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Determining modular forms of general level
by central values of convolution L-functions

by

Yichao Zhang (Pohang)

1. Introduction. This note generalizes the work by Ganguly, Hoffstein
and Sengupta [2] to the case of general level.

In [6], Luo and Ramakrishnan proved that two cuspidal normalized new-
forms f and f ′ must be equal if L(1/2, f, χd) = L(1/2, f ′, χd) for any
quadratic character. Chinta and Diaconu gave a generalization of this result
to GL(3)-forms in [1]. By twisting all of the newforms of a fixed weight
and infinitely many prime levels p, Luo [5] showed that if the L-values at
1/2 coincide, then f = f ′. In [2], the authors considered forms of level 1,
and proved an analogous result by twisting newforms of fixed level 1 and
infinitely varying weight k. They predicted that the same method should
apply to the case of general level. We follow their ideas and prove

Theorem 1. For i = 1, 2, let gi ∈ Snew
li

(Ni, χi) with χ1 = 1. If for
infinitely many k it is true that for all f ∈ Snew

k (1),

L(1/2, f ⊗ g1) = L(1/2, f ⊗ g2),

then g1 = g2.

In the case of both χ1, χ2 non-trivial, we have the following

Theorem 2. For i = 1, 2, let gi ∈ Snew
li

(Ni, χi) with χ1, χ2 6= 1. If for
infinitely many k it is true that for all f ∈ Snew

k (1),

L(1/2, f ⊗ g1) = L(1/2, f ⊗ g2) and L′(1/2, f ⊗ g1) = L′(1/2, f ⊗ g2),

then:

(a) L(1, χ1)− ε(g1)L(1, χ1) = L(1, χ2)− ε(g2)L(1, χ2),
(b) if L(1, χ1)− ε(g1)L(1, χ1) 6= 0, then g1 = g2.

The main trick in [2] is to open up the Kloosterman sums and apply the
functional equations for the additive twists of our modular L-functions. We

2010 Mathematics Subject Classification: Primary 11F11; Secondary 11F30.
Key words and phrases: modular forms, convolution L-functions, central values.

DOI: 10.4064/aa150-1-5 [93] c© Instytut Matematyczny PAN, 2011



94 Y. Zhang

shall apply the same idea, combined with some results on modular forms of
square-free level. Moreover for Theorem 2, we need to deal with a different
integral which gives us the preferable residue but requires information on
the derivatives of convolution L-functions.

A large amount of calculations will be omitted; the reader should refer
to those in [2] for more details.

2. Preparation. Let g ∈ Snew
l (N,χ) and f ∈ Snew

k (1). Let e(z) = e2πiz.
Assume

g(z) =
∞∑
n=1

ag(n)e(nz),

and set λg(n) = ag(n)/n(l−1)/2. It is now well-known that |λg(p)| ≤ 2; this
is the Ramanujan conjecture for p - N , and for p |N see Proposition A.2
in [4]. Therefore,

|λg(n)| ≤ τ(n),

where τ(n) is the number of positive divisors of n. If g is only a cusp form,
the bound is λg(n) = O(

√
n).

We associate to g the (normalized) L-function

L(s, g) =
∞∑
n=1

λg(n)n−s.

It satisfies the functional equation

Λ(s, g) =
(√

N

2π

)s
Γ

(
s+

l − 1
2

)
L(s, g) = ikΛ(1− s, g|ωN ),

where

ωN =
(

0 −1
N 0

)
.

We know that g|ωN can be normalized to be a newform as follows:

g|ωN := ηg(N)g, g(z) =
∞∑
n=1

ag(n)e(nz) ∈ Snew
l (N,χ).

Here |ηg(N)| = 1.
We now consider the additive twist of L(s, g),

L(s, g, a/c) =
∞∑
n=1

λg(n)e(an/c)n−s,

where a, c are coprime integers, c > 0. In general, if our modular group has
width h at ∞, the factor e(an/ch) is expected instead. We shall need the
following lemma:
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Lemma 3. Let g ∈ Sl(N,χ) and set g∗ = g|α for any fixed

α =
(
a b

c d

)
∈ SL2(Z), with c > 0.

Suppose at ∞,

g(z) =
∞∑
n=1

λg(n)n(l−1)/2e(nz), g∗(z) =
∞∑
n=1

λg∗(n)n(l−1)/2e(nz/h),

where h is the width at ∞ of α−1Γ1(N)α. Then we have the functional
equation

(2.1)
(

2π
c

)−s−(l−1)/2

Γ

(
s+

l − 1
2

)
L(s, g, a/c)

= il
(

2π
ch

)s−(l+1)/2

Γ

(
−s+

l + 1
2

)
L(1− s, g∗,−d/c).

Proof. The proof involves standard arguments and can be found, for
example, in [8, Lemma 4]; the only difference is the appearance of the
width h.

We note here that in the case of square-free level, one can get a more
accurate functional equation (see [4, (A.10)]).

For later use, let us fix a set of representatives for

Γ1(N)\SL2(Z) =
µ⋃
i=1

Γ1(N)αi

where the union is disjoint, and set g∗i = g|αi .
Given f, g as above, the Rankin–Selberg convolution L-function is

L(s, f ⊗ g) = L(2s, χ)
∞∑
n=1

λf (n)λg(n)
ns

.

It satisfies the functional equation (assuming k > l)

Λ(s, f ⊗ g) =
(
N

4π2

)s
Γ

(
s+

k − l
2

)
Γ

(
s− 1 +

k + l

2

)
L(s, f ⊗ g)(2.2)

= ε(g)Λ(1− s, f ⊗ g),

where ε(g) = ηg(N)2 and g(z) =
∑∞

n=1 ag(n)e(nz). Note that f = f . More-
over, this gives an analytic continuation over the whole complex s-plane.

3. Proof of Theorem 1. Let G(u) = eu
2
. For X > 0, let

If⊗g(X, s) =
1

2πi

�

Re(u)=3/2

XuΛ(s+ u, f ⊗ g)
G(u)
u

du.
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By moving the contour to Re(u) = −3/2, collecting the residue at u = 0,
applying functional equation (2.2) and changing variable u→ −u, we obtain

(3.1) Λ(s, f ⊗ g) = If⊗g(X, s) + ε(g)If⊗g(X−1, 1− s).

Set
bf⊗g(n) =

∑
t:n=mt2

χ(t)λf (m)λg(m),

and then

L(s, f ⊗ g) =
∞∑
n=1

bf⊗g(n)n−s.

Straightforward calculations (see [2]) give us

If⊗g(X, s) =
(
N

4π2

)s
Γ

(
s+

k − l
2

)
Γ

(
s− 1 +

k + l

2

)
(3.2)

×
∞∑
n=1

bf⊗g(n)
ns

Vs

(
4π2n

XN

)
,

where for y > 0,

Vs(y) =
1

2πi

�

Re(u)=3/2

y−u
Γ
(
s+ u+ k−l

2

)
Γ
(
s+ u− 1 + k+l

2

)
Γ
(
s+ k−l

2

)
Γ
(
s− 1 + k+l

2

) G(u)
u

du.

Plug (3.2) into (3.1), evaluate both sides at s = 1/2, X = 1, and cancel the
same gamma factors to obtain

(3.3) L(1/2, f ⊗ g) =
∞∑
n=1

bf⊗g(n) + ε(g)bf⊗g(n)√
n

V1/2

(
4π2n

N

)
.

Now we fix a positive integer q which is relatively prime to N , and
consider the series∑

f∈Snew
k (1)

L(1/2, f ⊗ g)
λf (q)
ωf

=
∞∑
n=1

1√
n
V1/2

(
4π2n

N

) ∑
n=mt2

(χ(t)λg(m) + ε(g)χ(t)λg(m))

×
∑

f∈Snew
k (1)

λf (q)λf (m)
ωf

.

By the Petersson trace formula ([3, Theorem 3.6]),∑
f∈Snew

k (1)

λf (q)λf (m)
ωf

= δ(m, q) + 2πi−k
∞∑
c=1

S(m, q; c)
c

Jk−1

(
4π
√
mq

c

)
,
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where S(m, q; c) is the Kloosterman sum and Jk−1(x) is the J-Bessel func-
tion. Moreover λg(q) = χ(q)λg(q) (see [4, (A.5)]), so∑

f∈Snew
k (1)

L(1/2, f ⊗ g)
λf (q)
ωf

=
λg(q)√

q
Mq(k, l, χ) + Eg,q(k),(3.4)

where

(3.5) Mq(k, l, χ) =
∞∑
n=1

1
n
V1/2

(
4π2n2q

N

)
(χ(n) + ε(g)χ(qn))

and

Eg,q(k) =
∞∑
n=1

1√
n
V1/2

(
4π2n

N

) ∑
n=mt2

(λg(m)χ(t) + ε(g)λg(m)χ(t))(3.6)

× 2πi−k
∞∑
c=1

S(m, q; c)
c

Jk−1

(
4π
√
mq

c

)
.

3.1. The main term. As in [2], put a = k+l−1
2 and b = k−l+1

2 . Open
the integral in (3.5) to obtain

Mq(k, l, χ) =
1

2πi

�

Re(u)=3/2

Γ (u+ a)Γ (u+ b)
Γ (a)Γ (b)

G(u)
u

(
4π2q

N

)−u
× (L(2u+ 1, χ) + ε(g)χ(q)L(2u+ 1, χ)) du,

where L(s, χ) is the Dirichlet L-function associated to χ. Now we move the
contour to Re(u) = −1/2 and collect the residue at u = 0.

The integral along Re(u) = −1/2 is O(1/k) as in [2].
If χ = 1, then ε(g) = ηg(N)2 = 1 and the same calculations as in [2] give

the residue

Γ ′

Γ
(a) +

Γ ′

Γ
(b) + 2γ0 − log

4π2q

N
= 2 log k +O(1).

If on the other hand χ 6= 1, then L(2u + 1, χ) and L(2u + 1, χ) are
holomorphic and non-vanishing at u = 0, hence the residue is given by
L(1, χ) + ε(g)χ(q)L(1, χ).

Hence

Mq(k, l, χ) =
{

2 log k +O(1), χ = 1,
L(1, χ) + ε(g)χ(q)L(1, χ) +O(1/k), χ 6= 1.

(3.7)
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3.2. The error term. Apply the Mellin inversion formula to the J-
Bessel function as in [2] to obtain (here α = −1/2− δ),

(3.8) Eg,q(k) =
ik−2

4π

�

Re(u)=3/2

�

Re(s)=α

G(u)
u

Γ (u+ a)Γ (u+ b)
Γ (a)Γ (b)

Γ
(
k−1+s

2

)
Γ
(
k+1−s

2

)
× Tg,q(u, s)q−s/2(2π)−2u−sNu ds du,

where

Tg,q(u, s) = L(2u+ 1, χ)Sg,q(u, s) + ε(g)L(2u+ 1, χ)Sg,q(u, s)

and

(3.9) Sg,q(u, s) =
∞∑
m=1

∞∑
c=1

λg(m)S(m, q; c)
m1/2+u+s/2c1−s

.

Note that (3.9) is absolutely convergent by the Weil bound for the Kloos-
terman sum. Now let us apply the trick in [2] by opening the Kloosterman
sum and applying the functional equations (2.1) to obtain

Sg,q(u, s) =
∞∑
c=1

∑∗

a(c)

e(qa/c)cs−1L(1/2 + u+ s/2, g, a/c)

= il
Γ (−u− s/2 + l/2)
Γ (u+ s/2 + l/2)

∞∑
c=1

∑∗

a(c)

e(qd/c)L(1/2−u−s/2, g∗i ,−d/c)
(2π)−2u−sc1+2uhu+s−l/2

,

where d, g∗i and h are fixed by first choosing b, d ∈ Z such that ad− bc = 1
and then taking the corresponding coset representative for

Γ1(N)
(
a b

c d

)
.

Move the line of integration in s to Re(s) = α = −6 so that the L-series are
all absolutely convergent. So this double sum is absolutely convergent and
the inner sum equals

(2π)2u+s

c1+2u

∑
a(c)

∗
h−u−(s−l)/2

∞∑
m=1

λg∗i (m)
m1/2−u−s/2 e

(
(qh−m)d

ch

)
.
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Hence along s = −6 + it and u = 3/2 + iv,

|Sg,q(u, s)| ≤ (2π)−3

∣∣∣∣Γ (−u− s/2 + l/2)
Γ (u+ s/2 + l/2)

∣∣∣∣ ∞∑
c=1

∑
a(c)

∗ ∞∑
m=1

h(3+l)/2|λg∗i (m)|
m2c4

≤ (2π)−3

∣∣∣∣Γ (−u− s/2 + l/2)
Γ (u+ s/2 + l/2)

∣∣∣∣ ∞∑
c=1

∞∑
m=1

ϕ(c)h(3+l)/2

m2c4

µ∑
i=1

|λg∗i (m)|

�
∣∣∣∣Γ (−u− s/2 + l/2)
Γ (u+ s/2 + l/2)

∣∣∣∣,
since λ∗i (m) = O(

√
m) and 1 ≤ h ≤ N . So

(3.10) |Eg,q(k)|

�
∞�

−∞

∞�

−∞

∣∣∣∣G(u)
u

Γ (u+ a)Γ (u+ b)
Γ (a)Γ (b)

Γ
(
k−1+s

2

)
Γ
(
k+1−s

2

) Γ (−u− s/2 + l/2)
Γ (u+ s/2 + l/2)

∣∣∣∣ dt dv
� 1,

by the same calculations as in [2].

3.3. End of proof of Theorem 1. By assumption, for infinitely many
k and any f ∈ Snew

k (1), we have L(1/2, f ⊗ g1) = L(1/2, f ⊗ g2). Then by
(3.4), for a prime q = p not dividing N1N2, we have

(3.11)
λg1(p)
√
p
Mp(k, l, χ1) + Eg1,p(k) =

λg2(p)
√
p
Mp(k, l, χ2) + Eg2,p(k).

Since χ1 = 1, χ2 must also be trivial, because otherwise for any p with
λg1(p) 6= 0, by (3.7) and (3.10), the left-hand side is asymptotically equal to

2λg1(p)
√
p

log k,

while the right-hand side is only O(1). Now (3.11) becomes

2
λg1(p)
√
p

log k = 2
λg2(p)
√
p

log k +O(1),

hence λg1(p) = λg2(p) for almost all p. So g1 = g2, since they are newforms.

4. Proof of Theorem 2. If χ is non-trivial, we are not able to obtain
log k in the main term. The idea is to raise the power of u in If⊗g(X, s)
to u2, which produces the desirable log k in the main term. However, we
shall need information about the derivatives of the convolution L-functions;
moreover, we cannot get rid of the gamma factors as we did in (3.3), but a
proper alternative D(1/2, f ⊗ g) will be used to solve this problem.

Since most of the proof and calculations and arguments in this section
are similar to those in Section 3, we only note down the main steps.
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Let g ∈ Snew
l (N,χ) with χ non-trivial, and f ∈ Snew

k (1).

As before, let G(u) = eu
2
. For X > 0, let

Jf⊗g(X, s) =
1

2πi

�

Re(u)=3/2

XuΛ(s+ u, f ⊗ g)
G(u)
u2

du.

Again, by moving the contour to Re(u) = −3/2, collecting the residue at
u = 0, applying functional equation (2.2) and changing variable u → −u,
we obtain

(4.1) Λ′(s, f ⊗ g) +Λ(s, f ⊗ g) logX = Jf⊗g(X, s)− ε(g)Jf⊗g(X−1, 1− s).

Evaluate both sides at s = 1/2 and X = 1 to obtain

Λ′(1/2, f ⊗ g) =
(
N

4π2

)1/2

Γ

(
k − l + 1

2

)
Γ

(
k + l − 1

2

)
(4.2)

×
∞∑
n=1

bf⊗g(n) + ε(g)bf⊗g(n)√
n

U1/2

(
4π2n

N

)
,

where

Us(y) =
1

2πi

�

Re(u)=3/2

y−u
Γ
(
s+ u+ k−l

2

)
Γ
(
s+ u− 1 + k+l

2

)
Γ
(
s+ k−l

2

)
Γ
(
s− 1 + k+l

2

) G(u)
u2

du.

It is easy to see that

(4.3)
Λ′(1/2, f ⊗ g)(

N
4π2

)1/2
Γ
(
k−l+1

2

)
Γ
(
k+l−1

2

)
=
(

log
N

4π2
+
Γ ′

Γ

(
k − l + 1

2

)
+
Γ ′

Γ

(
k − l + 1

2

))
L(1/2, f ⊗ g)

+ L′(1/2, f ⊗ g)
= (2 log k +O(1))L(1/2, f ⊗ g) + L′(1/2, f ⊗ g),

since
Γ ′

Γ
(s) = log s+O(|s|−1).

Now denote D(1/2, f ⊗ g) = 2 log k L(1/2, f ⊗ g) + L′(1/2, f ⊗ g). For
any positive integer q with (q,N) = 1, consider the sum

(4.4)
∑

f∈Snew
k (1)

D(1/2, f ⊗ g)
λg(q)
ωf

.

By (4.2), (4.3), the proof of Theorem 1 and the Petersson trace formula,
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(4.4) equals

(4.5)
∑

f∈Snew
k (1)

(
Λ′(1/2, f ⊗ g)(

N
4π2

)1/2
Γ
(
k−l+1

2

)
Γ
(
k+l−1

2

) +O(1)L(1/2, f ⊗ g)
)
λg(q)
ωf

=
∑

f∈Snew
k (1)

Λ′(1/2, f ⊗ g)(
N

4π2

)1/2
Γ
(
k−l+1

2

)
Γ
(
k+l−1

2

) λg(q)ωf
+O(1)

=
∑

f∈Snew
k (1)

∞∑
n=1

bf⊗g(n)− ε(g)bf⊗g(n)√
n

U1/2

(
4π2n

N

)
λg(q)
ωf

+O(1)

=
λg(q)√

q
M̃q(k, l, χ) + Ẽg,q(k) +O(1),

where

(4.6) M̃q(k, l, χ) =
∞∑
n=1

U1/2

(
4π2n2q

N

)
(χ(n)− ε(g)χ(qn))

and

Ẽg,q(k) =
∞∑
n=1

1√
n
U1/2

(
4π2n

N

) ∑
n=mt2

(λg(m)χ(t)− ε(g)λg(m)χ(t))(4.7)

× 2πi−k
∞∑
c=1

S(m, q; c)
c

Jk−1

(
4π
√
mq

c

)
.

As in Section 3.1, we obtain

(4.8) M̃q(k, l, χ) =
1

2πi

�

Re(u)=3/2

Γ (u+ a)Γ (u+ b)
Γ (a)Γ (b)

G(u)
u2

(
4π2q

N

)−u
× (L(2u+ 1, χ)− ε(g)χ(q)L(2u+ 1, χ)) du.

As before, by moving the contour to Re(u) = −1/2 and collecting the residue
at u = 0, we obtain

(4.9) M̃q(k, l, χ) = (L(1, χ)− ε(g)L(1, χ)) log k +O(1).

The calculations in Section 3.2 can be carried out here with little modi-
fication and we obtain

(4.10) Ẽg,q(k) = O(1).

Take q such that (q,N1N2) = 1 and (4.4) is independent of g = g1 or
g = g2, under the assumption of Theorem 2. So by (4.5), (4.9) and (4.10),
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we have

(4.11)
λg1(q)
√
q

(L(1, χ1)− ε(g1)L(1, χ1)) log k

=
λg2(q)
√
q

(L(1, χ2)− ε(g2)L(1, χ2)) log k +O(1).

If L(1, χ1)−ε(g1)L(1, χ1) = 0, then take q to be a prime such that λg2(q) 6= 0
and by (4.11), L(1, χ2)−ε(g2)L(1, χ2) = 0. Part (a) of Theorem 2 is proved.

Now assume L(1, χ1)− ε(g1)L(1, χ1) 6= 0. Take any two distinct primes
p1 and p2 such that λg1(p1), λg2(p2) 6= 0; this is possible since g1 is a newform
(see [7, Theorem 4.6.8], for example). Let

c =
L(1, χ1)− ε(g1)L(1, χ1)
L(1, χ2)− ε(g2)L(1, χ2)

.

Now by (4.11),

(4.12) cλg1(q) = λg2(q),

and by taking q = p1, p2 and p1p2, we have c2 = c, hence c = 1.
So for any q with (q,N1N2) = 1, we have λg1(q) = λg2(q). Since both

g1, g2 are newforms, g1 = g2 (see, for example, [7, Theorem 4.6.19]). The
proof of Theorem 2 is complete.

Remark. If L(1, χ) − ε(g)L(1, χ) = 0, then we are not able to distin-
guish two newforms of this kind in this way. For example, if χ is real and
non-trivial, g has real coefficients and ε(g) = 1, then we are not able to
distinguish two newforms of this kind by this method.

Remark. Information on central values of the derivative L-functions is
necessary, since for example, for newforms g with real coefficients, ε(g) = −1
and χ real but non-trivial, we have L(1/2, f ⊗ g) = 0 for any f , but

L(1, χ)− ε(g)L(1, χ) = 2L(1, χ) 6= 0.
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