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Rational solutions of certain Diophantine equations
involving norms
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1. Introduction. Let k be a number field and K/k be an algebraic
extension of degree n. There are a lot of papers devoted to the study of
k-rational solutions of Diophantine equations of the form

(1.1) Ni/p(Xawr + -+ Xpwy) = f(1),

where Ny is a full norm form for the extension K/k, {w1,...,wn} is a fixed
basis of the extension and f(t) is a polynomial over k. The main problem here
is whether the Hasse principle, or in other words the local-to-global principle,
holds for the smooth proper model of the hypersurface given by . For
example, if f(t) is constant and K /k is cyclic or of prime degree, then the
local-to-global principle holds for (Hasse).

If n =2 and deg f = 3 or 4 then the variety defined by is called
a Chdtelet surface. The arithmetic of these surfaces is well understood. In
particular, in [2] [3] it is proved that the Brauer-Manin obstruction to the
Hasse principle and weak approximation is the only one. Moreover, the ex-
istence of a k-rational solution implies k-unirationality. These results are
unconditional. However, the most general result in this area is obtained un-
der Schinzel’s hypothesis (H) and says that if K is a cyclic extension of a
number field &k, and f(¢) is a separable polynomial of arbitrary degree, then
the Brauer—Manin obstruction to the Hasse principle and weak approxima-
tion is the only one for the smooth and projective model X of the variety
given by . Moreover, if there is no Brauer—-Manin obstruction to the
Hasse principle then the k-rational points are Zariski dense in X.

Most of the results in this area were proved using algebraic considerations
(via the computation of the Brauer-Manin obstructions) or a combination
of algebraic methods together with analytic techniques (see for example [5]).
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However, only a few papers present constructions which allow producing
new solutions from a given k-rational solution of (L.1)). As mentioned in [5
p. 162], this is usually a rather difficult problem.

We work with a field k of characteristic 0 and an algebraic extension K/k

of degree n. We take w; = o'~ ! for i = 1,...,n, where a € K is chosen in
such a way that K = k(«). We are thus interested in the equation

where to shorten notation we put
Ng/p(X1,-., Xn) = Ngp(X1+ aXo+ - + "1 Xy),

i.e. Ng/p will denote a norm form, and N, the corresponding field norm.
In what follows, by a mon-trivial solution of we mean a solution
(X1,...,Xn,t) which satisfies f(t) # 0. We show that in some cases the
existence of one k-rational solution of implies the existence of in-
finitely many k-rational solutions. This is obtained mainly by construct-
ing a parametric solution of the corresponding equation, or, in a more ge-
ometric language, by constructing a k-rational curve lying on the corre-
sponding algebraic variety. Of course, we are only interested in the exis-
tence of k-rational curves which are not contained in the fiber of the map
P :8r > (X1,...,X,,t) =t € P(k). Our argument is based on a similar ap-
proach to the one proposed by Mestre in a series of papers [0, [7, [§] devoted
to the study of the existence of rational points on (generalized) Chéatelet
surfaces, i.e. surfaces defined by with n = 2 and deg f > 5.

Let us describe the content of the paper in some detail. In Section [2] we
prove that if K/k is a pure cubic extension generated by a root of h(x) =
23 +b € klz], f € k[t] is of degree 4, and the variety Sy defined by
contains a non-trivial k-rational point, then &; is unirational over k. In
particular, the set of k-rational points on Sy is Zariski dense. We prove a
similar result for f € k[t] of degree 5, provided that f satisfies some mild
conditions. In particular, if f is an irreducible polynomial, then Sy is k-
unirational. We also prove that if f € k[t] is monic of degree 6 and Sy contains
a non-trivial k-rational point, and f is not equivalent to a polynomial h € k[t]
satisfying h(t) # h((st), then Sy is k-unirational. This result is particularly
interesting in the light of recent work of Varilly-Alvarado and Viray [9].
Indeed, in the case under consideration the variety Sy is a so called Chdtelet
threefold (in the terminology of [9]). The authors of [9] asked whether the
existence of a k-rational point on Sy implies k-unirationality [9, Problem 6.2].
Our result shows that Sy is k-unirational for a broad class of polynomials.
Moreover, if k is a number field with a real embedding, we prove that for
each polynomial f(t) = agt® + 3.+, ag_it' € k[t] and any given ¢ > 0 there
exists a polynomial g(t) = cot® + Z?:o c6_it" € k[t] which is close to f, i.e.
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la; — ¢i| < efori=0,2,...,6, and such that for any b € k \ k% and a pure
cubic extension K/k generated by a root of h(z) = 2% + b, the variety S, is
unirational over k.

In Section 3} we consider the variety Sy defined by involving a norm
form of an extension K/k generated by a root of an irreducible polynomial
h(z) = 2® + ax + b € k[z]. We prove that if f(t) = 5 + ast* + ayt +ag €
E[t] with ajas # 0 then Sy is unirational over k. Moreover, we make a
remark concerning unirationality of slightly more general varieties defined
by equations of the form F(x,y,z) = f(t), where F is a homogeneous form
of degree 3 and f is a polynomial.

2. Solutions of N/, (X1, X2, X3) = f(t) with K /k pure cubic and f
of degree < 6. Let k be a field of characteristic 0 and K /k be an extension
of degree 3 generated by a root, say «, of the irreducible polynomial h(x) =
22 + ax + b defined over k. We are interested in the rational points lying on
the variety defined by the equation
(2.1) Syt Ny (X, X2, X3) = f(1),
where f € k[t]. In this section we consider the case of f of degree < 6. Since
we are interested in k-unirationality of Sy, we assume that the set of k-
rational points on Sy is nonempty. To be more precise, we assume that there
is a nontrivial k-rational point lying on Sy, i.e. there is a P = (z0, Yo, 20, t0) €
S¢(k) such that f(tp) # 0. In particular, P is a smooth point on Sy. In this
section we consider the case of a pure cubic extension K /k, i.e. K is generated
by a root of a polynomial h as above with a = 0. Let us recall that in this
case

Ng (X1, Xa, X3) = X7 — bX3 + b2 X5 + 3bX1 XpX3.

Before we state our results, we note that Sy is isomorphic to §;, where
g(t) = Z?Zl c;it! + 1. Indeed, making a change of variables t +— t + tg
we can assume that f(0) = co = N p(u,v,w) # 0 for some u,v,w € k.
Multiplying this equation by ¢y’ = Ng/p(u', v, w') with o', o', w’ such that
Ng/k(u, v, w) Ngjp(u', 0", w') = 1, and using the multiplicative property of
the norm form, we get the desired form of our equation. It is clear that Sy
is k-unirational if and only if S, is.

We are ready to prove the following result.

THEOREM 2.1. Let k be a field of characteristic 0 and let K = k(a),
where o® +b =0 with b € k\ k3. Put g(t) = 1+ 3.0, ¢;t € k[t] and suppose

that
5¢; 1 1
(2.2) (co,cq,05) # <121, —m01(56§ — T2c3), —mc%(ci’ - 1263)).

Then the variety Sy is k-unirational.
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Proof. Let G = G(X1, X2, X3,t) be a polynomial defining S;. We note
that S, contains the k-rational point (1,0,0,0). We use it in order to con-
struct a k-rational curve lying on S,;. More precisely, we are looking for a
rational curve, say £, lying on §,;. We assume that £ can be parameterized
by rational functions with parameter u in the following way:

(23) L: X1 =pT*+qT+1, Xo=rT? X3=sT*+ul, t=T,
where p, ¢, r,s,T need to be determined. With X; and ¢ defined above, we
get G(X1, Xo, X3,t) = Z?:1 C;T", where
C1 =3q—c, Cs = b%u? + 3bru + 6pq + ¢ — c3,
Co=3p+3¢°—c2, Cy=30b%su?+bgru+brs+ p> +pg?) — ca,
and C5,Cgs € k[p,q,r,s,u] depend on ¢; for i = 1,...,6. The system C; =
Cy = C3 = C4 = 0 has exactly one solution in p, g, r, s:
—27b%u3 + 5¢3 — 18¢1c9 + 27¢3
_1 2 _ 1
b= §(302_Cl)> r= ]1bu )
1 u(27b%cru? — 5t + 27cac? — 27czeq — 27¢3 + 81ey)
= 5C s S = .
1= 34 3(54b2u3 + 563 — 18c1cs + 27c3)
For these p,q,r,s we get C; = A;/D, i = 5,6, and
DG(X1, X0, X3,T) = AsT® + AgT®
for As, Ag € k[u] and D = 320%u3(54b%u® + 5¢3 — 18c1c2 + 27¢3)3. We note
that deg, Ag = 18 and the leading coefficient of Ag is 233'%h12. In particular
Ag # 0 as an element of k[u]. Moreover, deg, As = 15, and As # 0 as an

element of k[u] if and only if condition (2.2) is satisfied. In this case, we get
a unique non-zero solution in 7' of the equation T°(As + AgT) = 0. Indeed,

2 319919(5¢3 — 12¢9)u'® + lower order terms in u

T = —— =
p(u) 23318p124,18 4 Jower order terms in u

Summing up, the existence of a k-rational point P with f(¢o) # 0 implies
that S, contains a k-rational curve £ which is not contained in any hyper-
plane defined by t = tg with to € k. This allows us to define the base change
t = ¢(u) which gives the cubic surface Syo, defined over the field k(u) with a
smooth k(u)-rational point. This immediately implies the k(u)-unirationality
of Sgop by [I, Proposition 1.3|, and thus the k-unirationality of S,. Indeed,
the map ¥ which guarantees the unirationality of Sy, extends to a dominant
rational map (¥, ¢), which gives the unirationality of Sy and thus of Sy. =

COROLLARY 2.2. Let k be a field of characteristic 0 and let K /k be a pure
cubic extension. Let f € k[t] be of degree 4 and suppose that Sy contains a
nontrivial k-rational point. Then Sy is k-unirational.
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Proof. We work with S, where g(t) =1 —I—Zj‘:l c;t! with ¢4 # 0. We have
Sy ~ Sy. We need to check whether condition is satisfied for all ¢; € k
for i =1,2,3,4. We see that is not satisfied if and only if (c2,cq,c5) =
(5¢2/12, ct/144,0). In particular ¢; # 0. Making the (invertible) substitution
t — 6t/c; we are left with the problem of proving the unirationality of S,
with h(t) = (3t2 4+ 2t + 1)2. We assume that £ can be parameterized by
rational functions with parameter u in the following way:

(24) L:X1=T+1, Xo=ul, X3=pI, t=4qT,
where the parameters p, g, T still need to be determined. For Xy, X5, X3,
defined in this way we get F' = Z?Zl C;T", where

C,=3—-6q, Co=3+ 3bpu— 15¢,

Cs =1+ b%p® + 3bpu — bu® — 18¢%, Cy = —9¢™.
We solve the system C = Cy = 0 with respect to p,q and get p = 1/(4bu),
g = 1/2. This substitution allows us to find an expression for 7"
—64b?ub — 32bu + 1

36bu3 ’

Together with the expressions for p, g, this gives equations ([2.4)) defining the

rational parametric curve £ lying on Sy. Using now the same reasoning as
at the end of the proof of Theorem [2.1] we get the result. =

T —

REMARK 2.3. We have tried to prove the k-unirationality of S, in the
case when g € k[t] is of degree 5 and does not satisfy . Among other
things we tried to replace g(t) by h(Y) = (1+vY)%g(Y/(1+vY)). In this way
we got the variety Sy, via the substitution X; = Y;/(14+vY)? fori = 1,2,3 and
t =Y/(14vY). Unfortunately, one can check that if g does not satisfy (2.2)),
then h(T) does not satisfy it either. Because all our efforts failed, we state
the following:

QUESTION 2.4. Let k be a field of characteristic 0 and let K = k(a),
where o +b =0 with b € k\ k>. Put g(t) = 1+ 32°_, ;t* € k[t] with c5 # 0
and suppose that condition (2.2)) is not satisfied. Is the variety S, unirational
over k?

Note that if g does not satisfy (2.2)), then g is reducible, namely
1
g(t) = fm(cfﬂ + 61t + 12) ((cf — 12¢3)t® — cft? — 61t — 12).
In particular, Theorem @ implies that if g is irreducible of degree 5 then S,
is k-unirational and thus the set of k-rational points on S, is Zariski dense.
It is clear that the same is true for a polynomial f corresponding to g.

In a recent paper Varilly-Alvarado and Viray [9] introduced the notion
of a Chatelet threefold, which is a variety defined by (1.2)) with n = 3 and
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f € K[t] of degree 6. They asked whether the existence of a k-rational point
on Sy implies the k-unirationality of Sy [9, Problem 6.2]. The statement
of Theorem gives a broad family of polynomials f such that Sy is k-
unirational. In the next corollary we make this result more explicit.
Before stating our result, we recall that two polynomials fi, fo € klt]
are equivalent if deg f1 = deg fo and there exist «, 5 € k such that fo(t) =

fl(at + ﬁ)

COROLLARY 2.5. Let k be a field of characteristic 0 and let K = k(«),
where o +b =0 with b € k\ k>. Let f € k[t] be of degree 6 and suppose that
f is not equivalent to a polynomial h € k[t] satisfying h(t) = h({st), where
(3 is the primitive third root of unity. Suppose moreover that Sy contains a
nontrivial k-rational point. Then Sy is k-unirational.

Proof. First of all, note that the existence of a non-trivial k-rational
point on Sy with f of degree 6 and the fact that the norm form is multi-
plicative imply that Sy ~ Sy, where h(t) = t® + Z?:o cg—it" for some ¢; € k,
j=2,3,...,6. This follows by a reasoning similar to the one just before The-
orem From our assumption on f we know that at least one of cs, ¢y, c5
is non-zero. Making the change of variables X; = Y;/T? for i = 1,2,3 and
t=1/T we get S, ¥ Sy with ¢(T') =1+ Z?:Q ¢;T". We can now apply The-
orem to the variety Sg. It is k-unirational provided that is satisfied.
In our case we have ¢; = 0 and thus is not satisfied if and only if
co = ¢4 = ¢5 = 0, which is not the case. m

Using the corollary above in the case of a number field k& with a real
embedding in R, we deduce the following interesting result.

THEOREM 2.6. Let k be a number field with k C R and put f(t) =
aot® + Z?:o ag_it" € k[t] with ag # 0. Then for each € > 0 there exists
a polynomial g(t) = cot® + Z?:O ce—it" € k[t] such that |a; — ¢;| < € for
i=0,2,...,6 and for each pure cubic extension K/k of degree 3, the variety
Sy given by the equation N/, (X1, X2, X3) = g(t) is k-unirational.

Proof. We work with S, ~ Sy, where h(t) = t5f(1/t). We note that for
any given ag € k* we can find a triple u, v, w € k with [ Ng(u,v,w) — a
< e and Ngp(u,v,w) # 0, which is a consequence of the density of the
image of the norm map N : k3 — k. Indeed, Ng/i(2,0,0) = z3 is a
continuous function and thus N/, (k,0,0) = R, where the closure is taken in
the Euclidean topology. Then we take co = Ny /i, (u, v, w). If h(t) # h((3t) we
take ¢; = a; fori = 2,...,6. If h(t) = h((st), we take ¢; = a; for i = 3,6, and
c2 = ¢4 = c for any ¢ € k with |c| < e. Then we put g(t) = cot® —1—2;1:0 co—it’
and note that S, contains a k-rational point at infinity. Moreover, S, ~ Sp,
where h'(t) = t%g(1/t). From Corollary [2.5| we get the result. m
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The above results motivate the following:

CONJECTURE 2.7. Let k be a number field and K /k be a cyclic extension
of degree 3. Let f € k[t] be of degree 6 and suppose that there exists a non-
trivial k-rational point on Sy. Then Sy is k-unirational.

We finish this section with the following simple result.

THEOREM 2.8. Let k be a field of characteristic 0 and let K = k(a),
where o +b = 0 with b € k\ k3. Put f(t) = 3™ + ast™ + a1t + ag € k[t]
with a1 # 0. Then the variety Sy is k-unirational.

Proof. Let F' = F(X1, X2, X3,t) be a polynomial defining S¢. We put
X1 :tm, ngu, X3:36;)72u
For X; defined in this way the polynomial F' (in t) is of degree 1 with the
root
276%u8 + 27bagu® — a3
- 27ba;u? ’

which under the assumption a; # 0 is a non-constant element of k(u). Thus
the cubic surface Syo, is k(u)-unirational, which implies the k-unirationality

of Sf. ]

t=p(u) =

3. Solutions of Ny /;(X1, X2, X3) = f(t) for a general cubic exten-
sion and f of degree 6. We now consider the variety Sy given by
for a general extension K/k of degree 3 and a monic polynomial f € klt]
of degree 6. We assume that K = k(«), where « is a root of an irreducible
polynomial h(x) = 23 + az + b € k[z] with a # 0. Unfortunately, in this
case we have been unable to prove the k-unirationality of Sy for all f which
satisfy f(t) # f((st). However, we prove the following result.

THEOREM 3.1. Let k be a field of characteristic 0 and put K = k(«),
where a3 + aa+b =0 and f(t) =% + agt* + a1t + ag € k[t] with ayay # 0.
Then the variety Sy given by (2.1)) is unirational over k.

Proof. In this case Ny, = N/, (X1, X2, X3), where
Nicjp = X3 — bX5 + b2X5 + (aXs + 3bX3) X1 X»
— (2aX? — a®’X1 X3 — abX2X3) X3.

Let G = G(X1, X2, X3,t) be the polynomial defining Sy. We use exactly
the same approach as in the proof of Theorem [2.1] This time we just take
X1 = t2+4p, where p needs to be determined. We thus get G (X1, Xo, X3,t) =
S, Cit?, where

Cy = a® X2 —4apX3+aX3+3bXoX3+3p®, C3=0, Cy=3p—as—2aX3.
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Eliminating p from the equation Cy = 0 we are left with the equation Co = 0
defining a curve, say C, in the plane (X3, X3). The equation for C can be
rewritten in the form

C: (2a°X3 — 9bX9)* = 4a’a3 + 3(4a® + 270%) X3.

The curve C is of genus 0 and has a rational point (X2, X3) = (0,a4/a) and
thus can be parameterized by rational functions. A parameterization of C
together with the expression for p is given by

X, — daaqu X, = as(12a® + 81b% + 18bu + u?)
3(4a® + 27b%) — u?’ a(3(4a® +270%) —u?)
_ag4+2aX3
—

For X5, X3 and p chosen in this way we have the equality
DG(Xl, X, X3, t) = Ag + Aqt,

where deg Ag = 6 and D = A} = —27a%a1(12a® + 81b? — 4?)3. From the as-
sumption on a; we know that DAy # 0. A careful analysis of the coefficients
of the polynomial Ay shows that if the coefficients of f satisfy aia4 # 0 then
the function ¢t = p(u) = —Ap/A; satisfies ¢ € k(u) \ k. Thus, we have found
a rational curve on Sy. Finally, the same argument as at the end of the proof
of Theorem gives the k-unirationality of Sy. m

REMARK 3.2. It is natural to ask whether the method we employed to
get k-unirationality can be used in other situations. More precisely, one can
ask the following.

QUESTION 3.3. Let f € k[t]. How general an indecomposable form F €
k[ X1, X2, X3] of degree 3 can be for the variety defined by F (X1, Xo, X3) =
f(t) to be unirational over k for most choices of f of fixed degree?

For example, consider the case of a monic f € k[t] of degree 6. It would
be rather unexpected if taking the form

F(X1, X9, X3) = X3 +aX3 +bX3 + (cX1 + dXs + eX3) X2 X3,
we could prove the k-unirationality of the hypersurface
S: F(X1,Xq, X3) = f(t),

where f(t) = t® + Z?:O a;t’ € k[t] and a,b,c,d,e € k satisfy certain con-
ditions. We note that for a generic choice of a,b,c,d,e € k the form F is
absolutely irreducible, i.e. irreducible as a polynomial in k[X7, Xa, X3]. Let
G(X1, X, X3,t) = F(X1, X2, X3) — f(t) be the polynomial defining S. To
verify the k-unirationality of S, it is enough to take
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— bud
X1:t2+%7 X2:u7

(3.1) cu
' Xy = ut + u(3beut — 3ageu — ale + 3asc) .

3c(20u3 + ag)
Indeed, for X1, X9, X3 chosen in this way we have
DG(X1, X2, X3,t) = Cit + Co,

where Cy,C7 € k[u] depend on the coefficients a,b,c,d,e and a; for
i = 0,...,4. Moreover, we have D = 27¢3u?(2bu® + a3)®. If CoCy # 0
as a polynomial in k[u], we get a solution t = ¢(u) = —Cp/Cy. We have
deg C7 = 17 and deg Cy = 18. The expression for ¢ together with the ex-
pressions for X7, X9, X3 given by yield a parameterization (with pa-
rameter u) of a rational curve on § with f(¢(u)) # 0. The existence of a
rational curve lying on S allows us to define a rational base change t = ¢(u).
Then the (cubic) surface S, defined by F'(X1, X2, X3) = f(¢(u)) (treated as
a surface over the field k(u)) contains a smooth k(u)-rational point P with
coordinates given by , and thus S, is k-unirational over k(u). As an
immediate consequence we get the k-unirationality of S over k.

It is possible to give explicit conditions on the coefficients of the polyno-
mial f and the form F' which will guarantee that ¢ € k(u) \ k. For example,
if abceas # 0 then ¢ € k(u) \ k.
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