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A generalization of the classical circle problem

by

Yong-Gao Chen (Nanjing) and Min Tang (Wuhu)

1. Introduction and results. Let r(n) denote the number of represen-
tations of n as a sum of squares of two integers. The classical circle problem
is to study

P (x) =
∑

0≤n≤x
r(n)− πx.

The best known upper bound is due to Huxley [6]:

(1.1) P (x)� x131/416(log x)2.26.

It is conjectured that for any ε > 0,

P (x)�ε x
1/4+ε.

It is well known that

(1.2)
X�

0

P 2(x) dx = CX3/2 +Q(X),

where C ≈ 1.68396. The best known bound for Q(X) is due to Lau and
Tsang [7] (see also Nowak [9] for a similar result):

Q(X)� X(logX)(log logX).

This implies that
|P (N)| ≥ 1.5N1/4

for infinitely many positive integers N . Hence∑
0≤n≤x

r(n) = πx+ o(x1/4) cannot hold.

Let k ≥ 2 be a fixed integer and let A = {a1 ≤ a2 ≤ · · · } be an infinite
sequence of nonnegative integers. For x ≥ 0 let rk(A, x) denote the number
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of solutions of
ai1 + ai2 + · · ·+ aik ≤ x.

For a positive constant c, let

Pk(A, c, x) = rk(A, x)− cx.

In particular, if A = {0, (−1)2, 12, (−2)2, 22, (−3)2, 32, . . .}, then

r2(A, x) =
∑

0≤n≤x
r(n).

In 1956, Erdős and Fuchs [2] proved the following unusual result:

Theorem A. If A is an infinite sequence of nonnegative integers, then

r2(A,n) = cn+ o(n1/4(log n)−1/2) cannot hold

for any constant c > 0.

Jurkat (unpublished), and later Montgomery and Vaughan [8] improved
the Erdős–Fuchs theorem by eliminating the log power on the right-hand
side:

Theorem B. If A is an infinite sequence of nonnegative integers, then

r2(A,n) = cn+ o(n1/4) cannot hold

for any constant c > 0.

Up to now, the Erdős–Fuchs theorem has been extended in various di-
rections. See [1], [3], [4], [5], [10] and [11].

Recently, the authors [1] proved that

|Pk(A, c, n)| = |rk(A,n)− cn| ≥ 0.04([k/2]!)3/2(cn)1/4

for infinitely many positive integers n.
Motivated by the Erdős–Fuchs theorem and (1.2), we consider the asymp-

totic properties of
X�

0

P 2
2 (A, c, x) dx.

Since A is a general sequence, the method for the classical circle problem
cannot be applied here. Note that not even the assumption r2(A, x) = cx+
o(x) guarantees

X�

0

P 2
2 (A, c, x) dx = O(X3/2).
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For example, let A = {0, 12, 22, 32, . . .}; by (1.1) we find that

r2(A, x) = 1 +
1
4

∑
1≤n≤x

r(n) + [
√
x] =

1
4
πx+

√
x+

1
4
P (x) +O(1)

=
1
4
πx+

√
x+O(x1/3).

In this case, we have c = 1
4π and

(1.3) P2(A, c, x) = r2(A, x)− cx =
√
x+O(x1/3).

By (1.3) we get
X�

0

P 2
2 (A, c, x) dx =

X�

0

(
√
x+O(x1/3))2 dx =

1
2
X2 +O(X11/6).

Now we consider the following problem:

Problem 1.1. Is it true that for any infinite sequence A of nonnegative
integers, any c > 0 and ε > 0 we have

X�

0

P 2
2 (A, c, x) dx�A,c,ε X

3/2−ε?

In this paper, we prove that under the natural assumption of r2(A, x) =
cx+ o(x) the answer to Problem 1.1 is affirmative.

Theorem 1.2. Let A be an infinite sequence of nonnegative integers,
k ≥ 2 be a fixed integer and c be a positive constant. Then for any ε > 0 the
estimate

M�

0

P 2
k (A, c, x) dx ≥ (H(k, c)(Γ (5/2))−1 − ε)M3/2

holds for infinitely many positive integers M , where τk = k − 2[k/2] and

H(k, c) = 2−9/2e2c1/2
(
k − τk
k + 2τk

)2( k + 2τk
3(k + τk)

[
k

2

]
!
)3k/(k−τk)

.

Corollary 1.3. Let A be an infinite sequence of nonnegative integers,
k ≥ 2 be a fixed integer, and c, β be positive constants with β < 1. Assume
that rk(A, x) = cx+O(xβ). Then for any ε > 0,

|{0≤ n≤M : |Pk(A, c, n)| ≥ ((Γ (5/2))−1/2
√
H(k, c)−ε)M1/4}| �M3/2−2β

for infinitely many positive integers M .

Theorem 1.4. Let A be an infinite sequence of nonnegative integers,
k ≥ 2 be a fixed integer and c be a positive constant. Assume that rk(A, x) =
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cx+ o(x). Then for any ε > 0,
M�

0

P 2
k (A, c, x) dx ≥ (5−3/2H(k, c)− ε)

(
M

logM

)3/2

for all sufficiently large numbers M , where H(k, c) is as in Theorem 1.2.

We pose the following conjecture:

Conjecture 1.5. For any infinite sequence A of nonnegative integers,
any integer k ≥ 2 and any positive constant c,

M�

0

P 2
k (A, c, x) dx�A,c,k M

3/2

for all sufficiently large numbers M .

Remark. By (1.2), the case of the circle problem shows that if Conjec-
ture 1.5 is true then it is sharp. In the above results and the conjecture we
have the corresponding conclusions for

M∑
n=0

P 2
k (A, c, n).

These can be derived from Lemma 2.2 of Section 2. In fact, the corresponding
results are contained in the proofs.

2. Proofs. Throughout this paper, let z = re(α), where e(α) = e2πiα,
r = 1 − 1/N and α is a real number. We write F (z) =

∑
a∈A z

a, A(n) =∑
a∈A, a≤n 1 (counting repetitions).

Lemma 2.1. Let β > 0 and r = 1 − 1/N , where N is a large positive
integer. Then

∞∑
n=0

nβrn = Γ (β + 1)Nβ+1(1 + oN (1)).

The proof is similar to that of [1, Lemma 2.3].

Lemma 2.2. For positive integers M , we have
M+1�

0

P 2
k (A, c, x) dx = (1 + o(1))

M∑
n=0

P 2
k (A, c, n) +O(M logM).

Proof. Let n be a nonnegative integer. Then for n ≤ x < n+ 1 we have

Pk(A, c, x) = rk(A, x)− cx = rk(A,n)− cn+O(1) = Pk(A, c, n) +O(1).

Thus
n+1�

n

P 2
k (A, c, x) dx = P 2

k (A, c, n) +O(Pk(A, c, n)) +O(1).
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Hence
M+1�

0

P 2
k (A, c, x) dx

=
M∑
n=0

P 2
k (A, c, n) +O

( M∑
n=0

|Pk(A, c, n)|
)

+O(M)

=
M∑
n=0

P 2
k (A, c, n) +O

(√
M
( M∑
n=0

P 2
k (A, c, n)

)1/2)
+O(M)

=
( M∑
n=0

P 2
k (A, c, n)

)1/2(( M∑
n=0

P 2
k (A, c, n)

)1/2
+O(

√
M)
)

+O(M)

= (1 + o(1))
M∑
n=0

P 2
k (A, c, n) +O(M logM).

To prove Theorems 1.2 and 1.4, we first prove the following result.

Theorem 2.3. Let A be an infinite sequence of nonnegative integers,
k ≥ 2 be a fixed integer and c be a positive constant. Assume that rk(A, x) =
cx+ o(x) if k is odd. Then for any ε > 0,

∞∑
n=0

P 2
k (A, c, n)rn ≥ (H(k, c)− ε)N3/2

for all sufficiently large numbers N , where H(k, c) is as in Theorem 1.2.

Proof. Since 1 − 1/N ≥ 1 − 1/[N ] and [N ]3/2 = N3/2(1 + oN (1)), it is
enough to prove Theorem 2.3 for all sufficiently large integers N .

Suppose that there is an ε0 > 0 such that

(2.1)
∞∑
n=0

P 2
k (A, c, n)rn < (H(k, c)− ε0)N3/2

for infinitely many positive integers N . Then
∑∞

n=0 P
2
k (A, c, n)zn is abso-

lutely convergent for |z| < 1. Since so also is
∑∞

n=0 z
n, the same is true

of
∞∑
n=0

(1 + P 2
k (A, c, n))zn.

As
|Pk(A, c, n)| ≤ 1 + P 2

k (A, c, n),

the series
∞∑
n=0

Pk(A, c, n)zn
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is absolutely convergent for |z| < 1. Since 0 ≤ rk(A,n) ≤ cn+ |Pk(A, c, n)|,
also the series

∑∞
n=0 rk(A,n)zn is absolutely convergent for |z| < 1. By

1
1− r

( T∑
i=1

rai

)k
≤
∞∑
n=0

rk(A,n)rn,

we know that
∑

a∈A z
a converges absolutely for |z| < 1. For |z| < 1, we have

1
1− z

F k(z) =
∞∑
n=0

rk(A,n)zn =
cz

(1− z)2
+
∞∑
n=0

Pk(A, c, n)zn.

That is,

(2.2) F k(z) =
cz

1− z
+ (1− z)

∞∑
n=0

Pk(A, c, n)zn.

Using the idea of Jurkat, by differentiation of (2.2), we have

kF k−1(z)F ′(z) =
c

(1− z)2
−
∞∑
n=0

Pk(A, c, n)zn(2.3)

+ (1− z)
∞∑
n=1

nPk(A, c, n)zn−1.

Let δ be a positive constant to be determined later, m = [δc−1/2N1/2],
and let

J =
1�

0

|kF k−1(z)F ′(z)| ·
∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J1 = c

1�

0

1
|1− z|2

·
∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J2 =

1�

0

∣∣∣ ∞∑
n=0

Pk(A, c, n)zn
∣∣∣ · ∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J3 =

1�

0

∣∣∣(1− z) ∞∑
n=1

nPk(A, c, n)zn−1
∣∣∣ · ∣∣∣∣1− zm1− z

∣∣∣∣2 dα.
By (2.3), we have

(2.4) J ≤ J1 + J2 + J3.

By Cauchy’s inequality, (2.1) and (2.2) we have
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F k(r2) =
cr2

1− r2
+ (1− r2)

∞∑
n=0

Pk(A, c, n)r2n(2.5)

=
c

2
N(1 + oN (1))

+O

(
1
N

( ∞∑
n=0

r2n
)1/2( ∞∑

n=0

P 2
k (A, c, n)r2n

)1/2
)

=
c

2
N(1 + oN (1)) +O(N1/4) =

c

2
N(1 + oN (1)).

By (2.1), (2.3), Cauchy’s inequality and Lemma 2.1 (noting that r2n ≤ rn),
we have

(2.6) kF k−1(r2)F ′(r2)

=
c

(1− r2)2
−
∞∑
n=0

Pk(A, c, n)r2n + (1− r2)
∞∑
n=1

nPk(A, c, n)r2n−2

=
c

4
N2(1 + oN (1)) +O

(( ∞∑
n=0

r2n
)1/2( ∞∑

n=0

P 2
k (A, c, n)r2n

)1/2)
+O

(
1
N

( ∞∑
n=0

n2r2n
)1/2( ∞∑

n=0

P 2
k (A, c, n)r2n

)1/2
)

=
c

4
N2(1 + oN (1)) +O(N5/4) +O

(
1
N
N9/4

)
=
c

4
N2(1 + oN (1)).

By (2.5) and (2.6) we have

(2.7) F ′(r2) =
1
k
2−1−1/kc1/kN1+1/k(1 + oN (1)).

If k = 2l is even, similarly to the proof of [1, Theorem 1.1], by (2.5), (2.7),
0 < F (r4) < F (r2) and 0 < F ′(r4) < F ′(r2), we find that

(2.8) J ≥ [k/2]!2−3/2δN2(1 + oN (1)).

If k = 2l + 1 is odd, then by rk(A, x) = cx+ o(x) and

Ak(M) ≥
∑

ai1
+···+aik

≤M
1 = rk(A,M),

we have
A(M) ≥ k

√
cM(1 + oM (1)).

Thus, similarly to the proof of [1, Theorem 1.1], by (2.5), (2.7), 0 < F (r4) <
F (r2) and 0 < F ′(r4) < F ′(r2), we see that

(2.9) J ≥ [k/2]!2−3/2+1/(2k) k

k + 1
δ1+1/kN2(1 + oN (1)).
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By (2.8) and (2.9) we get

(2.10) J ≥ [k/2]!2−3/2+τk/(2k)
k

k + τk
δ1+τk/kN2(1 + oN (1)),

where τk = k− 2[k/2]. Similarly to the proof of [1, Theorem 1.1], we deduce

(2.11) J1 ≤
1
2
cm2N(1 + oN (1)) =

1
2
δ2N2(1 + oN (1)).

By Cauchy’s inequality, Parseval’s formula and (2.1) we have

J2 ≤ m2
1�

0

∣∣∣ ∞∑
n=0

Pk(A, c, n)zn
∣∣∣ dα(2.12)

≤ m2
( 1�

0

∣∣∣ ∞∑
n=0

Pk(A, c, n)zn
∣∣∣2 dα)1/2

= m2
( ∞∑
n=0

|Pk(A, c, n)|2r2n
)1/2

= O(m2N3/4) = O(N7/4).

Similarly,

J3 =
1�

0

∣∣∣ ∞∑
n=1

nPk(A, c, n)zn−1
∣∣∣ · ∣∣∣∣1− zm1− z

(1− zm)
∣∣∣∣ dα

≤
( 1�

0

∣∣∣ ∞∑
n=1

nPk(A, c, n)zn−1
∣∣∣2 dα)1/2

·
( 1�

0

∣∣∣∣1− zm1− z
(1− zm)

∣∣∣∣2 dα)1/2

=
( ∞∑
n=1

n2P 2
k (A, c, n)r2n−2

)1/2
·
(
(1 + r2m)

m−1∑
j=0

r2j
)1/2

≤ (2m)1/2
( ∞∑
n=1

n2P 2
k (A, c, n)r2n−2

)1/2
.

Let f(x) = x2rx. Then

f(x) ≤ f
(
− 2

log r

)
=

4e−2

log2 r
< 4e−2N2.

Thus, by (2.1) we have
∞∑
n=1

n2P 2
k (A, c, n)r2n−2 ≤ 4e−2N2r−2

∞∑
n=1

P 2
k (A, c, n)rn

≤ 4e−2N2r−2(H(k, c)− ε0)N3/2

= 4e−2(H(k, c)− ε0)N7/2(1 + oN (1)).
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Hence

J3 ≤ 2
√

2e−1(H(k, c)− ε0)1/2m1/2N7/4(1 + oN (1))(2.13)
≤ 2
√

2e−1(H(k, c)− ε0)1/2c−1/4δ1/2N2(1 + oN (1)).

By (2.4) and (2.10)–(2.13) we have

[k/2]!2−3/2+τk/(2k)
k

k + τk
δ1+τk/kN2

≤ 1
2
δ2N2 +O(N7/4) + 2

√
2e−1(H(k, c)− ε0)1/2c−1/4δ1/2N2 + o(N2).

Dividing by N2 and letting N →∞, we find that

[k/2]!2−3/2+τk/(2k)
k

k + τk
δ1+τk/k ≤ 1

2
δ2 + 2

√
2 e−1(H(k, c)− ε0)1/2c−1/4δ1/2.

So

(H(k, c)− ε0)1/2 ≥
√

2
4
ec1/4

(
[k/2]!2−3/2+τk/(2k)

k

k + τk
δ1/2+τk/k − 1

2
δ3/2

)
.

Taking

δ = 3−k/(k−τk) 1√
2

(
1 +

τk
k + τk

)k/(k−τk)

([k/2]!)k/(k−τk),

we get

(H(k, c)− ε0)1/2 ≥
√

2
4
ec1/4

(
[k/2]!2−3/2+τk/(2k)

k

k + τk
δ1/2+τk/k − 1

2
δ3/2

)
= 2−9/4ec1/4

k − τk
k + 2τk

(
k + 2τk

3(k + τk)

[
k

2

]
!
)3k/(2k−2τk)

= (H(k, c))1/2,

a contradiction. This completes the proof of Theorem 2.3.

Proof of Theorem 1.2. Suppose that there exists an ε0 > 0 such that

(2.14) Sk(A, c,M) =
M∑
n=0

P 2
k (A, c, n) ≤ (H(k, c)− ε0)(Γ (5/2))−1M3/2

for all sufficiently large integers M . Then P 2
k (A, c,M)�M3/2. This means

that rk(A, x) = cx+O(x3/4). Since
∞∑
n=0

P 2
k (A, c, n)rn =

∞∑
n=0

(Sk(A, c, n)− Sk(A, c, n− 1))rn

=
∞∑
n=0

Sk(A, c, n)rn −
∞∑
n=0

Sk(A, c, n− 1)rn
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=
∞∑
n=0

Sk(A, c, n)rn −
∞∑
n=0

Sk(A, c, n)rn+1 =
1
N

∞∑
n=0

Sk(A, c, n)rn,

by Theorem 2.3 we have
∞∑
n=0

Sk(A, c, n)rn ≥
(
H(k, c)− 1

2
ε0

)
N5/2.

On the other hand, by (2.14) and Lemma 2.1 we get
∞∑
n=0

Sk(A, c, n)rn ≤ O(1) + (H(k, c)− ε0)(Γ (5/2))−1
∞∑
n=0

n3/2rn

= (H(k, c)− ε0)N5/2(1 + o(1)),

a contradiction. Therefore
M∑
n=0

P 2
k (A, c, n) ≥ (H(k, c)(Γ (5/2))−1 − ε)M3/2

for infinitely many positive integers M . The proof of Theorem 1.2 is com-
pleted by an appeal to Lemma 2.2.

Proof of Corollary 1.3. Let δ = (Γ (5/2))−1/2
√
H(k, c) − ε > ε. Since

rk(A, x) = cx+O(xβ), there exists a constant C > 0 such that

|Pk(A, c, n)| = |rk(A,n)− cn| < Cnβ

for all n ≥ 1. By Theorem 1.2 and Lemma 2.2 we have
M∑
n=0

P 2
k (A, c, n) ≥

(
H(k, c)(Γ (5/2))−1 − 1

2
ε2
)
M3/2

for infinitely many positive integers M . Since

M∑
n=0

P 2
k (A, c, n)

=
∑

0≤n≤M
|Pk(A,c,n)|<δM1/4

P 2
k (A, c, n) +

∑
0≤n≤M

|Pk(A,c,n)|≥δM1/4

P 2
k (A, c, n)

≤ δ2M1/2
∑

0≤n≤M
|Pk(A,c,n)|<δM1/4

1 + C2M2β
∑

0≤n≤M
|Pk(A,c,n)|≥δM1/4

1

≤ δ2M3/2 + δ2M1/2 + C2M2β|{0 ≤ n ≤M : |Pk(A, c, n)| ≥ δM1/4}|,

we have
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|{0 ≤ n ≤M : |Pk(A, c, n)| ≥ δM1/4}|

≥ (H(k, c)(Γ (5/2))−1 − 1
2
ε2 − δ2 − δ2M−1)C−2M3/2−2β

≥ (Γ (5/2))−1/2
√
H(k, c)C−2εM3/2−2β

for infinitely many positive integers M .

Proof of Theorem 1.4. By Theorem 2.3,
∞∑
n=0

P 2
k (A, c, n)rn ≥

(
H(k, c)− 1

2
ε

)
N3/2

for all sufficiently large N . Since rk(A, x) = cx+ o(x), we have

P 2
k (A, c, n) = o(n2).

Thus ∑
n>5N logN

P 2
k (A, c, n)rn = o

( ∑
n>5N logN

n2rn
)
.

Let f(x) = x2rx/2. Then

f ′(x) = 2xrx/2 +
1
2
x2rx/2 log r =

1
2
xrx/2(4 + x log r)

<
1
2
xrx/2

(
4− x

N

)
< 0

for x ≥ 5N logN . Hence

log f(n) ≤ log f(5N logN) = 2 log(5N logN) +
5
2
N logN log r < 0

for n ≥ 5N logN and sufficiently large N . Thus f(n) < 1 for n ≥ 5N logN
and sufficiently large N . Hence∑

n>5N logN

P 2
k (A, c, n)rn = o

( ∑
n>5N logN

n2rn
)

= o
( ∑
n>5N logN

rn/2
)

= o

(
r2.5N logN

1−
√
r

)
= o(e2.5N logN log rN(1 +

√
r)) = o(1).

Thus ∑
n≤5N logN

P 2
k (A, c, n) ≥

∑
n≤5N logN

P 2
k (A, c, n)rn ≥ (H(k, c)− ε)N3/2

for all sufficiently large N . Let M be any sufficiently large number. Let N
be a positive number with M = 5N logN . Then

N =
M

5 logM
(1 + o(1))
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and ∑
n≤M

P 2
k (A, c, n) ≥ (5−3/2H(k, c)− ε)

(
M

logM

)3/2

.

By Lemma 2.2 the proof of Theorem 1.4 is complete.
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