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1. Introduction. Let K be an algebraically closed field complete with
respect to a non-trivial absolute value (or valuation) | · |. Then K is said to
be non-archimedean if |z − w| ≤ max{|z|, |w|} (z, w ∈ K) (e.g. p-adic Cp).
Otherwise, K is said to be archimedean, and then K ∼= C. It is always
assumed that K is of characteristic 0 in this article. For non-archimedean K,
the projective line P1 = P1(K) is not compact. The Berkovich projective line
P1 = P1(K) is a compact augmentation of P1 and contains P1 as its dense
subset. For the details on P1, see [1, §2], [11, §2.1]. For archimedean K,
P1 reduces to P1.

Let f be a rational function on P1 of algebraic degree d > 1. The action
of f on P1 continuously extends to an open and (fiber-)discrete map on P1.
The (Berkovich) Julia set J (f) is the set of all z0 ∈ P1 at which⋂

U : open in P1, z0∈U

(⋃
k∈N

fk(U)
)

= P1 \ E(f)

(cf. [11, Definition 2.8]). Here the exceptional set E(f) of f consists of at
most two points in P1. The (Berkovich) Fatou set F(f) is P1 \ J (f).

Let f# denote the chordal derivative of f . A periodic point p ∈ P1 of
f such that fk(p) = p is said to be superattracting, attracting, indifferent
or repelling if the absolute value of the multiplier (fk)#(p) = |(fk)′(p)| is
= 0, < 1, = 1 or > 1, respectively. Let us denote the sets of superattracting,
attracting and repelling periodic points of f in P1 by SAT (f), AT (f), R(f),
respectively. For non-archimedean K, the following is an open problem: if

2010 Mathematics Subject Classification: Primary 37P50; Secondary 11S82.
Key words and phrases: repelling periodic points, Lyapunov exponent, logarithmic equidis-
tribution, non-archimedean dynamics, complex dynamics.

DOI: 10.4064/aa152-3-3 [267] c© Instytut Matematyczny PAN, 2012



268 Y. Okuyama

the classical Julia set J (f) ∩ P1 is non-empty, is it true that

R(f) = J (f) ∩ P1?(1.1)

The closure of R(f) is taken in P1 with respect to the chordal distance.
The Dirac measure at w ∈ P1 is denoted by δw. For a (possibly constant)

rational function a on P1, there are exactly dk + deg a roots of the equation
fk = a in P1 counting their multiplicity, unless fk 6≡ a. Let us consider the
sequence of the averaged distributions

νak :=
1

dk + deg a

∑
w∈P1: fk(w)=a(w)

δw

of roots of fk = a in P1, where the sum takes into account the multiplicity
of each root. Let µf be the equilibrium measure of f on P1. The function
f# extends continuously to P1. We define the Lyapunov exponent of µf as

L(f) :=
�

P1

log f# dµf .

We first show a logarithmic equidistribution of periodic points with re-
spect to µf :

Theorem 1. Let f be a rational function on P1 of degree d > 1. Then

lim
k→∞

1
kdk

∑
z

log(fk)#(z) = L(f),

where the sum is over all z ∈ (AT (f)\SAT (f))∪R(f) such that fk(z) = z.

As an application of Theorem 1, we give a partial positive answer to the
question (1.1).

Theorem 2. Let f be a rational function on P1 of degree > 1. If
L(f) > 0, then R(f) = J (f) ∩ P1.

Remark 1.1. For archimedean K, L(f) > 0 always holds, and Theo-
rem 2 can give yet another proof of the repelling density in the archimedean
case. But L(f) > 0 is not always the case for non-archimedean K.

In Section 5, we also show the formula

L(f) = − log |d| − 2
d

log |ResF |+
2d−2∑
j=1

GF (CFj )(1.2)

(due to DeMarco [9] for archimedean K; the notation will be explained in
Section 5). Theorem 2 may be stated without invoking the Berkovich space
(L(f) uses it).
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Theorem 3. Let f be a rational function on P1 of degree d > 1. If

− log |d| − 2
d

log |ResF |+
2d−2∑
j=1

GF (CFj ) > 0,

then R(f) = J (f) ∩ P1.

This improves Bézivin [7, Théorème], where f was a polynomial and
some additional conditions were assumed.

2. Background. For the foundations of potential theory and dynamics
on P1, see [1], [11]. For archimedean K, see also [21, III, §11], [5, VII].

Let f be a rational function on P1 = P1(K) of degree d > 1.

Notation 2.1. Let us also denote by | · | both the maximal norm (used
for non-archimedean K) and the Euclidean norm (used for archimedean K)
on K2. The origin of K2 is denoted by 0, and π is the canonical projection
K2 \ {0} → P1. The (normalized) chordal distance [z, w] on P1 is defined as

[z, w] := |p ∧ q|/(|p| · |q|) (≤ 1)

if z = π(p) and w = π(q). Here we put (z0, z1)∧ (w0, w1) := z0w1− z1w0 on
K2 ×K2. The chordal derivative f# is

f#(z) := lim
P13w→z

[f(w), f(z)]/[w, z],

and extends continuously to P1. The critical set C(f) of f is defined as
C(f) := {c ∈ P1; f#(c) = 0}.

A non-degenerate homogeneous lift F of f , which is unique up to multipli-
cation in K \ {0}, is a homogeneous polynomial endomorphism of algebraic
degree d on K2 such that π ◦ F = f ◦ π on K2 \ {0} and F−1(0) = {0}.

The extension of f on P1 induces the push-forward f∗ and pullback f∗

on both spaces of continuous functions and of Radon measures on P1 ([1,
§9], [11, §2.2]).

Let us denote by Ω both the Dirac measure at the canonical (Gauss)
point Scan ∈ P1 (defined for non-archimedean K [1, §1.2], [11, §2.1]) and the
normalized Fubini–Study area element ω = |dz|/(π(1 + |z|2)) on P1 (defined
for archimedean K). For non-archimedean K, the chordal distance [z, w]
canonically extends to the generalized Hsia kernel δScan(z, w) on P1 with
respect to Scan ([1, §4.4], [11, §2.1]). For simplicity, it is also denoted by
[z, w]. Let us denote the Laplacian on P1 by ∆ ([1, §5], [10, §7.7], [20, §3]
for non-archimedean K), which is normalized as

∆ log [·, w] = δw −Ω
for each w ∈ P1 ([1, Example 5.19], [11, §2.4]; in [1] the opposite sign con-
vention on ∆ is adopted).
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The function (log |F |)/d−log |·| on K2 descends to a continuous function
TF on P1, and continuously extends to P1. Then

∆TF =
1
d
f∗Ω −Ω

([1, §10.1], [11, §3.1]). The dynamical Green function gF is the uniform limit

gF :=
∞∑
j=0

1
dj

(f j)∗TF

on P1 ([1, §10.1], [11, §3.1]). The equilibrium measure µf of f is defined as

µf := Ω +∆gF ,

which is indeed independent of the choice of F . This is an f -balanced (and
f -invariant) probability measure on P1 ([1, §10], [8, §2], [11, §3.1] for non-
archimedean K).

The exceptional set E(f) of f is the maximal f -backward invariant finite
subset of P1, which is possibly empty and consists of at most two points.
A rational function a on P1 is said to be exceptional (with respect to f) if
it identically equals a point in E(f); otherwise it is non-exceptional (with
respect to f). The equidistribution theorem for moving targets in complex
dynamics due to Lyubich [13, Theorem 3] and its non-archimedean counter-
part due to Favre and Rivera-Letelier [11, Theorème B] is

Theorem 2.2. Let f be a rational function on P1 of degree d > 1. Then
for every non-exceptional rational function a on P1, νak → µf weakly as
k →∞.

3. A logarithmic equidistribution of roots of fk = a. Let f be
a rational function on P1 of degree d > 1, and F be a non-degenerate
homogeneous lift of f .

For a Radon measure µ on P1, the chordal potential is

Uµ(z) :=
�

P1

log [z, w] dµ(w)

for z ∈ P1. Then Uµ is a quasipotential of µ in the sense that

∆Uµ = µ− µ(P1)Ω

([1, Example 5.12]). For the details on Uµ, see [1, Proposition 6.12], [11,
§2.4], [21, III, §11].

Lemma 3.1. Suppose that a sequence of positive measures νk on P1 tends
to µf weakly as k →∞. Then the convergence

lim
k→∞

�

P1

log f# dνk = L(f)

holds if for each c ∈ C(f), limk→∞ Uνk
(c) = Uµf

(c).
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Proof. By a direct computation involving Euler’s identity,

f#(z) =
1
|d|

|p|2

|F (p)|2
|detDF (p)|(3.1)

if z = π(p) (cf. [12, Theorem 4.3]). The Jacobian determinant detDF of F ,
which is a homogeneous polynomial on K2 of degree 2d− 2, factors as

detDF (p) =
2d−2∏
j=1

(p ∧ CFj )

(CFj ∈ K2 \ {0}, j = 1, . . . , 2d− 2). Then the equality (3.1) descends to

log f#(z) = − log |d|+
2d−2∑
j=1

(log [z, cj ] + log |CFj |)− 2dTF (z)(3.2)

on P1, and extends to P1. Here the cj := π(CFj ) (j = 1, . . . , 2d − 2) range
over C(f). Let us integrate (3.2) with respect to dνk(z) and dµf (z), and
take the difference of the integrals. Then

�

P1

log f# dνk − L(f) =
2d−2∑
i=1

(Uνk
(cj)− Uµf

(cj))− 2d
�

P1

TF d(νk − µf ).

Since TF is continuous on P1, the assumption limk→∞ νk = µf implies that	
P1 TF d(νk − µf )→ 0 as k →∞. Now the proof is complete.

Lemma 3.2. The chordal potential Uf∗Ω is continuous on P1. Moreover,
uniformly on P1,

lim
k→∞

U(fk)∗Ω/dk = Uµf
.(3.3)

Proof. Since ∆TF = f∗Ω/d − Ω = ∆Uf∗Ω/d, the function Uf∗Ω/d − TF
is constant on P1: this is immediate if K is archimedean, and for non-
archimedean K, it follows from the continuity of TF and a continuity prop-
erty of the chordal potential ([1, Proposition 6.12]) and a property of ∆
([1, Lemma 5.24], [11, §2.4]). Hence Uf∗Ω is continuous on P1. By the same
argument as above or a direct computation, UΩ is constant on P1. From the
definition of µf , we have µf−(fk)∗Ω/dk = ∆

∑∞
j=k(f

j)∗TF /dj . Hence by the
same argument as above, the function Uµf

− U(fk)∗Ω/dk −
∑∞

j=k(f
j)∗TF /dj

is constant on P1. Integrating this in dΩ, by the Fubini theorem, we have

Uµf
(z)− U(fk)∗Ω/dk(z) =

�

P1

∞∑
j=k

(f j)∗TF
dj

d(δz −Ω),

which tends to 0 uniformly in z ∈ P1 as k →∞.

For rational functions f, a on P1, the function z 7→ [f(z), a(z)] on P1

continuously extends to P1. Let us denote this extension by [f, a]P1(z).
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Lemma 3.3. Let a be a non-exceptional rational function on P1, and let
(Sk) be a sequence of subsets of P1. Then for every z ∈ P1,

Uνa
k |(P1\Sk)(z)− Uµf

(z)

= lim
w→z

(
1

dk + deg a
log [fk, a]P1(w)− Uνa

k |Sk
(w)
)

+ o(1)

as k →∞.

Proof. Let a be any rational function on P1, and put dk := dk + deg a.
By convention, put a∗Ω := 0 when a is constant. Recall that UΩ is constant
on P1, and observe that

1
dk
∆ log [fk, a]P1 = νak −

(fk)∗Ω + a∗Ω

dk

([11, §3.4]). Hence by the argument used in the proof of Lemma 3.2, the
function log [fk, a]P1(·)/dk − Uνa

k
+ (U(fk)∗Ω + Ua∗Ω)/dk is constant on P1.

Integrating it in dΩ, by the Fubini theorem, we obtain

1
dk

log [fk, a]P1(·) = Uνa
k
−
U(fk)∗Ω + Ua∗Ω

dk
+

1
dk

�

P1

log [fk, a]P1 dΩ(3.4)

([18, (1.5)]), and for every z ∈ P1, by a continuity property of the chordal
potential [1, Proposition 6.12],

(3.5) lim
w→z

(
1
dk

log [fk, a]P1(w)− Uνa
k |Sk

(w)
)

= Uνa
k |(P1\Sk)(z)−

U(fk)∗Ω(z) + Ua∗Ω(z)
dk

+
1
dk

�

P1

log [fk, a]P1 dΩ.

Suppose in addition that a is non-exceptional. From (3.5) and Lem-
ma 3.2, it remains to show that

lim
k→∞

1
dk

�

P1

log [fk, a]P1 dΩ = 0(3.6)

(cf. [14]). Fix (kj) ⊂ N. By Theorem 2.2, limj→∞ ν
a
kj

= µf weakly as j →∞,
so by a standard cut-off argument,

lim sup
j→∞

Uνa
kj
≤ Uµf

.

For every z ∈ P1, taking lim supj→∞ in (3.4 for k = kj), we have
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lim sup
j→∞

1
dkj

log [fkj , a]P1(z)

= lim sup
j→∞

(
Uνa

kj
(z)−

U
(fkj )∗Ω

(z) + Ua∗Ω(z)

dkj

+
1
dkj

�

P1

log [fkj , a]P1 dΩ

)
≤ lim sup

j→∞
Uνa

kj
(z)− Uµf

(z) + lim sup
j→∞

1
dkj

�

P1

log [fkj , a]P1 dΩ,

so

lim sup
j→∞

1
dkj

log [fkj , a]P1(z) ≤ lim sup
j→∞

1
dkj

�

P1

log [fkj , a]P1 dΩ ≤ 0.(3.7)

Observe that there is a fixed point z0 of f in P1 \ E(f): for, if there is a
multiple root of f = IdP1 in P1, then this root is not in E(f). Otherwise, all
d+ 1 > 2 roots of f = IdP1 in P1 are simple, so distinct. Since #E(f) ≤ 2,
at least one root of f = IdP1 in P1 is not in E(f).

In particular, #
⋃
k∈N f

−k(z0) = ∞, so there is N ∈ N such that
f−N (z0) \ a−1(z0) 6= ∅. Take z1 ∈ f−N (z0) \ a−1(z0). For every j ∈ N
large enough, [fkj (z1), a(z1)] = [fkj−N (z0), a(z1)] = [z0, a(z1)] > 0, so

lim sup
j→∞

1
dkj

log [fkj (z1), a(z1)] = 0.

This with (3.7) for z = z1 completes the proof of (3.6).

Let a be a non-exceptional rational function on P1, and let (Sk) be a
sequence of subsets of P1 such that limk→∞ ν

a
k (Sk) = 0. Then from Theo-

rem 2.2, limk→∞ ν
a
k |(P1 \ Sk) = µf weakly. Lemmas 3.1 and 3.3 yield

Theorem 4. Let f be a rational function on P1 of degree d > 1, and
let a be a non-exceptional rational function on P1. Let (Sk) be a sequence of
subsets of P1 satisfying limk→∞ ν

a
k (Sk) = 0. Then the logarithmic equidis-

tribution
lim
k→∞

�

P1\Sk

log f# dνak = L(f)

holds if for each c ∈ C(f),

lim
k→∞

lim
P13z→c

(
1

dk + deg a
log [fk(z), a(z)]−

�

Sk

log [z, w]νak (w)
)

= 0.(3.8)

4. A proof of Theorems 1 and 2. Theorem 1 is a principal application
of Theorem 4.

Take a = IdP1 . For each k ∈ N, we take Sk = SAT (f) ∩ {w ∈ P1;
fk(w) = w}. Since #SAT (f) < ∞ (from #C(f) < ∞) and each p ∈ Sk is
simple as a root of fk = IdP1 , we have limk→∞ ν

IdP1

k (Sk) = 0. Observe also
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that from #SAT (f) <∞, for every c ∈ C(f) and every k ∈ N,

inf
w∈Sk\{c}

[c, w] ≥ inf
w∈SAT (f)\{c}

[c, w] > 0,

so that

lim
k→∞

�

Sk\{c}

log [c, w]νIdP1

k (w) = 0.(4.1)

The equality (4.1) will be used repeatedly in the rest of this section. Let
c ∈ C(f), and let us check the condition (3.8).

If c ∈ C(f)∩F(f) \ SAT (f), then the Fatou component of f containing
c is either an immediate attractive or parabolic basin of f , or is non-cyclic
under f (by the Denjoy–Wolff classification of cyclic Fatou components and
its non-archimedean counterpart due to Rivera-Letelier [17, Théorème de
Classification]). Hence infk∈N [fk(c), c] > 0, and noting that c 6∈ Sk (so
Sk = Sk \ {c}), by (4.1) we have

lim
k→∞

(
1

dk + 1
log [fk(c), c]−

�

Sk

log [c, w] νIdP1

k (w)
)

= 0.

If c ∈ C(f) ∩ SAT (f), then putting p := min{k ∈ N; fk(c) = c}, by (4.1)
we have

lim
pN3k→∞

lim
P13z→c

(
1

dk + 1
log [fk(z), z]−

�

Sk

log [z, w]νIdP1

k (w)
)

= lim
pN3k→∞

(
1

dk + 1
lim

P13z→c
log

[fk(z), z]
[z, c]

−
�

Sk\{c}

log [c, w]νIdP1

k (w)
)

= 0,

since

lim
P13z→c

log
[fk(z), z]

[z, c]
= lim

P13z→c
log
|fk(z)− c− (z − c)|

|z − c|
= log |(fk)#(c)− 1| = 0.

Noting that infk∈(N\pN)[fk(c), c] > 0 and c 6∈ Sk (so Sk = Sk \ {c}) for every
k ∈ N \ pN, by (4.1) we also have

lim
(N\pN)3k→∞

(
1

dk + 1
log [fk(c), c]−

�

Sk

log [c, w] νIdP1

k (w)
)

= 0.

Hence if c ∈ C(f) ∩ SAT (f) (⊂ F(f)), then

lim
k→∞

lim
P13z→c

(
1

dk + 1
log [fk(z), z]−

�

Sk

log [z, w]νIdP1

k (w)
)

= 0.

Recall Przytycki [16, Lemma 1] (the original proof for archimedean K
works for non-archimedean K): if c ∈ C(f)∩J (f), then there is L ≥ 1 such
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that for every k ∈ N,
[fk(c), c] ≥ L−k.

Hence if c ∈ C(f) ∩ J (f), then noting that c 6∈ Sk (so Sk = Sk \ {c}), by
(4.1) we have

lim
k→∞

(
1

dk + 1
log [fk(c), c]−

�

Sk

log [c, w] νIdP1

k (w)
)

= 0.

Now Theorem 4 (and the chain rule) implies that

1
k

( �

AT (f)\SAT (f)

log (fk)# dνIdP1

k +
�

R(f)

log (fk)# dνIdP1

k

)
=

1
k

�

P1\Sk

log (fk)# dνak =
�

P1\Sk

log f# dνak → L(f)

as k →∞. The proof of Theorem 1 is complete.

Remark 4.1. In the arithmetic setting where K = Cv for a number
field k with a non-trivial absolute value (or place) v and where f has its
coefficients in k, Theorem 1 is obtained in [19] using Roth’s theorem from
Diophantine approximation theory. For archimedean K, a version of Theo-
rem 1 is shown in [4] (see also [3]) using L(f) > 0.

Let us complete the proof of Theorem 2. Let f be a rational function on
P1 of degree > 1. Since �

AT (f)\SAT (f)

log (fk)# dνIdP1

k ≤ 0,

if L(f) > 0, then by Theorem 1, R(f) 6= ∅. By Bézivin [6, Théorème 3],
then R(f) = J (f) ∩ P1 (the original proof for p-adic K works for both
non-archimedean and archimedean K).

5. Proof of (1.2). Let f be a rational function on P1 of degree d > 1,
and F be a non-degenerate homogeneous lift of f . Let us consider the
weighted F -kernel (Arakelov–Green function of µf [1, §10.2]) on P1 defined
as

ΦF (z, w) := log [z, w]− gF (z)− gF (w),

and the F -potential of the equilibrium measure µf defined as

UF,µf
(z) :=

�

P1

ΦF (z, w) dµf (w)

on P1. For the details on UF,µ, see [1, Proposition 8.68].
Since ∆UF,µf

= µf − µf = 0, by the argument used in the proof of
Lemma 3.2, UF,µf

identically equals a constant VF on P1. For the definition
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of the homogeneous resultant ResF of F , see [9, §6]. By [9, Theorem 1.5]
(for archimedean K) and [1, §10.2] (for non-archimedean K),

VF = − 1
d(d− 1)

log |ResF |

(for a simple computation, see [15, Appendix]). The escaping rate function
(homogeneous dynamical height [1, §10.2]) of F on K2 \ {0} is

GF := gF ◦ π + log | · | = lim
k→∞

1
dk

log |F k|.

The equality (3.2) in Section 3 is rewritten as

log f#(z) = − log |d|+
2d−2∑
j=1

(ΦF (z, cj) +GF (CFj )) + 2(gF (f(z))− gF (z))

on P1, where {CFj ∈ K2 \ {0}; j = 1, . . . , 2d − 2} satisfies detDF (p) =∏2d−2
j=1 (p∧CFj ). Integrating this unintegrated version of (1.2) in dµf (z) yields

L(f) =− log |d|+ (2d− 2)VF +
2d−2∑
j=1

GF (CFj ) + 2
�

P1

gF d(f∗µf − µf )

=− log |d| − 2
d

log |ResF |+
2d−2∑
i=1

GF (CFi )

from f∗µf = µf .

Remark. For another simple computation of L(f) in the archimedean
K case, see Bassanelli–Berteloot [2, Theorem 3.1, Propositions 4.8, 4.10].
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