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Explicit estimates on the summatory functions of the
Möbius function with coprimality restrictions

by

Olivier Ramaré (Lille)

1. Introduction. In explicit analytic number theory, one very often
needs to evaluate the average of a multiplicative function, say f . The usual
strategy is to compare this function to a more usual model f0, as in [12,
Lemma 3.1]. This process is also well detailed in [3]. When the model is
f0 = 1, the situation is readily cleared out; it is also well studied when
this model is the divisor function [2, Corollary 2.2]. We signal here that the
case of the characteristic function of the squarefree numbers is specifically
handled in [5].

The next problem is to use the Möbius function as a model. In this case
the necessary material can be found in [13], though of course the saving is
much smaller and may be insufficient: when the model is 1 or the divisor
function, or the characteristic function of the squarefree integers, the saving
is a power of the size of the variable, while now it is only a logarithm (or
the square of one according to whether one says that the trivial estimate for∑

d≤D µ(d)/d is 1 or logD). One of the consequences is that one has to be
more careful, and thrifty, when it comes to small variations. The variations
we consider here is the addition of a coprimality condition (d, q) = 1, for
some fixed q, on the variable d. Our first aim is thus to show how to get
explicit estimates for the family of functions

(1.1) mq(x) =
∑
n≤x

(n,q)=1

µ(n)/n, m(x) = m1(x)

from explicit estimates concerning solely m(x). The definition of the Liou-
ville function λ(n), appearing in the result below, is recalled in (1.3), while
the auxiliary function `q is defined in (1.4).
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Theorem 1.1. When 1 ≤ q < x, where q is an integer and x a real
number, we have∣∣∣∣ ∑

n≤x
(n,q)=1

µ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

2.4

log(x/q)
,

∣∣∣∣ ∑
n≤x

(n,q)=1

λ(n)

n

∣∣∣∣ ≤ q

ϕ(q)

0.79

log(x/q)
.

Moreover log(x/q)|`q(x)| ≤ 0.155q/ϕ(q) and log(x/q)|mq(x)| ≤ 3
2q/ϕ(q) when

x/q ≥ 3310. We also have log(x/q)|mq(x)| ≤ 7
8q/ϕ(q) when x/q ≥ 9960.

The sole previous estimate on mq(x) seems to be [7, Lemma 10.2], which
bounds |mq(x)| uniformly by 1. The estimate for m(x) that will provide the
initial step comes from [13]:

(1.2) |m(x)| ≤ 0.03/log x (x ≥ X0 = 11 815).

Let us first note that the simplest treatment of this condition via the
Möbius function, i.e. writing

1(d,q)=1 =
∑
δ|q
δ|d

µ(δ),

does not work here. Indeed, we get∑
d≤D

(d,q)=1

µ(d)

d
=
∑
δ|q

µ(δ)
∑
δ|d≤D

µ(d)

d
=
∑
δ|q

µ(δ)2

δ

∑
d≤D/δ
(d,δ)=1

µ(d)

d

and we are back to the initial problem with different parameters. The clas-
sical workaround (used for instance in [10, near (7)] but already known by
Landau) runs as follows: we determine a function gq such that 1(n,q)=1µ(n) =
gq?µ(n), where ? denotes the arithmetic convolution product. The drawback
of this method is that the support of g is not bounded (determining gq by
comparing the Dirichlet series is a simple exercise). So if we write∑

d≤D
(d,q)=1

µ(d)/d =
∑
δ≤D

gq(δ)

δ

∑
d≤D/δ

µ(d)

d
,

we are forced to:

1. use estimates for
∑

d≤D/δ µ(d)/d when D/δ can be small,

2. complete the sum over δ to get a decent result.

Both steps introduce quite a loss when q is not specified. We propose here
a different approach by introducing the Liouville function as an intermedi-
ary. This function λ(n) is the completely multiplicative function that is 1
on the integers that have an even number of prime factors—counted with
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multiplicity—and −1 otherwise. It satisfies

(1.3)
∑
n≥1

λ(n)

ns
=
ζ(2s)

ζ(s)
.

We introduce the family of auxiliary functions

(1.4) `q(x) =
∑
n≤x

(n,q)=1

λ(n)/n, `(x) = `1(x).

Our process runs as follows: we derive bounds for `(x) from bounds on m(x)
and some computations, derive bounds on `q(x) from bounds on `(x), and
finally derive bounds on µq(x) from bounds on `q(x). The theoretical steps
are contained in Lemmas 2.3, 2.5 and 3.2.

We complete this introduction by signalling that [14] contains explicit
estimates with a large range of uniformity for sums of the shape∑

d≤x
(d,r)=1

µ(d)

d1+ε

and for a similar sum but with the summand µ(d) log(x/d)/d1+ε. The path
we followed there is essentially elementary and the saving is smaller.

2. From the Möbius function to the Liouville function

Lemma 2.1. For 2 ≤ x ≤ 906 000 000, we have |`(x)| ≤ 1.347/
√
x.

For 2 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤ 1.41/
√
x.

For 1 ≤ x ≤ 1.1 · 1010, we have |`(x)| ≤
√

2/x.

The computations have been run with PARI/GP (see [11]), speeded up
by using gp2c as described for instance in [2]. We mention here that [6]
proposes an algorithm to compute isolated values of M(x). This can most
probably be adapted to compute isolated values of `(x), but does not seem
to offer any improvement for bounding |`(x)| on a large range. In [4], the
authors show that

`(x) ≥ 0 (x < 72 185 376 951 205)
and that

`(x) ≥ −2.0757642 · 10−9 (x ≤ 75 000 000 000 000).

This takes care of the lower bound for `(x). The computations we ran are
much less demanding in time and algorithm, but rely on a large enough
sieve-kind table to compute the values of λ(n) on some very large range.
Harald Helfgott (indirectly) pointed out to me that the RAM-memory can
be very large nowadays, allowing one to precompute large quantities to which
one has almost immediate access. Here is a simplified version of the main
loop:
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{getbounds(zmin:small, valini:real, zmax:small) =

my(maxi:real, valuesliouville:vecsmall, gotit:vecsmall,

valuel:real, bound:small, pa:small);

/* Precomputing lambda(n): */

valuesliouville = vectorsmall(zmax-zmin+1, m, 1);

gotit = vectorsmall(zmax-zmin+1, m, 1);

forprime (p:small = 2, floor(sqrt(zmax+0.0)),

bound = floor(log(zmax+0.0)/log(p+0.0));

pa = 1;

for(a:small = 1, bound,

pa *= p;

for(k:small = 1, floor((zmax+0.0)/pa),

if(k*pa >= zmin,

valuesliouville[k*pa-zmin+1] *= -1;

gotit[k*pa-zmin+1] *= p,))));

/* Correction in case of a large prime factor: */

for(n:small = zmin, zmax,

if(gotit[n-zmin+1] < n,

valuesliouville[n-zmin+1] *= -1,));

valuel = (valini + 0.0) + valuesliouville[1]/zmin;

maxi = max( valini*sqrt(zmin+0.0), abs(valuesl*sqrt(zmin+1.0)));

/* Main loop: */

for(n:small = zmin+1, zmax,

valuel += valuesliouville[n-zmin+1]/n;

maxi = max(maxi, abs(valuel)*sqrt(n+1.0)));

return([maxi, valuel]);

}

We used this loop to compute our maximum on intervals of length 2 ·107.
The main function aggregates these results by making the interval vary.
The computations took about half a day on a 64-bit fast desktop with 8G
of RAM. In the actual script, we also checked that the computed value of
`(x) is non-negative in this range. Going farther would improve on the final
constants, but only when x/q is large. We compared |`(x)| with 1/

√
x, and

this seems correct for small values, but [9] and [8] suggest that the maximal
order is larger.

Lemma 2.2. The function

T (y) : y 7→ log y

y

y�
√
X0

dv

log v

satisfies T (y) ≤ 1.119 for y ≥ 105.
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Proof. Repeated integration by parts shows that

T (y) =
log y

y

(
y

log y
−
√
X0

log
√
X0

+
y

(log y)2
−

√
X0

(log
√
X0)2

+ 2

y�
√
X0

dv

(log v)3

)

≤ log y

y

(
y

log y
−
√
X0

log
√
X0

+
y

(log y)2
−

√
X0

(log
√
X0)2

)
+

2T (y)

(log
√
X0)2

,

from which we deduce that

T (y) ≤ 1.1001 ·
(

1 +
1

log y

)
.

This shows that T (y) ≤ 1.113 when y ≥ 1040. We then check numerically
that the function T is increasing and then decreasing, with a maximum
around 12478.8 with value 1.118 598 +O∗(10−6). But this is only an obser-
vation, since the computer gives only a sample of values. Since the derivative
of T can easily be bounded, we obtain the claimed upper bound. The reader
may also consult [1] where a similar process is fully detailed.

The following lemma is a simple exercise:

Lemma 2.3. We have

(2.1) `q(x) =
∑
u2≤x

(u,q)=1

mq(x/u
2)/u2.

We shall use it only when q = 1, but it is equally easy to state it in
general.

Lemma 2.4. For x > 1, we have |`(x)| ≤ 0.79/log x.

For x ≥ 3310, we have |`(x)| ≤ 0.155/log x.

For x ≥ 8918, we have |`(x)| ≤ 0.099/log x.

Proof. We appeal to Lemma 2.3 (with q = 1) and separate the sum
according to u ≤ U or u > U where x/U2 ≥ X0. When u ≤ U we apply
(1.2), in the other case we use the fact that |m(x)| ≤ 1 to obtain

|`(x)| ≤ 0.03
∑
u≤U

1

u2 log(x/u2)
+

1 + U−1

U

With f(t) = 1/(t2 log(x/t2)), we check that

f ′(t) = − 2

t3 log(x/t2)
+

2

t3 log2(x/t2)
.

This quantity is negative for 1 ≤ t ≤ U , since then x/t2 ≥ x/U2 ≥ X0 > e.
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We thus have∑
u≤U

1

u2 log(x/u2)
≤ f(1) +

U�

1

f(t) dt =
1

log x
+

U�

1

dt

t2 log(x/t2)
.

Changing variables we get∑
u≤U

1

u2 log(x/u2)
≤ 1

log x
+

1√
x

√
x�

√
x/U2

dv

2 log v
.

It follows that

|`(x)| ≤ 0.03

log x
+

0.03√
x

√
x�

√
X0

dv

2 log v
+

1 +
√
X0/x√

x/X0

.

We apply Lemma 2.2 at this level. Hence, when x ≥ 1010,

|`(x)| ≤ 0.03

log x
+

0.03 · 1.119

log x
+

1 +
√
X0/x√

x/X0

≤ 0.06357

log x
+

(1 +
√
X0/x) log x√
x/X0

1

log x

≤ 0.089

log x
≤ 0.099

log x
.

We extend it to x ≥ 17 715 via Lemma 2.1, part one and two, and to x ≥ 8918
by direct inspection. This inequality extends to x ≥ 1 by weakening the
constant 0.099 to 0.79. Straightforward computations yield the bound 0.155
when x ≥ 3310.

Adding coprimality conditions. Our tool is provided by a simple
elementary lemma.

Lemma 2.5. We have

`q(x) =
∑
d|q

µ2(d)

d
`
(
x/d

)
.

The second part of Theorem 1.1 follows immediately by combining Lem-
ma 2.5 with Lemma 2.4. Actually, what comes out is the bound

|`q(x)| ≤ 0.79

log(x/q)

∑
d|q

µ2(d)

d
=

0.79

log(x/q)

∏
p|q

p+ 1

p
.

As the function q/ϕ(q) is easier to remember and
∏
p|q

p+1
p ≤ q/ϕ(q), we

simplify the above to

|`q(x)| ≤ 0.79

log(x/q)

q

ϕ(q)
.
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When x/q ≥ 3310, one can replace 0.79 by 0.155, and when x/q ≥ 8918,
by 1/10.

3. Back to the Möbius function with coprimality coditions. Let
us start with a wide ranging estimate:

Lemma 3.1. For every integer q ≥ 1 and every real number x ≥ 1, we
have |`q(x)| ≤ π2/6.

Proof. Apply Lemma 2.3 and [7, Lemma 10.2] (1).

The following lemma is again a simple exercise.

Lemma 3.2. We have

mq(x) =
∑
u2≤x

(u,q)=1

µ(u)

u2
`q
(
x/u2

)
.

Proof of Theorem 1.1. We have to prove several estimates of type

ϕ(q) log(x/q)|mq(x)| ≤ c, x/q ≥ N.
We put x∗ = x/q and y = log x∗ = log(x/q) and divide the proof into two
parts. First we consider the case 1 ≤ y ≤ 8, and later the case y > 8.

Case (A): 1 ≤ y ≤ 8. We appeal to Lemma 3.2. For a real parameter U
such that U2 ≤ x∗ we have

|mq(x)| ≤
∑
u2≤x

µ2(u)

u2
|`q(x/u2)|(3.1)

≤
∑
u≤U

q

ϕ(q)

0.79µ2(u)

u2 log(x/(u2q))
+
π2

6

∑
u>U

µ2(u)

u2

≤ q/ϕ(q)

log(x/q)

(∑
u≤U

0.79µ2(u)

u2
(
1− 2 log u

log(x/q)

) +
π2

6

∑
u>U

µ2(u)

u2
log(x/q)

)
.

This is our starting inequality. We define

(3.2) ρ(U, y) = 0.79
∑
u≤U

µ2(u)

u2
(
1− 2 log u

y

) +
π2

6

∑
u>U

µ2(u)

u2
y.

Note that ρ(U, y) = ρ([U ], y) where [U ] is the integer part of U . For each y we
need to select one U such that ρ(U, y) ≤ 2.4. We choose U = 1 for y ∈ [1, a1];
U = 2 for y ∈ [a1, a2]; U = 3 for y ∈ [a2, a3]; and U = 7 for y ∈ [a3, 8].
Here a1 = 1.8665 . . . is a solution of ρ(1, y) = ρ(2, y); a2 = 2.6774 . . . is a
solution of ρ(2, y) = ρ(3, y); a3 = 4.1237 . . . is a solution of ρ(3, y) = ρ(7, y).

(1) If we were to adapt the proof presented in [7] to the case of λ instead of µ, we
would reach the bound 2 and not π2/6.
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Each of these three functions is a sum of a linear term ay and terms of type
Ay/(y − 2 log n) with A > 0. These are convex for y > 2 log n. In this way
it is very easy to show that ρ(1, y) is convex in [1, a1], ρ(2, y) is convex in
[a1, a2], ρ(3, y) is convex in [a2, a3], and finally ρ(7, y) is convex in [a3, 8]. So,
for example, to show the inequality ρ(3, y) ≤ 2.4 in the interval [a2, a3] we
only have to show that ρ(3, a2), ρ(3, a3) ≤ 2.4. This presents no difficulty.
The maximum value obtained is ρ(2, a2) = 2.38790 . . . with

a2 =
237 + 100π2 log 3

50π2
,

ρ(2, a2) =
237

20π2
+ π2

(
79 log 2

948 + 400π2 log(3/2)
− 5 log 3

12

)
+ log 243.

Case (B): y > 8. We start from Lemma 3.2, from which we deduce a
simpler bound:

|mq(x)| ≤
∑
u2≤x

|`q(x/u2)|/u2,

which we then exploit in the same way as in the proof of Lemma 2.4, re-
placing the bound |m(x)| ≤ 1 by Lemma 3.1. With x = eU2q and x∗ = x/q,
we thus get

|mq(x)| ≤ q

ϕ(q)

0.79

log x∗
+

0.79q

ϕ(q)

√
x∗/e�

1

du

u2 log(x∗/u2)
+
π2
√
e

6

1 +
√
e/x∗√
x∗

≤ q

ϕ(q)

0.79

log x∗
+

0.79q

ϕ(q)
√
x∗

√
x∗�
√
e

dv

2 log v
+
π2
√
e

6

1 +
√
e/x∗√
x∗

≤ c(x∗) q

ϕ(q) log x∗

with

c(x∗) = 0.79 + 0.79
log x∗√
x∗

√
x∗�
√
e

dv

2 log v
+
π2
√
e

6

1 +
√
e/x∗√
x∗

log x∗.

Some numerical work shows that c(x∗) ≤ 2.4 when x∗ ≥ 1862, so our in-
equality is proved for y > log 1862 = 7.52941 . . . . This together with part
(A) proves that ϕ(q) log(x/q)|mq(x)| ≤ 2.4 for 1 ≤ q < x.

When x∗ ≥ 3310, we can single out the term u = 1 in (3.1) and modify
the coefficient of the bound on this term from 0.79 into 0.155; then we treat
the rest of the sum in the same way as before. We get a similar bound with
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c(x∗) replaced by

c1(x
∗) = 0.155 + 0.79

log x∗

4 log(x∗/4)
+ 0.79

log x∗√
x∗

√
x∗/4�
√
e

dv

2 log v

+
π2
√
e

6

1 +
√
e/x∗√
x∗

log x∗.

This yields a maximum of not more than 1.466 < 3/2. When x∗ ≥ 3 · 3310,
we single out the terms of index 1, 2, and 3 similarly. This means replacing
c1(x

∗) by

c2(x
∗) = 0.155 + 0.155

log x∗

4 log(x∗/4)
+ 0.155

log x∗

9 log(x∗/9)
+ 0.79

log x∗

25 log(x∗/25)

+ 0.79
log x∗√
x∗

√
x∗/25�
√
e

dv

2 log v
+
π2
√
e

6

1 +
√
ex∗−1/2√
x∗

log x∗.

This yields a maximum of not more than 0.871 < 7/8. The proof of Theo-
rem 1.1 is complete.
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that pushed me into pulling this note out of its drawer. Special thanks are
also due to the referee for his/her very careful reading: several numerical
errors have been corrected in the process, and the arguments are also now
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Möbius function, Acta Arith. 157 (2013), 365–379.
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