
ACTA ARITHMETICA
150.1 (2011)

On a problem posed by R. Salvati Manni
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1. Introduction. Throughout the paper we consider only positive def-
inite even unimodular lattices.

The following theorem was proven in [26, p. 293] by R. Salvati Manni:

Theorem 1.1. The theta series of degree 3 associated to two 56- (resp.
72-) dimensional even unimodular extremal lattices differ by a multiple, pos-
sibly 0, of χ28 (resp. χ36).

For 40-dimensional lattices, if two extremal theta series are equal in de-
gree 2, then in degree 3 they differ by a multiple, possibly 0, of χ20.

Here χ28 (resp. χ36, χ20) is a Siegel cusp form of degree 3 and weight 28
(resp. 36, 20). Note that χ28 and χ20 were first introduced and studied by
Tsuyumine [28], who wrote γ20 for χ20. The form χ18 was studied in Igusa [7],
and χ36 = χ2

18.
Salvati Manni then states the following problem, suggested by his paper’s

referee: find two even unimodular extremal lattices L1 and L2 of rank 40
whose theta series coincide in degree 2 and differ in degree 3.

In the present paper we show that there are two 40-dimensional even
unimodular extremal lattices coming from two doubly even self-dual ex-
tremal codes, whose theta series of degree 2 coincide and theta series of
degree 3 differ definitely. We also exhibit two even unimodular extremal
lattices coming from another pair of doubly even self-dual extremal codes,
whose theta series of degree 2 and degree 3 coincide. These results are
shown by computing some beginning Fourier coefficients of the theta se-
ries of the lattices in question combined with some facts on the dimen-
sions of the linear spaces of Siegel modular forms already proved by other
people.
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2. Basic facts on Siegel theta series and other tools

2.1. Definition of Siegel modular forms. The symplectic group
Spg(R) of degree g over R is defined to be

Spg(R) =
{
M =

(
A B

C D

)
∈M2g(R)

∣∣∣∣ tMJM = J, J =
(

0 Ig

−Ig 0

)}
.

The Siegel modular group Spg(Z) of degree g is the subgroup of Spg(R)
consisting of those elements in Spg(R) whose entries are in Z. Let Hg be the
Siegel upper half-space of degree g:

Hg = {τ = tτ ∈Mg(C) | Im(τ) is positive definite}.
A Siegel modular form of degree g (g ≥ 2) and weight k is a holomorphic
complex valued function f(τ) defined on Hg satisfying the condition:

f((Aτ+B)(Cτ+D)−1) = (det(Cτ+D))kf(τ) for all
(
A B

C D

)
∈ Spg(Z).

The set M(g, k) of all Siegel modular forms of degree g and even weight k
is a linear space of certain dimension.

Table 1. The dimension of M(g, k)

g \ k 4 6 8 10 12 14 16 18 20

1 1 1 1 1 2 1 2 2 2
2 1 1 1 2 3 2 4 4 5
3 1 1 1 2 4 3 7 8 11
4 1 1 2 3 6 6 14 ? ?

The dimensions of M(1, k) are classical. The dimensions of M(2, k) were
found by Igusa [6], those ofM(3, k) by Tsuyumine [28], and those ofM(4, k)
by Poor–Yuen [22], Duke–Imamoḡlu [3] and Oura–Poor–Yuen [16]. The spots
marked by ? are not known.

2.2. Lattice. A lattice L of rank n (or dimension n) is a Z-module
generated by vectors x1, . . . ,xn in Rn that are linearly independent over R.
The vectors x1, . . . ,xn are called a basis of L. The lattice L is integral if the
inner product (x,y) belongs to Z for all pairs x and y in L. The dual lattice
L# of L is defined to be

L# = {y ∈ Rn | (x,y) ∈ Z ∀x ∈ L}.
A lattice L is unimodular if L = L#. A lattice L is even if any element x
of L has even norm (x,x). Even unimodular lattices exist only when n ≡
0 (mod 8).
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The minimal norm of a lattice is

Min(L) = min
x∈L\{0}

(x,x).

If L is even unimodular of rank n then (cf. [11])

Min(L) ≤ 2
[
n

24

]
+ 2.

A lattice which attains the above maximum is called extremal.
Let L be an even unimodular lattice of rank n. For m ≥ 1 we let Λ2m(L)

be the set of x in L with (x,x) = 2m. A relatively tractable class of uni-
modular lattices are the lattices constructed from root sublattices. A root
lattice is an integral lattice which has a strong connection with root systems
in the theory of Lie algebras. Basic root lattices are An (n ≥ 1), Dn (n ≥ 4),
E6, E7 and E8. For precise definitions the readers may refer to Chapter 4 of
Conway–Sloane’s book [2].

Let N be an orthogonal sum of some copies of the above basic root
lattices. Then the quotient N#/N is well described (cf. [2] or [15]). In nice
cases N plus some representatives of N#/N form an integral lattice, and
sometimes an even unimodular lattice. The added representatives of N#/N
are now called glue vectors of N . For instance let

D28 ⊕D12 = [e1 − e2, . . . , e27 − e28, e27 + e28]
⊕ [f1 − f2, . . . , f11 − f12, f1 + f12]

be an orthogonal sum of two root lattices D28 and D12, where e1, . . . , e28,
f1, . . . , f12 are orthonormal vectors in the 40-dimensional Euclidean space.
Then the vectors h1 = 1

2

∑28
i=1 ei+f1 and h2 = e1+ 1

2

∑12
i=1 fi are glue vectors

for the lattice D28 ⊕D12. The lattice D28 ⊕D12 + Zh1 + Zh2 is verified to
be a 40-dimensional even unimodular lattice. An extensive account of gluing
theory is given in Chapter 4 of [2].

2.3. Siegel theta series. The Siegel theta series of degree g attached
to the lattice L is defined by

ϑg(τ, L) =
∑

x1,...,xg∈L
exp(πiσ([x1, . . . ,xg]τ)),

where τ is the variable on the Siegel upper-half space of degree g, [x1, . . . ,xg]
is a g by g square matrix whose (i, j) entry is (xi,xj), and σ is the trace of
the matrix.

The Siegel theta series of degree g can be expanded as

ϑg(τ, L) =
∑
T

a(T, L)e2πiσ(Tτ).
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Here T runs over the set of positive semi-definite semi-integral symmetric
square matrices of degree g, and a(T, L) = #{〈x1, . . . ,xg〉 ∈ Lg | [x1, . . . ,xg]
= 2T}.

Fact. A Siegel theta series of degree g associated with an even integral
unimodular lattice L of rank 2k (where 2k is a multiple of 8) is a modular
form of degree g and weight k.

2.4. Binary linear codes. Let F2 = GF(2) be the field of two elements.
Let V = Fn2 be the vector space of dimension n over F2. A linear [n, k] code C
is a vector subspace of V of dimension k; we then say that C has length n. An
element u in C is called a codeword of C. In V , the inner product, denoted
by u · v for u,v in V , is defined as usual. Two codes C1 and C2 are said to
be equivalent if they coincide after a permutation of coordinates.

The dual code C⊥ of C is defined by

C⊥ = {u ∈ V | u · v = 0 ∀v ∈ C}.
The code C is called self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.
Self-dual [n, k] codes exist only if n ≡ 0 (mod 2) and k = n/2.

Let u = (u1, . . . , un) be a vector in V . Then the Hamming weight wt(u)
of u is defined to be the number of i’s such that ui 6= 0. The Hamming
distance d on V is defined by d(u,v) = wt(u − v). Let C be a code. Then
the minimum distance d of the code C is defined by

d(C) = min
u,v∈C,u6=v

d(u,v) = min
u∈C,u 6=0

wt(u).

An [n, k] code C with d = d(C) is denoted by [n, k, d]. Let C be a self-dual
binary [n, n/2] code. Then the weight wt(u) of each codeword u in C is an
even number. Further, if the weight of each codeword u in C is divisible by 4,
then the code is said to be doubly even. It is known that doubly even self-dual
binary codes C exist only when n is a multiple of 8. If C is a self-dual doubly
even code, it is known that (cf. [12])

d(C) ≤ 4
[
n

24

]
+ 4.

A self-dual doubly even code C satisfying d(C) = 4
[
n
24

]
+4 is called extremal.

Let C be a self-dual doubly even code of length n, which is embedded
in Fn2 . Let u = (u1, . . . , un),v = (v1, . . . , vn) be any pair of vectors in Fn2 .
Then the number of common 1’s in the corresponding coordinates of u and
v is denoted by u∗v. This is called the intersection number of u and v, and
u ∗ u is nothing other than wt(u).

2.5. Multiple weight enumerator. Let C be a doubly even self-dual
code of length n, let g be a positive integer and let α run over the set Fg2 of g-
vectors. Let Xα for α ∈ Fg2 be 2g variables algebraically independent over C.
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Let u1 = (u1
1, . . . , u

n
1 ), . . . ,ug = (u1

g, . . . , u
n
g ) be a g-tuple of codewords of C.

For each α ∈ Fg2 the generalized weight wtα(u1, . . . ,ug) is defined to be the
number of coordinates j (1 ≤ j ≤ n) such that α = (uj1, . . . , u

j
g).

The multiple weight enumerator Wg(Xα;C) of degree g for the code C
is defined by

Wg(Xα;C) =
∑

(u1,...,ug)∈Cg

∏
α∈Fg2

X
wtα(u1,...,ug)
α .

The multiple weight enumerator of degree 2 is called a biweight enumer-
ator, and the multiple weight enumerator of degree 3 is called a triweight
enumerator.

2.6. From binary codes to lattices. LetC be a binary self-orthogonal
[n, k] code. Let

ρ : Zn → Fn2 , x 7→ x mod 2.
Then

M(C) =
1√
2

{
x = (x1, . . . , xn) ∈ ρ−1(C)

∣∣∣ n∑
i=1

xi ≡ 0 (mod 4)
}

defines an even lattice. Suppose that C is a doubly even self-dual binary ex-
tremal [n, n/2] code. Then the so called density doubling process is described
as follows. Put

γ =

{
1√
8
(1, . . . , 1,−3) if n ≡ 8 (mod 16),

1√
8
(1, . . . , 1, 1) if n ≡ 0 (mod 16).

Then
N (C) =M(C) ∪ (γ +M(C))

is an even unimodular extremal lattice of rank n for n = 8, 16, 24, 32, 40.

2.6.1. 40-dimensional case. We are particularly concerned with the set
of minimal vectors Λ4(N (C)) in an extremal even unimodular lattice con-
structed from a binary self-dual extremal [40, 20, 8] code.

WhenC is a doubly even self-dual binary [40, 20, 8] code, Λ4 = Λ4(N (C))
consists of two kinds of vectors:

A = Λ1
4 =

{
1√
2
((±2)2, 038)

}
, B = Λ2

4 =
{

1√
2
((±1)8, 032)

}
.

The set A forms a root system of type D40 scaled by a factor
√

2, and the
vectors in the set B come from codewords of weight 8 in the code C. Further
the product of nonzero integers is 1 for each element of B. The cardinalities
of these sets are

|A| = 4 ·
(

40
2

)
= 3120, |B| = 285 · 27 = 36480.

In a later section we will use these two sets extensively.
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We pick up some specific codes. We denote by C1 (respectively C2, C3, C4)
the second code in [19], Yorgov’s code C5, Yorgov’s code C2 and Yorgov’s
code C4 [33] respectively. The lattices constructed by the above density dou-
bling process are denoted by M11 = N (C1),M12 = N (C2),M13 = N (C3) and
M14 = N (C4).

3. Preliminary results. We give tables of some beginning indices T
in the Fourier coefficients a(T, L) of Siegel theta series that should deter-
mine the Fourier expansion of the series uniquely. The conclusion will be
summarized as Proposition 3.1 at the end of this subsection.

Table 2.1. Case g = 1

numbered T \ 2k 8 16 24 32 40

T0 0 0 0 0 0
T1 1 1 1

Table 2.2. Case g = 2

numbered T \ 2k 8 16 24 32 40

T0

 
0 0

0 0

!  
0 0

0 0

!  
0 0

0 0

!  
0 0

0 0

!  
0 0

0 0

!

T1

 
0 0

0 1

!  
0 0

0 1

!  
0 0

0 1

!

T2

 
1 0

0 1

!  
1 0

0 1

!  
1 0

0 1

!

T3

 
1 1/2

1/2 1

!  
1 1/2

1/2 1

!

T4

 
2 0

0 2

!

Table 2.3. Case g = 3

numbered T \ 2k 24 32 40

T0

0B@0 0 0

0 0 0

0 0 0

1CA
0B@0 0 0

0 0 0

0 0 0

1CA
0B@0 0 0

0 0 0

0 0 0

1CA

T1

0B@1 0 0

0 0 0

0 0 0

1CA
0B@1 0 0

0 0 0

0 0 0

1CA
0B@1 0 0

0 0 0

0 0 0

1CA
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Table 2.3 [cont.]

numbered T \ 2k 24 32 40

T2

0B@ 1 1/2 0

1/2 1 0

0 0 0

1CA
0B@ 1 1/2 0

1/2 1 0

0 0 0

1CA

T3

0B@1 0 0

0 1 0

0 0 0

1CA
0B@1 0 0

0 1 0

0 0 0

1CA
0B@1 0 0

0 1 0

0 0 0

1CA

T4

0B@2 0 0

0 2 0

0 0 0

1CA

T5

0B@ 1 1/2 1/2

1/2 1 0

1/2 0 1

1CA
0B@ 1 1/2 1/2

1/2 1 0

1/2 0 1

1CA

T6

0B@ 1 1/2 0

1/2 1 0

0 0 1

1CA
0B@ 1 1/2 0

1/2 1 0

0 0 1

1CA

T7

0B@1 0 0

0 1 0

0 0 1

1CA
0B@1 0 0

0 1 0

0 0 1

1CA
0B@1 0 0

0 1 0

0 0 1

1CA

T8

0B@ 1 0 1/2

0 1 1/2

1/2 1/2 2

1CA

T9

0B@ 1 1/2 0

1/2 2 1

0 1 2

1CA

T10

0B@2 0 0

0 2 0

0 0 2

1CA
Even unimodular lattices Ki of rank 24, with underlying root lattices

K1 : 3E8, K2 : D24, K3 : A24, K4 : A17 ⊕ E7,

are picked up from 24 Niemeier lattices [15]. We must compute some Fourier
coefficients of their Siegel theta series. When the lattice is an over-lattice of
a root lattice of full rank, namely the rank of the even unimodular lattice
equals the rank of the underlying root lattice, the computing of some Fourier
coefficients is not very difficult. When the lattice is extremal of rank greater
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than 16, computing the Fourier coefficients is in general hard. However if the
lattice comes from an extremal binary code, some Fourier coefficients are well
controlled by the multiple weight enumerators of the code. Some instances
of this fact are developed in Section 5. Here we exhibit results in tables.

Table 3.1. The Fourier coefficients a(Tj , Km) in degree 3

m \ j 0 1 3 7

1 1 720 436320 219024000
2 1 1104 1022304 781393536
3 1 600 303600 127512000
4 1 432 158112 48263040

Even unimodular lattices Li of rank 32 have underlying root lattices as
follows:

L1 : 4E8, L2 : D24 ⊕ E8, L3 : A24 ⊕ E8, L4 : E7 ⊕A17 ⊕ E8,

L5 : D32, L6 : A1 ⊕A31, L7 : A16 ⊕A16.

The glue vectors of the lattices L4, L6 and L7 are well described in [8]. The
lattices containing D32, D40 were explained in [17]. Other lattices Lj are
simply enlargements of some of Niemeier lattices by E8.

Table 3.2. The Fourier coefficients a(Tj , Lm) in degree 3

m \ j 0 1 2 3 5 6 7

1 1 960 53760 812160 1451520 42577920 600307200
2 1 1344 110592 1582464 4540416 120729600 1619421696
3 1 840 41040 621840 970080 28406880 402350400
4 1 672 27264 395712 570240 14736384 203109120
5 1 1984 238080 3456128 14046720 386641920 5240378880
6 1 994 59520 867008 1726080 8449280 657636480
7 1 544 16320 262208 228480 7409280 111041280

Even unimodular lattices Mi of rank 40 have underlying root lattices as
follows:

M1 : E5
8 , M2 : D24 ⊕ E2

8 , M3 : A24 ⊕ E2
8 , M4 : E7 ⊕A17 ⊕ E2

8 ,

M5 : D32 ⊕ E8,
′M6 : A1 ⊕A31 ⊕ E8, M7 : A2

16 ⊕ E8, M8 : D2
20,

M9 : D40, M10 : D28 ⊕D12.

Glue vectors of M8 are given as follows. Let

D2
20 = [e1 − e2, . . . , e19 − e20, e19 + e20]⊕ [f1 − f2, . . . , f19 − f20, f19 + f20],

where e1, . . . , e20, f1, . . . , f20 are orthonormal vectors in a 40-dimensional Eu-
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clidean space. Then the vectors h1 = 1
2

∑20
i=1 ei+ f1 and h2 = e1 + 1

2

∑20
i=1 fi

are glue vectors for the lattice M8. Glue vectors for the lattice M10 are
found in Section 2.2. The lattices M11,M12,M13,M14 were introduced in
Section 2.6.1.

Table 3.3. The Fourier coefficients a(Tj , Mm) in degree 3

m \ j 0 1 2 3 4 5 6

1 1 1200 67200 1303200 226106935200 1814400 69350400
2 1 1584 124032 2257824 383278632864 4903296 166302720
3 1 1080 54480 1055280 185566037280 1332960 50513760
4 1 912 40704 748512 135668986272 933120 31279104
5 1 2224 251520 4438688 734060529568 14409600 471413760
6 1 1234 72960 1374368 238658059648 2088960 77061120
7 1 784 29760 553568 102348818848 591360 19605120
8 1 1520 109440 2088480 357220647840 3830400 142709760
9 1 3120 474240 8779680 1422569435040 35568000 1263375360
10 1 1776 167808 2815008 474354791328 8220288 247698432
11 1 0 0 0 994281120 0 0
12 1 0 0 0 994281120 0 0
13 1 0 0 0 1035568800 0 0
14 1 0 0 0 1035568800 0 0

m \ j 7 8 9 10

1 1273968000 5378688000 4410980582400
2 2882537856 11702768640 9419495777280
3 928094400 3945926400 16132530547200
4 550800000 2366742528 1991438493696
5 7910593920 31503139840 24945629414400
6 1373972320 5677661440 4703505845760
7 350997120 1516810240 1343172216960
8 2579975040 10705566720 8231241262080
9 22161709440 88857400320 67244838036480
10 3964519296 15670729728 12915085943808
11 0 0 0 15596332778880
12 0 0 0 15596205376896
13 0 0 0 17448486307200
14 0 0 0 17448486307200

The blanks in the above table are not necessary to know for the present
purpose.
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Proposition 3.1. A Siegel theta series ϑg(τ, L) of degree g (1 ≤ g ≤ 3)
associated with an even unimodular lattice L of rank 2k (k = 4, 8, 12, 16, 20)
is uniquely determined if the Fourier coefficients a(T, L) are known for the
indices T given in Tables 2.1–2.3.

Proof. From Table 1 in Section 2.1 we know the dimensions of M(g, k)
(1 ≤ g ≤ 3, k = 4, 8, 12, 16, 20). If we could find the theta series of de-
gree g associated with appropriate even unimodular lattices of rank 2k =
8, 16, 24, 32, 40 that are uniquely determined by the selected Fourier coeffi-
cients and show that the vector space spanned by these theta series has the
dimension of M(g, k), then the proof will be complete. The case g = 1 is
classical, and we omit the proof. The case g = 2 is treated in [17]. Therefore
we only have to treat the case g = 3. When the rank of the lattice is 8 or 16
the dimension of the space M(3, 4) (resp. M(3, 8)) is one and the proof is
trivial.When the rank of the lattice is 24, one verifies that the determinant∣∣∣∣∣∣∣∣∣∣

1 720 436320 219024000
1 1104 1022304 781393536
1 600 303600 127512000
1 432 158112 48263040

∣∣∣∣∣∣∣∣∣∣
6= 0

(cf. Table 3.1), therefore the series ϑ3(τ,Km) (1 ≤ m ≤ 4) form a basis of
M(3, 12), and it is enough to determine any element in M(3, 12) from the
Fourier coefficients at Tj for j = 0, 1, 3, 7.

When the rank of the lattice is 32, by forming appropriate linear combi-
nations of the theta series ϑ3(τ, Lm) one obtains ψi(τ) =

∑
T bi(T )e2πiσ(Tτ)

(1 ≤ i ≤ 7) with b1(T0) = 1, b1(Tj) = 0 for j = 1, 2, 3, 5, 6, 7, b2(T1) = 1,
b2(Tj) = 0, j 6= 1, b3(T2) = 1, b3(Tj) = 0, j 6= 2, b4(T3) = 1, b4(Tj) = 0,
j 6= 3, b5(T5) = 1, b4(Tj) = 0, j 6= 5, b6(T6) = 1, b6(Tj) = 0, j 6= 6,
b7(T7) = 1, b7(Tj) = 0, j 6= 7. This shows that ψi(τ) are linearly indepen-
dent, and consequently ϑ3(τ, Lm) (1 ≤ m ≤ 7) are linearly independent. This
implies that the values c(Tj), j = 0, 1, 2, 3, 5, 6, 7, are enough to determine
the series

∑
T c(T )e2πiσ(Tτ) in M(3, 16).

When the rank of the lattice is 40, by forming appropriate linear combi-
nations of ϑ3(τ,Mm) (1 ≤ m ≤ 10) we obtain φh(τ) =

∑
T dh(T )e2πiσ(Tτ)

(0 ≤ h ≤ 9) such that dh(Tj) = δh,j , 0 ≤ j ≤ 9, where δh,j is Kronecker’s
delta. This shows that ϑ3(τ,Mm) (1 ≤ m ≤ 10) span a 10-dimensional
subspace of the 11-dimensional space M(3, 20). By Table 3.3 the difference
ϑ3(τ,M11)−ϑ3(τ,M12) has nonzero Fourier coefficient at T10. This difference
cannot be expressed as a linear combination of φh(τ) =

∑
T dh(T )e2πiσ(Tτ)

(0 ≤ h ≤ 9), since the difference has zero value for each Fourier coeffi-
cient at Tj for 0 ≤ j ≤ 9. This implies that ϑ3(τ,Mm) (1 ≤ m ≤ 10) and
ϑ3(τ,M11)−ϑ3(τ,M12) span the full space M(3, 20). It is easy to see that it
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is enough to determine any element inM(3, 20) from the Fourier coefficients
at Tj for 0 ≤ j ≤ 10.

4. Main results

Theorem 4.1. There are even unimodular 40-dimensional extremal lat-
tices L1 and L2 whose Siegel theta series of degrees 1 and 2 coincide, but
whose theta series of degree 3 differ.

Theorem 4.2. There are even unimodular 40-dimensional nonisometric
lattices L3 and L4 whose Siegel theta series of degrees 1, 2 and 3 coincide.

Theorem 4.3. If two even unimodular 40-dimensional extremal lattices
L3 and L4 coming from extremal binary doubly even self-dual codes have
identical triweight enumerators, then they have identical Siegel theta series
of degrees 1, 2 and 3.

The proofs of these theorems will be given after a description of the
computation of the crucial Fourier coefficients.

5. How to compute the Fourier coefficients of
Siegel theta series

5.1. The Fourier coefficients of ϑ2(τ, L) for even unimodular ex-
tremal 40-dimensional lattices L. We recall the sets A and B introduced
in Section 2.6. To each y ∈ Λ4 we associate a binary vector v = suppy ∈ F40

2

which corresponds to nonzero positions of y.
By Proposition 3.1, to determine ϑ2(Z,L) it is enough to compute a(T4, L)

with T4 =
(

2 0
0 2

)
.

Computation of a(T4, L). We put

N(2, 2, 0) = {〈x,y〉 ∈ Λ4 × Λ4 | (x,y) = 0}.

Then a(T4, L) = #N(2, 2, 0). We divide the set N(2, 2, 0) into mutually
disjoint subsets:

N(2, 2, 0) = NA,A(2, 2, 0) ∪NA,B(2, 2, 0) ∪NB,A(2, 2, 0) ∪NB,B(2, 2, 0),

whereNA,A(2, 2, 0) = {〈x,y〉 ∈ A×A | (x,y) = 0},NA,B(2, 2, 0) = {〈x,y〉 ∈
A × B | (x,y) = 0}, NB,A(2, 2, 0) = {〈x,y〉 ∈ B × A | (x,y) = 0},
NB,B(2, 2, 0) = {〈x,y〉 ∈ B × B | (x,y) = 0}. According to this decom-
position we put νA,A = #NA,A(2, 2, 0), νA,B = #NA,B(2, 2, 0), νB,A =
#NB,A(2, 2, 0), νB,B = #NB,B(2, 2, 0). We observe that νA,B = νB,A, and
so

(1) a(T4, L) = νA,A + 2νA,B + νB,B.
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Proposition 5.1. One has

νA,A = 4 ·
(

40
2

)
·
[
2 + 4 ·

(
40
2

)]
= 8779680,

which is independent of the code employed (but the code should be extremal).

Since the proof is easy we omit it.

Computation of νB,A. With each x ∈ B we associate suppx, a codeword
in C of weight 8. Also with each y ∈ A we associate a binary vector suppy
of weight 2.

The number of y with suppx∗ suppy = 0 is 4 ·
(
32
2

)
= 1984. The number

of y with suppx ∗ suppy = 2 is 2 ·
(
8
2

)
= 56. Therefore for each x ∈ B there

are 1984 + 56 = 2040 y’s in A satisfying (x,y) = 0. Consequently,

νB,A = 285 · 27 · 2040 = 74419200.

Computation of νB,B. To compute νB,B we need to know the intersec-
tions of suppx with suppy for x,y ∈ B. First we have

Proposition 5.2. For x,y ∈ B one has

suppx ∗ suppy ∈ {0, 2, 4, 8}.

Since this proposition is easy to prove we skip the proof. We want to
know a portion of the biweight enumerator of the binary [40, 20, 8] doubly
even code. Here we give the biweight enumerators of the codes C1, C2, C3, C4,
introduced before.

The biweight enumerator of a linear code of length n is defined to be

BW(C, X11, X10, X01, X00) =
∑

u,v∈C
X
w11(u,v)
11 X

w10(u,v)
10 X

w01(u,v)
01 X

w00(u,v)
00 ,

where X11, X10, X01, X00 are algebraically independent variables over the
field of complex numbers, and wij(u,v) (0 ≤ i, j ≤ 1) is the number of
coordinates k (1 ≤ k ≤ n) such that the kth component of u takes the value
i and the kth component of v takes the value j. We exhibit the biweight
enumerators of the codes Ci (1 ≤ i ≤ 4):

BW(C1, X11, X10, X01, X00) = BW(C2, X11, X10, X01, X00)

= · · ·+ 285X8
11X

32
00 + 5040X4

11X
4
10X

4
01X

28
00

+ 53760X2
11X

6
10X

6
01X

26
00 + 22140X8

10X
8
01X

24
00 + · · · ,

BW(C3, X11, X10, X01, X00) = BW(C4, X11, X10, X01, X00)

= · · ·+ 285X8
11X

32
00 + 11760X4

11X
4
10X

4
01X

28
00

+ 40320X2
11X

6
10X

6
01X

26
00 + 28860X8

10X
8
01X

24
00 + · · · .
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In the above we display all the terms for which both u and v are of weight 8.
Now we show

Proposition 5.3. Let C be an extremal binary self-dual [40, 20, 8] code,
and α1 (resp. α2, α3, α4) be the coefficient of X8

11X
32
00 (resp. X4

11X
4
10X

4
01X

28
00 ,

X2
11X

6
10X

6
01X

26
00 , X

8
10X

8
01X

24
00 ) in the biweight enumerator BW(C, X11, X10,

X01, X00). Then

νB,B = 27(70 · 285 + 48 · α2 + 64 · α3 + 128 · α4).

Proof. The number of y’s in B such that suppx = suppy is computed
to be 70. This is because x and y have four nonzero coordinates of identical
signs and four of opposite signs. The coordinates of the same signs can be
chosen in

(
8
4

)
= 70 ways.

For each x ∈ B we look for y’s in B such that

(∗)
w11(suppx, suppy) = 4, w10(suppx, suppy) = 4,
w01(suppx, suppy) = 4, w00(suppx, suppy) = 28, (x,y) = 0.

Let i1, . . . , i4 be the nonzero positions common to x and y. There are
(
4
2

)
= 6

choices of signs of y in these positions so as to satisfy (x,y) = 0. Other signs
of nonzero positions of y have 8 possibilities (three of four are arbitrary and
the remaining one is unique). Therefore there are 6 ·8 = 48 y’s satisfying (∗).
There are 27 · 48 · α2 pairs of x and y in B satisfying (∗). Finding y’s with

(∗∗)
w11(suppx, suppy) = 2, w10(suppx, suppy) = 6,
w01(suppx, suppy) = 6, w00(suppx, suppy) = 26, (x,y) = 0

or

(∗∗∗)
w11(suppx, suppy) = 0, w10(suppx, suppy) = 8,
w01(suppx, suppy) = 8, w00(suppx, suppy) = 24, (x,y) = 0

is similar.

In summary we obtain

a(T4,N (C1)) = a(T4,N (C2)) = 994281120,
a(T4,N (C3)) = a(T4,N (C4)) = 1035568800.

Before closing this section we prove

Theorem 5.4. Let C1 and C2 be two extremal binary doubly even self-
dual codes of length 40. Let N (C1) (resp. N (C2)) be the even unimodular
extremal lattices of rank 40 constructed from C1 and C2. Then a neces-
sary and sufficient condition that the Siegel theta series ϑ2(τ,N (C1)) and
ϑ2(τ,N (C2)) coincide is that the biweight enumerators BW(C1, X11, X10,
X01, X00) and BW(C2, X11, X10, X01, X00) coincide.

Proof. By the work by H. Maschke [13] the biweight enumerator of any
doubly even self-dual binary linear code can be expressed as a polynomial in
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F8, F12, F20 and F24. Note that F8, . . . , F24 are polynomials in the variables
z1, z2, z3, z4, and we should use the variables X11, X10, X01, X00 instead. By
computer algebra we find that the biweight enumerator of a doubly even
self-dual binary linear extremal code of length 40 has the shape F1 + αF2,
where

F1 =
19
54
F 5

8 +
35
54
F 2

8F
2
12 −

1960
3

F8F12F20 −
2660

3
F24F

2
8 , F2 = F 2

20,

with a constant α depending only the code. By Proposition 3.1 the Siegel
theta series ϑ2(τ,N (C)) is completely determined if we know the values
a(Tj ,N (C)), j = 0, 1, 2, 3, 4 (cf. Table 2.2). Since we consider the 40-dimen-
sional even unimodular extremal lattice N (C) we know a(T0,N (C)) = 1,
a(Tj ,N (C)) = 0, j = 1, 2, 3. By Proposition 5.3 the value a(T4,N (C)) is
controlled by some terms of the biweight enumerator. Therefore the equality
a(T4,N (C1)) = a(T4,N (C2)) holds if and only if F1 +αF2 = BW(C1, X11,
X10, X01, X00) = BW(C2, X11, X10, X01, X00) = F1 + α′F2. This completes
the proof of the theorem.

5.2. The Fourier coefficients of ϑ3(τ, L) for even unimodular ex-
tremal 40-dimensional lattices L. We compute

a(T, L) = #{〈x,y, z〉 ∈ L3 | [x,y, z] = 2T}
for the case when L is an even unimodular 40-dimensional extremal lattice
constructed from a binary code. We need to compute a(T, L) for the matrix
T10 given in Table 2.3.

In a similar way to ϑ2(τ, L) this quantity is expressed as

a(T10, L) = µA,A,A + µA,A,B + µA,B,A + µB,A,A

+ µA,B,B + µB,A,B + µB,B,A + µB,B,B,

where

µA,A,A = #{〈x,y, z〉 ∈ A3 | [x,y, z] = 2T},
µA,A,B = #{〈x,y, z〉 ∈ A×A×B | [x,y, z] = 2T},

...
µB,B,B = #{〈x,y, z〉 ∈ B3 | [x,y, z] = 2T}.

We can easily prove

Proposition 5.5.

(i) µA,A,B = µA,B,A = µB,A,A,
(ii) µA,B,B = µB,A,B = µB,B,A.

By the above proposition we get

(2) a(T10, L) = µA,A,A + 3µB,A,A + 3µB,B,A + µB,B,B.
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Computation of µA,A,A. There are
(
40
2

)
· 4 = 3120 elements in the set A.

For each x ∈ A there are 2 +
(
38
2

)
· 4 = 2814 elements y ∈ A that are

perpendicular to x. For each pair 〈x,y〉 ∈ A2 with (x,y) = 0 two cases are
possible: (i) suppx = suppy, (ii) suppx ∗ suppy = 0. In the first case there
are

(
38
2

)
· 4 = 2812 z’s in A that are perpendicular to both x and y. In the

second case there are 2 + 2 +
(
36
2

)
· 4 = 2524 such z’s. Therefore

(3) µA,A,A = 3120(2 · 2812 + 2812 · 2524) = 22161709440.

Computation of µB,A,A. There are 36480 vectors in B. For each x ∈ B
there are

(
8
2

)
· 2 +

(
32
2

)
· 4 = 2040 vectors y ∈ A satisfying (x,y) = 0. If

suppy ∗ suppx = 2, then there are
(
6
2

)
·2+

(
32
2

)
·4 = 2014 z’s in B such that

(x, z) = (y, z) = 0. If suppy∗suppx = 0, then there are
(
8
2

)
·2+2+

(
30
2

)
·4 =

1798 z’s in B such that (x, z) = (y, z) = 0. Therefore

(4) µB,A,A = 36480 · (56 · 2014 + 1984 · 1798) = 134246983680.

Computation of µB,B,A. Let x,y ∈ B. Let C8(i) (1 ≤ i ≤ 4) be the
set of codewords of weight 8 in the code Ci. There are 285 pairs 〈u,v〉 in
C8(i) × C8(i) (1 ≤ i ≤ 4) such that u ∗ v = 8. For a fixed x ∈ B there are
70 vectors y ∈ B satisfying (x,y) = 0 and suppx ∗ suppy = 8. There are(
4
2

)
·2 ·2+

(
32
2

)
·4 = 24+1984 = 2008 such pairs 〈x,y〉 . The number 24 ·70 =

1680 is the number of pairs y ∈ B, z ∈ A such that (x,y) = (x, z) = 0 and
suppx ∗ suppy = 8, suppy ∗ supp z = 2 for a fixed x ∈ B. This reflects the
first row of Table 6.1 below. The number 24 · 1984 = 138880 is the number
of pairs y ∈ B, z ∈ A such that (x,y) = (x, z) = 0 and suppx ∗ suppy = 8,
suppy ∗ supp z = 0 for a fixed x ∈ B. This yields the third row of Table 6.1.

There are 11760 (resp. 5040) pairs of codewords 〈u,v〉 in C8(i) × C8(i)
(1 ≤ i ≤ 2) (resp. 3 ≤ i ≤ 4) such that u ∗ v = 4. For a fixed x ∈ B there
are 48 vectors y ∈ B satisfying (x,y) = 0 and suppx ∗ suppy = 4. For
each pair 〈x,y〉 in B2 with the above conditions there are 2 ·

(
4
2

)
= 12 z’s

in A with the additional conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 2,
suppy ∗ suppx = 0; there are 4 z’s in A with the additional conditions
(x, z) = (y, z) = 0, suppx ∗ supp z = 2, suppy ∗ suppx = 2; and 12 z’s in
A with the additional conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 0,
suppy ∗ suppx = 2. There are 4 ·

(
28
2

)
= 1512 z’s in A with the additional

conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 0, suppy ∗ suppx = 0. The
numbers 48 · 12 = 576, 48 ∗ 4 = 192, 576, 48 · 1512 = 72576 yield some rows
in Table 6.1.

There are 40320 (resp. 53760) pairs 〈u,v〉 in C8(i) × C8(i) (1 ≤ i ≤ 2)
(resp. 3 ≤ i ≤ 4) such that u ∗ v = 2. For a fixed x ∈ B there are 64 vectors
y ∈ B satisfying (x,y) = 0 and suppx ∗ suppy = 2. There are 30 z’s in
A with the additional conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 2,
suppy ∗ suppx = 0; there are 30 z’s in A with the additional conditions
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(x, z) = (y, z) = 0, suppx ∗ supp z = 0, suppy ∗ suppx = 2; and there are
4 ·
(
26
2

)
= 1300 z’s in A with the additional conditions (x, z) = (y, z) = 0,

suppx ∗ supp z = 0, suppy ∗ suppx = 0. The numbers 64 · 30, 64 · 30,
64 · 1300 = 83200 yield another row in Table 6.1.

There are 28860 (resp. 22140) pairs 〈u,v〉 in C8(i) × C8(i) (1 ≤ i ≤ 2)
(resp. 3 ≤ i ≤ 4) such that u∗v = 0. For a fixed x ∈ B there are 128 vectors
y ∈ B satisfying (x,y) = 0 and suppx∗suppy = 0. For each pair 〈x,y〉 in B2

with the above conditions there are 2 ·
(
8
2

)
= 56 z’s in A with the additional

conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 2, suppy ∗ suppx = 0;
there are 56 z’s in A with the additional conditions (x, z) = (y, z) = 0,
suppx ∗ supp z = 0, suppy ∗ suppx = 2; and there are 4 ·

(
24
2

)
= 1104 z’s

in A with the additional conditions (x, z) = (y, z) = 0, suppx ∗ supp z = 0,
suppy ∗ suppx = 0. The numbers 128 · 56 = 7168, 7168, 128 · 1104 = 141312
reflect some of the last rows in Table 6.1. Altogether we get

(5) µB,B,A =



27 · (285 · 70 · 2008 + 5040 · 48 · 1540
+ 53760 · 64 · 1360 + 22140 · 128 · 1216)

= 1092855490560 for the lattices N (C1),N (C2),
27 · (285 · 70 · 2008 + 11760 · 48 · 1540

+ 40320 · 64 · 1360 + 28860 · 128 · 1216)
= 1140584048640 for the lattices N (C3),N (C4).

Table 6.1

11 10 01 00 C1 C2 C3 C4 freq

8 0 0 32 285 285 285 285 14056
4 4 4 28 5040 5040 11760 11760 73920
2 6 6 26 53760 53760 40320 40320 87040
0 8 8 24 22140 22140 28860 28860 155648

Computation of µB,B,B. Explaining every detail of the computation
would take too much space, therefore we only describe the inner product
relations of the vectors x,y and z in B. The description is well-controlled
by some terms of the triweight enumerator of a code C:

T W(C, X111, X110, X101, X011, X100, X010, X001, X000)

=
∑

u,v,w∈C
X
w111(u,v,w)
111 X

w110(u,v,w)
110 X

w101(u,v,w)
101 X

w011(u,v,w)
011 X

w100(u,v,w)
100

·Xw010(u,v,w)
010 X

w001(u,v,w)
001 X

w000(u,v,w)
000 ,

where X111, X110, X101, X011, X100, X010, X001 and X000 are algebraically in-
dependent variables over the field of complex numbers, and wijh(u,v,w)
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(0 ≤ i, j, h ≤ 1) is the number of coordinates k (1 ≤ k ≤ n) such that
the kth component of u takes the value i, the kth component of v takes
the value j, and the kth component of w takes the value h. Here we give a
picture of generalized weights:

u

v

w

w111 w110 w101 w011 w100 w010 w001 w000

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

For our present computation we only need the terms coming from the
codewords u,v,w of weight 8; for instance, in the case of C1, terms such as

11760X2
111X

2
110X

2
101X

2
011X

2
100X

2
010X

2
001X

26
000

and
42000X4

111X
4
111X

4
100X

4
010X

4
001X

24
000.

There are 51 types of terms that correspond to triples of codewords of
weight 8.

For a fixed x ∈ B we want to count the vectors y, z ∈ B such that
(x,y) = (x, z) = (y, z) = 0. However the frequencies of the pairs 〈y, z〉
vary according to the intersection relation among suppx, suppy, supp z.
We give a typical instance of counting the number of pairs y and z when
suppx, suppy, supp z are specified. Consider the triple of codewords u,v,w
of weight 8 corresponding to the term X2

111X
2
110X

2
101X

2
011X

2
100X

2
010X

2
001X

26
000.

For a fixed x ∈ B we look for y, z ∈ B satisfying (x,y) = (x, z) =
(y, z) = 0 and suppx = u, suppy = v, supp z = w. Without loss of gen-
erality we may suppose that the nonzero coordinate positions of x ∈ B
are I1 = {i1, . . . , i8} and the coordinates xi, i ∈ I1, take the value 1.
Further we may suppose that the nonzero coordinate positions of y are
I2 = {i1, i2, . . . , i4, i9, . . . , i12}. The nonzero coordinate values yi (i ∈ I2)
are ±1 with the additional condition that the product of those 8 values
should be 1. Let I3 = {i1, i2, i5, i6, i9, i10, i13, i14} be the nonzero coordinate
positions of z together with the conditions that zi = ±1 (i ∈ I3) and the
product of those 8 values should be 1. We understand that indices with dif-
ferent numbers are different. We seek all the solutions of the simultaneous
equations
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i∈I1∩I2

yi = 0,
∑

i∈I1∩I3

zi = 0,
∑

i∈I2∩I3

yizi = 0,
∏
i∈I2

yi =
∏
i∈I3

zi = 1.

The number of solutions, computed by hand or by computer programming,
is 832. This is the value in the last column and the ninth row in Table 6.2.
The other entries of the last column are similarly computed.

Table 6.2

111 110 101 011 100 010 001 000 C1 C2 C3 C4 freq
8 0 0 0 0 0 0 32 285 285 285 285 2520
4 4 0 0 0 0 4 28 5040 5040 11760 11760 1248
4 0 4 0 0 4 0 28 5040 5040 11760 11760 1248
4 0 0 4 4 0 0 28 5040 5040 11760 11760 1248
0 4 4 4 0 0 0 28 5040 5040 11760 11760 1728
2 6 0 0 0 0 6 26 53760 53760 40320 40320 1920
2 0 6 0 0 6 0 26 53760 53760 40320 40320 1920
2 0 0 6 6 0 0 26 53760 53760 40320 40320 1920
2 2 2 2 2 2 2 26 13440 9408 137088 115584 832
3 1 1 1 3 3 3 25 0 16128 32256 21504 768
1 3 1 3 3 1 3 25 0 16128 32256 21504 1152
1 3 3 1 1 3 3 25 0 16128 32256 21504 1152
1 1 3 3 3 3 1 25 0 16128 32256 21504 1152
0 8 0 0 0 0 8 24 22140 22140 28860 28860 8960
0 0 8 0 0 8 0 24 22140 22140 28860 28860 8960
0 0 0 8 8 0 0 24 22140 22140 28860 28860 8960
4 0 0 0 4 4 4 24 7440 1680 42000 52752 1536
0 4 0 4 4 0 4 24 7440 1680 42000 52752 2304
0 0 4 4 4 4 0 24 7440 1680 42000 52752 2304
0 4 4 0 0 4 4 24 7440 1680 42000 52752 2304
2 2 2 0 2 4 4 24 65280 53760 201600 223104 1024
2 2 0 2 4 2 4 24 65280 53760 201600 223104 1024
2 0 2 2 4 4 2 24 65280 53760 201600 223104 1024
0 2 2 4 4 2 2 24 65280 53760 201600 223104 1536
0 4 2 2 2 2 4 24 65280 53760 201600 223104 1536
0 2 4 2 2 4 2 24 65280 53760 201600 223104 1536
1 1 1 3 5 3 3 23 445440 456960 483840 365568 1536
1 1 3 1 3 5 3 23 445440 456960 483840 365568 1536
1 3 1 1 3 3 5 23 445440 456960 483840 365568 1536
2 2 0 0 4 4 6 22 172800 165312 346752 389760 1024
2 0 2 0 4 6 4 22 172800 165312 346752 389760 1024
2 0 0 2 6 4 4 22 172800 165312 346752 389760 1024
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Table 6.2 [cont.]

111 110 101 011 100 010 001 000 C1 C2 C3 C4 freq
0 4 0 2 4 2 6 22 172800 165312 346752 389760 3072
0 4 2 0 2 4 6 22 172800 165312 346752 389760 3072
0 0 4 2 4 6 2 22 172800 165312 346752 389760 3072
0 2 4 0 2 6 4 22 172800 165312 346752 389760 3072
0 2 0 4 6 2 4 22 172800 165312 346752 389760 3072
0 0 2 4 6 4 2 22 172800 165312 346752 389760 3072
0 2 2 2 4 4 4 22 2730240 2733696 1161216 1290240 2048
1 1 1 1 5 5 5 21 3763200 3827712 1193472 1053696 2048
2 0 0 0 6 6 6 20 218880 193536 225792 311808 0
0 2 0 2 6 4 6 20 2749440 2735040 2153088 2131584 4096
0 2 2 0 4 6 6 20 2749440 2735040 2153088 2131584 4096
0 0 2 2 6 6 4 20 2749440 2735040 2153088 2131584 4096
0 0 4 0 4 8 4 20 225840 244272 827568 773808 6144
0 4 0 0 4 4 8 20 225840 244272 827568 773808 6144
0 0 0 4 8 4 4 20 225840 244272 827568 773808 6144
0 2 0 0 6 6 8 18 1224960 1236480 1532160 1510656 8192
0 0 2 0 6 8 6 18 1224960 1236480 1532160 1510656 8192
0 0 0 2 8 6 6 18 1224960 1236480 1532160 1510656 8192
0 0 0 0 8 8 8 16 261540 236772 559332 634596 16384

We explain how to compute µB,B,B by using Table 6.2. Let ai (1 ≤ i ≤ 51)
be the ith entry of the 9th column, and mi (1 ≤ i ≤ 51) be the ith entry in
the last column. Then the quantity µB,B,B for the lattice N (C1) is given by

(6) µB,B,B = 27 ·
51∑
i=1

aimi.

The result is µB,B,B = 11892863646720. In the same way other three cases
are computed:

(7) µB,B,B =


11892736244736 for the code C2,
13601831500800 for the code C3,
13601831500800 for the code C4.

Using the formula (2) together with (3)–(7) we get

a


2 0 0

0 2 0
0 0 2

,N (C1)

 = 15596332778880,
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a


2 0 0

0 2 0
0 0 2

,N (C2)

 = 15596205376896,

a


2 0 0

0 2 0
0 0 2

,N (C3)

 = 17448486307200,

a


2 0 0

0 2 0
0 0 2

,N (C4)

 = 17448486307200.

These values are the basis of our theorems in Section 4.

Remark 1. Along with the present method of computation we can give
a method to compute

a


2 0 0

0 2 1/2
0 1/2 2

,N (Ci)

, a


 2 0 1/2

0 2 1/2
1/2 1/2 2

,N (Ci)

 (1 ≤ i ≤ 4).

These values will serve as checks for the present computations.

6. Proofs of Theorems 4.1, 4.2 and 4.3

Proof of Theorem 4.1. Let L1 and L2 be the latticesM11 andM12 respec-
tively in Section 2.6.1. Since the two codes C1 and C2 have identical biweight
enumerators by Theorem 5.4, L1 and L2 have identical Siegel theta series of
degree 2. By Table 3.3 we know that a(T10,L1) 6= a(T10,L2), therefore their
Siegel theta series of degree 3 differ.

Proof of Theorem 4.2. Let L3 and L4 be the lattices M13 and M14 re-
spectively in Section 2.6.1. By Table 3.3 we see that a(Tj ,L3) = a(Tj ,L4) for
0 ≤ j ≤ 10. Then by Proposition 3.1 we deduce that ϑ3(τ,L3) = ϑ3(τ,L4).
In particular, the theta series of degrees 1 and 2 coincide.

Proof of Theorem 4.3. Suppose that two doubly even self-dual binary
extremal codes C,C′ of length 40 have identical triweight enumerators.
Then they also have identical biweight enumerators. The Fourier coefficients
a(Tj ,N (C)) may be written in terms of coefficients of the weight enumer-
ators as shown by Proposition 5.3, equations (5) and (6). From this we see
that a(Tj ,N (C)) = a(Tj ,N (C′)) for 0 ≤ j ≤ 10. By Proposition 3.1 we
have ϑ3(τ,N (C)) = ϑ3(τ,N (C′)).
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Remark 2. The two codes C3 and C4 have different triweight enumer-
ators as shown by Table 6.2, but they have identical Siegel theta series of
degree 3. This contrasts with Theorem 5.4.
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