) \quad & P_2(u) = \Omega_+ (u^{1/2} \exp(c' (\log \log u)^{1/4} (\log \log \log u)^{-3/4}) \quad (c' > 0).
\end{align*}
\]

\(^1\) Note that, in part of the relevant literature, \(t = u^2 \) is used as the basic variable.

\(^2\) Actually, M. Huxley has meanwhile improved further this upper bound, essentially replacing the exponent \(46/73 = 0.6301\ldots \) by \(131/208 = 0.6298\ldots \). The author is indebted to Professor Huxley for sending him a copy of his unpublished manuscript.

\(^3\) We recall that \(F_1(u) = \Omega_+(F_2(u)) \) means that \(\limsup_{u \to \infty} (\ast F_1(u)/F_2(u)) > 0 \) where \(\ast \) is either + or −, and \(F_2(u) \) is positive for \(u \) sufficiently large.
While (1.2) is due to Huxley [5], [7], (1.3) has been established by Hafner [4], and (1.4) by Corrádi & Kátaï [2]. Most experts conjecture that
\[
\inf\{\theta \in \mathbb{R} : P_2(u) \ll \theta u^\theta\} = 1/2.
\]
This hypothesis is supported by the mean-square asymptotics
\[
\int_0^T (P_2(u))^2 \, du = C_2 T^2 + O(T (\log T)^2), \quad C_2 = \frac{1}{4\pi^2} \sum_{n=1}^{\infty} \frac{(r_2(n))^2}{n^{3/2}},
\]
which in this precise form is due to Kátaï [8].

The results (1.3), (1.4), (1.6) were obtained by means of the fact that the generating function (Dirichlet series) of \(r_2(n) \) is the Epstein zeta-function of the quadratic form \(u_1^2 + u_2^2 \), which satisfies a well known functional equation and thus opens the possibility of an approach via complex integration.

For the general case \(k \geq 3 \), quite different methods must be employed. Investigations in this direction have first been undertaken by van der Corput [18] and Krätzel [9]. In Krätzel’s textbook [10], an enlightening exposition of the history of the problem including all results until 1988 can be found. It turns out that
\[
R_k(u) = \frac{2\Gamma^2(1/k)}{k \Gamma(2/k)} u^2 + B_k \Phi_k(u) u^{1-1/k} + P_k(u)
\]
where
\[
B_k = 2^{3-1/k} \pi^{-1-1/k} k^{1/k} \Gamma \left(1 + \frac{1}{k} \right), \quad \Phi_k(u) = \sum_{n=1}^{\infty} n^{-1-1/k} \sin \left(2\pi nu - \frac{\pi}{2k} \right),
\]
and the new remainder term \(P_k(u) \) can essentially be bounded by (1.2), i.e.,
\[
P_k(u) = O(u^{46/73} (\log u)^{315/146}).
\]
This was proved by Kuba [11], on the basis of Huxley’s method [5], [7].

For lower bounds, it was shown by the second named author [15] that, for any fixed \(k \geq 3 \),
\[
P_k(u) = \Omega_-(u^{1/2} (\log u)^{1/4}),
\]
and by Kühleitner, Nowak, Schoißengeier & Wooley [13] that
\[
P_3(u) = \Omega_+(u^{1/2} (\log \log u)^{1/4}).
\]
The analogy between these results and those for the case \(k = 2 \) might suggest extending the classic conjecture (1.5) to arbitrary \(k \geq 2 \). In fact, this is true again in mean-square: According to Nowak [14],
\[
\frac{1}{T} \int_0^T (P_k(u))^2 \, du \ll T
\]
for any fixed $k \geq 3$ and T large. Kühleitner [12] refined this result, proving an asymptotic formula

$$\frac{1}{T} \int_0^T (P_k(u))^2 \, du = C_k \, T + O(T^{1 - \varepsilon_0(k)}),$$

with explicitly given $\varepsilon_0(k) > 0$ and

$$C_k := \frac{4}{\pi^2(k-1)} \sum_{(h_1, m_1, h_2, m_2) \in \mathbb{Z}^4} (h_1 m_1 h_2 m_2)^{-1 + 1/2} \|(h_1, m_1)\|_q \|h_2, m_2\|_q.$$

Here $q = k/(k-1)$ and $\|(h, m)\|_q = (|h|^q + |m|^q)^{1/q}$ denotes the q-norm in \mathbb{R}^2.

Inspired by a work of Huxley [6] on the lattice point discrepancy of a convex disc, the second named author recently [16] proved a localized form of (1.11), with only a logarithmic loss of accuracy, namely

$$\int_{T-1/2}^{T+1/2} (P_k(u))^2 \, du \ll T \log T.$$

In view of (1.9), this result seems pretty close to what might be possible. Nevertheless, our aim in the present article is to shed some more light on this short-interval behaviour of this remainder term. It will turn out that the bound in (1.14) (even refined by a factor $\log T$) remains valid for an interval up to a length of order $\log T$. In fact, it will be shown that, for any fixed $c_1 > 0$,

$$\int_{T-c_1 \log T}^{T+c_1 \log T} (P_k(u))^2 \, du \ll T \log T.$$

Furthermore, we shall see that, as soon as the interval becomes a little longer, we can observe essentially the same asymptotic behaviour as stated in (1.12).

Theorem. Let $k \geq 3$ be a fixed integer, T a large real variable, and $T \mapsto \Lambda = \Lambda(T)$ an increasing function such that $\Lambda(T) \leq \frac{1}{2} T$ throughout and

$$\lim_{T \to \infty} \frac{\log T}{\Lambda(T)} = 0.$$

Then, as $T \to \infty$,

$$\int_{T-A}^{T+A} (P_k(u))^2 \, du \sim 4C_k \, \Lambda T,$$

the constant C_k being defined in (1.13).
2. Two pivotal lemmas

 Lemma 1 (Transition from fractional parts to trigonometric sums according to Vaaler [17]; see also Graham & Kolesnik [3], p. 116). For arbitrary \(w \in \mathbb{R} \) and \(H \in \mathbb{N}^* \), let

\[
\psi(w) = w - [w] - \frac{1}{2}, \quad \psi^*_H(w) = -\frac{1}{\pi} \sum_{h=1}^{H} \frac{\sin(2\pi hw)}{h} \tau\left(\frac{h}{H + 1}\right),
\]

where

\[
\tau(\xi) = \pi \xi (1 - \xi) \cot(\pi \xi) + \xi \quad \text{for } 0 < \xi < 1.
\]

Then

\[
|\psi(w) - \psi^*_H(w)| \leq \frac{1}{H + 1} \sum_{h=1}^{H} \left(1 - \frac{h}{H + 1}\right) \cos(2\pi hw) + \frac{1}{2H + 2}.
\]

Lemma 2. Let \(k \geq 3 \) be a positive integer, and \(q = k/(k-1) \). Then, for \(M \to \infty \),

\[
S(M) := \sum_{(h_1, m_1, h_2, m_2) \in \mathbb{Z}_+^4 \atop |(h_1, m_1)|_q = |(h_2, m_2)|_q \leq M} (h_1 h_2 m_1 m_2)^{-1+q/2} |(h_1, m_1)|_q^{1-2q} \ll M^{-1/2}.
\]

Proof. For positive integers \(h_1, h_2, m_1, m_2 \) the condition \(|(h_1, m_1)|_q = |(h_2, m_2)|_q \) is satisfied if and only if either \((h_1, m_1) = (h_2, m_2) \) or \(h_1, h_2, m_1, m_2 \) all have the same maximal \((k-1)\)-free divisor \(r \), say, i.e.,

\[
h_1 = a^{k-1} r, \quad m_1 = b^{k-1} r, \quad h_2 = c^{k-1} r, \quad m_2 = d^{k-1} r,
\]

with \(a, b, c, d \in \mathbb{N}^* \) satisfying \(a^k + b^k = c^k + d^k \). This follows from the fact that, by a classic theorem of Besicovitch [1], the \((k-1)\)th roots of distinct \((k-1)\)-free positive integers are linearly independent over the rationals. Therefore, the sum in question is

\[
\ll R_1(M) + R_2(M)
\]

with

\[
R_1(M) = \sum_{\substack{h_1, m_1=1 \atop m_1 \gg M}}^{\infty} (h_1 m_1)^{-2+q}(h_1 m_1)^{-q+1/2},
\]

\[
R_2(M) = \sum_{\substack{a \leq b, c \leq d \leq d \leq r \gg M \atop b^{k-1} r, d^{k-1} r \gg M}} \frac{(abcd)^{(k-1)(-1+q/2)}}{r^{-3}((a^{k-1}, b^{k-1})|_q (c^{k-1}, d^{k-1})|_q)^{-q+1/2}},
\]

since

\[
|(h_1, m_1)|_q = r|(a^{k-1}, b^{k-1})|_q \quad \text{and} \quad |(h_2, m_2)|_q = r|(c^{k-1}, d^{k-1})|_q.
\]
Clearly,

\[R_1(M) \ll \sum_{m_1 \gg M} m_1^{-3/2} \ll M^{-1/2}. \]

We estimate the contribution of \(R_2(M) \) in the cases \(k = 3, 4, \) resp. \(k \geq 5 \) in two different ways. In the first case we use

\[
\frac{1}{|(u^{k-1}, v^{k-1})|_q^{q-1/2}} \ll (uv)^{-\frac{1}{2}(k-1)(q-1/2)},
\]

to conclude that

\[
R_2(M) \ll \sum_{b^{k-1}r, d^{k-1}r \gg M} \sum_{a, c=1}^{\infty} (abcd)^{(k-1)(-1+q/2)} r^{-3} (abcd)^{-\frac{1}{2}(k-1)(q-1/2)}
\]

\[
\ll \sum_{r=1}^{\infty} r^{-3} \left(\sum_{b \gg (M/r)^{1/(k-1)}} b^{-\frac{3}{4}(k-1)} \right)^2 \ll \sum_{r=1}^{\infty} r^{-3} \left(\frac{M}{r} \right)^{2/(k-1)-3/2}
\]

\[
\ll M^{-1/2}.
\]

In the case \(k \geq 5 \) we use the fact that

\[
\sum_{a, c=1}^{\infty} (ac)^{(k-1)(-1+q/2)} \ll 1,
\]

to infer

\[
R_2(M) \ll \sum_{b^{k-1}r, d^{k-1}r \gg M} (bd)^{(k-1)(-1+q/2-q+1/2)} r^{-3}
\]

\[
\ll \sum_{r=1}^{\infty} r^{-3} \left(\sum_{b \gg (M/r)^{1/(k-1)}} b^{-k+1/2} \right)^2
\]

\[
\ll \sum_{r=1}^{\infty} r^{-3} \left(\frac{M}{r} \right)^{(3-2k)/(k-1)} \ll M^{-7/4}.
\]

3. Proof of the Theorem.

Throughout what follows, let \(T \) and \(M \) be large real parameters, independent of each other. All constants implied in the symbols \(O, \ll, \) or \(\asymp \) do not depend on \(M \) and \(T, \) but may depend on \(k. \)

Suppose that \(u \in [T - \Lambda, T + \Lambda] \subseteq \left[\frac{1}{2} T, \frac{3}{2} T \right], \) thus \(u \asymp T \) as \(T \to \infty. \)

For any complex-valued function \(f : u \mapsto f(u) \) which is square-integrable on \([T - \Lambda, T + \Lambda],\) we shall write

\[
Q(f) = Q_{T,\Lambda}(f) := \int_{T - \Lambda}^{T + \Lambda} |f(u)|^2 du.
\]
By Cauchy’s inequality, for arbitrary $f_1, f_2 \in L^2[T - A, T + A],
(3.2) \quad Q(f_1 + f_2) \leq 2(Q(f_1) + Q(f_2)),$
which will be used frequently in what follows.

We start from formulae (3.57), (3.58) (and the asymptotic expansion below) of Kratzel [10], p. 148. In our notation, this reads

\begin{equation}
(3.3) \quad P_k(u) = -8 \sum_{2^{-1/k}u < n \leq u} \psi((u^k - n^k)^{1/k}) + O(1),
\end{equation}

with $\psi(w) = w - [w] - 1/2$ throughout. We define q by $1/k + 1/q = 1$, i.e., $q = k/(k - 1)$, and thus $1 < q \leq 3/2$. We break up the range of summation into subintervals $N_j(u) = [N_j, N_{j+1}]$, where $N_j = u(1 + 2^{-j}q)^{-1/k}$, $j = 0, 1, \ldots, J$, with J minimal such that $u - N_j < 1$ for all $u \in [T - A, T + A]$. It is clear that $J \ll \log T$. Furthermore, the length of any $N_j(u)$ is equal to $N_{j+1} - N_j \approx 2^{-j}qT$. By means of Lemma 1, ψ will be approximated by ψ^*_H, with $H := [T]$. Thus overall $P_k(u)$ is approximated by

\begin{equation}
(3.4) \quad P_k^*(u) := -8 \sum_{j=0}^{J} \sum_{n \in N_j(u)} \psi^*_H((u^k - n^k)^{1/k}).
\end{equation}

By the definition in Lemma 1,

\begin{equation}
(3.5) \quad \sum_{n \in N_j(u)} \psi^*_H((u^k - n^k)^{1/k})
= -\frac{1}{\pi} \sum_{1 \leq h \leq T} \frac{1}{h} \left(\frac{h}{H + 1} \right) \sum_{n \in N_j(u)} \sin(2\pi h(u^k - n^k)^{1/k}).
\end{equation}

The innermost sum on the right hand side is now subject to a van der Corput transformation (“B-step”). See Kühleitner [12], Lemmas 2 and 3, for details. In particular, we use formula (3.5) from [12] which reads (with u instead of \sqrt{t}, and $e(z) = e^{2\pi iz}$ as usual)

\begin{equation}
(3.6) \quad \sum_{n \in N_j(u)} e(-h(u^k - n^k)^{1/k})
= \frac{e(1/8)}{\sqrt{k-1}} hu^{1/2} \sum_{m \in M_j(h)} (hm)^{-1+q/2} |(h, m)|^{-q+1/2} e(-u|\langle h, m \rangle_q)
+ O(j + \log(1 + h)),
\end{equation}

\footnote{The idea of this special choice of subdivision points is that $\frac{ddw}{dw}((u^k - w^k)^{1/k})$ assumes integer values at $w = N_j$. This is useful for the van der Corput transformation of the exponential sums involved.}
Sums of two kth powers

where $\mathcal{M}_j(h) = [2^j h, 2^{j+1} h]$, $|(h, m)|_q = (|h|^q + |m|^q)^{1/q}$ denotes the q-norm in \mathbb{R}^2, and \sum'' means that the terms corresponding to $m = 2^j h$ and $m = 2^{j+1} h$ get a factor $1/2$.

Using the imaginary part of (3.6) in (3.5), we obtain

$$\sum_{n \in \mathcal{N}_j(u)} \psi^*_H((u^k - n^k)^{1/k})$$

$$= \frac{u^{1/2}}{\sqrt{k-1}} \sum_{1 \leq h \leq T} \sum''_{m \in \mathcal{M}_j(h)} \frac{(hm)^{-1+q/2}}{|(h, m)|_q^{q-1/2}} \sin(\pi/4 - 2\pi u|(h, m)|_q) \quad + O(\log T)$$

with

$$\gamma_0(h, T) := \frac{1}{\pi^2} \left(\frac{h}{|T| + 1} \right).$$

In fact, the main contribution to our mean-square asymptotics will come from a truncation of the double sum here, namely (5)

$$\sum_j(M, u) := \frac{u^{1/2}}{\sqrt{k-1}} \sum_{1 \leq h \leq T} \sum''_{m \in \mathcal{M}_j(h)} \frac{(hm)^{-1+q/2}}{|(h, m)|_q^{q-1/2}} \sin(\pi/4 - 2\pi u|(h, m)|_q).$$

What about the errors we commit by these approximations? First of all, evidently,

$$\sum_{n \in \mathcal{N}_j(u)} \psi^*_H((u^k - n^k)^{1/k}) - \sum_j(M, u)$$

$$\ll T^{1/2} \left| \sum_{1 \leq h \leq T} \sum''_{m \in \mathcal{M}_j(h)} \gamma_1(h, m, T) \frac{(hm)^{-1+q/2}}{|(h, m)|_q^{q-1/2}} \cos(2\pi u|(h, m)|_q) \right| + \log T$$

with

$$\gamma_1(h, m, T) := \begin{cases} \gamma_0(h, T) & \text{if } |(h, m)|_q > M, \\ 0 & \text{else.} \end{cases}$$

Furthermore, by Lemma 1,

$$\sum_{n \in \mathcal{N}_j(u)} (\psi((u^k - n^k)^{1/k}) - \psi^*_H((u^k - n^k)^{1/k}))$$

$$\ll \sum_{1 \leq h \leq T} \frac{1 - h/([T] + 1)}{[T] + 1} \sum_{n \in \mathcal{N}_j(u)} \cos(2\pi h(u^k - n^k)^{1/k}) + 2^{-jq}.$$
Applying again (3.6) to the cosine sum here, we see that this is

\[T_{10} = 2X_1 h_t \]

\[X_0 M_j \]

\[m^2 \]

\[(h_1)^{1+q/2} \]

\[e(u(h,m)|q) \]

\[+ 2^{-jq} \]

with

\[\gamma_2(h,m,T) := \frac{(1 - h/([T] + 1))h}{[T] + 1}. \]

The great similarity of the main parts of the expressions (3.9) and (3.10) enables us to estimate their mean-square by essentially the same calculation. Let

\[R_j(u) := \sum_{1 \leq h \leq T} \sum_{m \in M_j(h)}'' \gamma(h,m,T) \frac{(hm)^{1+q/2}}{|(h,m)|^{q-1/2}} e(u(h,m)|q) \]

where \(\gamma \) is either of \(\gamma_1, \gamma_2 \).

We want to bound \(Q(R_j) \). To this end, we employ an ingenious trick due to Huxley [6] which involves the Fejér kernel

\[\varphi(w) := \left(\frac{\sin(\pi w)}{\pi w} \right)^2. \]

By Jordan’s inequality, \(\varphi(w) \geq 4/\pi^2 \) for \(|w| \leq 1/2 \), and the Fourier transform has the simple shape

\[\hat{\varphi}(y) = \int_{\mathbb{R}} \varphi(w)e(yw) \, dw = \max(0, 1 - |y|). \]

Therefore,

\[Q(R_j) \]

\[= 2A \int_{-1/2}^{1/2} |R_j(T + 2A w)|^2 \, dw \leq \frac{\pi^2}{2} A \int_{\mathbb{R}} \varphi(w)|R_j(T + 2A w)|^2 \, dw \]

\[= \frac{\pi^2}{2} A \sum_{1 \leq h_1, h_2 \leq T} \sum_{m_1 \in M_j(h_1)}'' \gamma(h_1,m_1,T) \gamma(h_2,m_2,T) \frac{(h_1 m_1 h_2 m_2)^{-1+q/2}}{|(h_1,m_1)|^q |(h_2,m_2)|^q}^{q-1/2} \]

\[\times e(-T(|(h_1,m_1)| - |(h_2,m_2)|)) \]

\[\times \int_{\mathbb{R}} \varphi(w)e(-2A w(|(h_1,m_1)| - |(h_2,m_2)|)) \, dw \]

\[\ll A \sum_{1 \leq h_1, h_2 \leq T} \sum_{m_1 \in M_j(h_1)}'' \frac{(h_1 m_1 h_2 m_2)^{-1+q/2}}{|(h_1,m_1)|^q |(h_2,m_2)|^q}^{q-1/2} \]

\[\times \max(0, 1 - 2A |(|(h_1,m_1)| - |(h_2,m_2)|)|). \]
We recall that \(m \in \mathcal{M}_j(h) \) implies that \(|(h, m)|_q \asymp m \asymp 2^j h\). Furthermore, for a term of the last multiple sum to be nonzero it is necessary that \(|(h_1, m_1)|_q - |(h_2, m_2)|_q| < (2A)^{-1}\), hence \(h_1 \asymp h_2 \) and \(m_1 \asymp m_2 \). Therefore, the last expression in (3.11) is

\[
(3.12) \quad \ll A 2^{-j(q+1)} \sum_{1 \leq h_1 \leq T} h_1^{-3} \sum_{m_1 \in \mathcal{M}_j(h_1)} \gamma(h_1, m_1, T) \times \sum_{(h_2, m_2) \in \mathbb{Z}^2_+} \gamma(h_2, m_2, T) \quad \text{where} \quad |(h_1, m_1)|_q - |(h_2, m_2)|_q < (2A)^{-1}
\]

We now have to distinguish if we are dealing with \(\gamma_1 \) or \(\gamma_2 \), recalling the respective definitions: For \(\gamma_1(h, m, T) \), we know that this is bounded and vanishes for \(|(h, m)|_q \leq M\). Further, denote by \(A^*_q(U) \) the number of lattice points \(v \in \mathbb{Z}^2 \) with \(|v|_q \leq U\); then it is known that

\[
(3.13) \quad A^*_q(U) = \frac{2\Gamma^2(1/q)}{q\Gamma(2/q)} U^2 + O(U^{2/3})
\]

for any fixed \(q \) with \(1 < q < 2 \). This asymptotic formula is contained in Theorem 3.6 of Krätzel [10], p. 116. From this it is immediate that, for any fixed \((h_1, m_1)\),

\[
(3.14) \quad \sum_{(h_2, m_2) \in \mathbb{Z}^2} 1 \ll \frac{|(h_1, m_1)|_q}{A} + |(h_1, m_1)|_q^{2/3} \quad \text{for} \quad |(h_1, m_1)|_q - |(h_2, m_2)|_q < (2A)^{-1}
\]

Thus, for \(\gamma = \gamma_1 \), the expression in (3.12) is

\[
(3.15) \quad \ll A 2^{-j} \sum_{1 \leq h_1 \leq T} h_1^{-2} \left(\frac{2j h_1}{A} + (2j h_1)^{2/3} \right)
\]

\[
\ll 2^{-j(q-1)} \log T + A M^{-1/6} 2^{-j(q-5/6)} \sum_{1 \leq h_1 \leq T} h_1^{-7/6}
\]

\[
\ll 2^{-j(q-1)} (\log T + A M^{-1/6}).
\]

For \(\gamma = \gamma_2 \), we may use that \(\gamma_2(h, m, T) \ll h T^{-1} \). Thus (3.12) is now, again by (3.14),

\[
(3.16) \quad \ll A 2^{-j(q+1)} T^{-2} \sum_{1 \leq h_1 \leq T} h_1^{-1} \sum_{m_1 \in \mathcal{M}_j(h_1)} \left(\frac{|(h_1, m_1)|_q}{A} + |(h_1, m_1)|_q^{2/3} \right)
\]

\[
\ll A 2^{-j(q+1)} T^{-2} \sum_{1 \leq h_1 \leq T} \left(\frac{2^j h_1}{A} + 2^{5j/3} h_1^{2/3} \right)
\]

\[
\ll 2^{-j(q-1)} (1 + A T^{-1/3}).
\]
Let us summarize what we have proved so far: The remainder term in question can be represented as

\[P_k(u) = \sum_{j=0}^{J} (-8\Sigma_j(M, u) + \Delta_j(M, u)), \]

where \(\Sigma_j(M, u) \) has been defined in (3.8) and \(\Delta_j(M, u) \) satisfies (in view of (3.9), (3.10), (3.15), (3.16))

\[Q(\Delta_j(M, u)) \ll 2^{-j(q-1)}(T \log T + \Lambda T^{1/6} + \Lambda T^{2/3}) + A(\log T)^2. \]

To proceed further, let \(\delta \) be a positive constant, less than \(\frac{1}{2} (q-1) \) and small compared to \((\log T)/J \). Then, by Cauchy’s inequality,

\[
Q \left(\sum_{j=0}^{J} \Delta_j(M, u) \right) \leq \int_{T-\Lambda}^{T+\Lambda} \sum_{j=0}^{J} 2^{-j\delta} \sum_{j=0}^{J} 2^{j\delta} \left| \Delta_j(M, u) \right|^2 \, du
\]

\[
\ll \sum_{j=0}^{J} 2^{j\delta} Q(\Delta_j(M, u)) \ll T \log T + \Lambda T^{1/6} + \Lambda T^{2/3}. \]

Adding up the main terms \(\Sigma_j(M, u) \), we arrive at:

Proposition. Uniformly in \(T-\Lambda \leq u \leq T+\Lambda \),

\[P_k(u) = \Sigma(M, u) + \Delta(M, u), \]

with

\[Q(\Delta(M, u)) \ll T \log T + \Lambda T^{1/6} + \Lambda T^{2/3} \]

and

\[
\Sigma(M, u) := -8u^{1/2} \pi \sqrt{k-1} \sum_{1 \leq h \leq T} \tau \left(\frac{h}{\lceil T \rceil + 1} \right)
\]

\[
\times \sum_{|\langle h, m \rangle_q| \leq M} \sum_{h \leq m \leq h2^{J+1}} \frac{(hm)^{-1+q/2}}{|\langle h, m \rangle_q|^{-1/2}} \cos(\pi/4 + 2\pi u |\langle h, m \rangle_q|),
\]

where \(\sum' \) means that the terms corresponding to \(m = h \) and \(m = h2^{J+1} \) get a factor \(1/2 \).

Next we infer from the definition in Lemma 1 that \(\tau(w) = 1 + O(w^2) \). Therefore, defining

\[
\Sigma^{(0)}(M, u)
\]

\[
:= -8u^{1/2} \pi \sqrt{k-1} \sum_{1 \leq h \leq T} \sum_{|\langle h, m \rangle_q| \leq M} \sum_{h \leq m \leq h2^{J+1}} \frac{(hm)^{-1+q/2}}{|\langle h, m \rangle_q|^{-1/2}} \cos(\pi/4 + 2\pi u |\langle h, m \rangle_q|),
\]
it is immediate that

\[(3.18) \quad \Sigma(M, u) = \Sigma^{(0)}(M, u) + O(K_1(M)T^{-3/2}), \]

where \(K_1(M), K_2(M), \ldots \) will denote appropriate bounds depending on \(M \) (but not on \(T \)). If we keep \(M \) fixed and make \(T \) (and thus \(u \)) large, the summation conditions \(h \leq T \) and \(m \leq h^{2f+1} \) ultimately become meaningless, and \(\Sigma^{(0)}(M, u) \) becomes equal to

\[\Sigma^{(1)}(M, u) := \frac{-4u^{1/2}}{\pi \sqrt{k - 1}} \sum_{\substack{|(h,m)|_q \leq M \\backslash (h,m) \in \mathbb{N}^*}} \frac{(hm)^{-1+q/2}}{|(h,m)|_q^{q-1/2}} \cos(\pi/4 + 2\pi u|(h,m)|_q). \]

We now square out \((\Sigma^{(1)}(M, u))^2\), using the elementary formula

\[\cos A \cos B = \frac{1}{2}(\cos(A - B) + \cos(A + B)), \]

and integrate over \(u \in [T - A, T + A] \). The main contribution comes from the diagonal terms, i.e. those with \(|(h_1,m_1)|_q = |(h_2,m_2)|_q\), and reads altogether

\[\frac{16}{\pi^2(k - 1)}AT \sum_{\substack{|(h_1,m_1)|_q = |(h_2,m_2)|_q \leq M \\backslash h_1,m_1,h_2,m_2 \in \mathbb{N}^*}} \frac{(h_1m_1h_2m_2)^{-1+q/2}}{|(h_1,m_1)|_q^{2q-1}}. \]

By Lemma 2 and the definition of the constant \(C_k \) in (1.13), this is equal to

\[4AT(C_k + O(M^{-1/2})). \]

All the other terms are pretty small: In fact,

\[T+\lambda \int_{T-\lambda} \cos(2\pi u|(h_1,m_1)|_q \pm |(h_2,m_2)|_q) \, du \]

\[\ll \frac{T}{|(h_1,m_1)|_q \pm |(h_2,m_2)|_q}, \]

which contributes altogether \(\ll K_2(M)T \) to \(Q(\Sigma^{(1)}(M, u)) \). Going back to (3.18) and to the Proposition, and applying Cauchy’s inequality one more time, we end up with

\[(3.19) \quad Q(P_k) = 4C_kAT + O(K_3(M)T) + O(T(A \log T)^{1/2}) \]

\[+ O(AM^{-1/12}) + O(AT^{5/6}). \]

Therefore, for any fixed \(M \),
\[\limsup_{T \to \infty} \left| \frac{1}{AT} Q(P_k) - 4C_k \right| \ll M^{-1/12}, \]

if we recall our condition (1.16). Since \(M \) can be chosen arbitrarily large, the proof of our Theorem is thereby complete.

We finally establish (1.15). To this end, it suffices to choose \(M = 1/2 \) in the above argument; then all sums over \(0 < |(h, m)|_q \leq M \) are empty, and (3.19) yields what we claimed, since now \(A \asymp \log T \).

References

Institut für Mathematik und angewandte Statistik
Universität für Bodenkultur
Peter Jordan-Straße 82
A-1190 Wien, Austria
E-mail: kleitner@edv1.boku.ac.at
nowak@mail.boku.ac.at
Web: http://www.boku.ac.at/math/nth.html

Received on 10.8.2000