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A generalization of the classical circle problem
by

YONG-GAO CHEN (Nanjing) and MIN TANG (Wuhu)

1. Introduction and results. Let r(n) denote the number of represen-
tations of n as a sum of squares of two integers. The classical circle problem
is to study

P(z) = Z r(n) — x.
0<n<z
The best known upper bound is due to Huxley [6]:
(1.1) P(x) < 2131/416(10g 1)2:26,
It is conjectured that for any € > 0,
P(z) <. z'/4Fe,

It is well known that
X

(1.2) | P?(x) do = CXP? + Q(X),
0
where C' = 1.68396. The best known bound for Q(X) is due to Lau and
Tsang [7] (see also Nowak [9] for a similar result):
Q(X) <« X(log X)(loglog X).
This implies that
|P(N)| > 1.5NY4
for infinitely many positive integers N. Hence
Z r(n) = mz + o(z/*) cannot hold.
0<n<lz
Let k > 2 be a fixed integer and let A = {a; < ay < ---} be an infinite
sequence of nonnegative integers. For = > 0 let r;(A, x) denote the number

2010 Mathematics Subject Classification: 11B34, 11P21.
Key words and phrases: Erd6s—Fuchs theorem, representation function, circle problem,
lattice points, mean square.

DOI: 10.4064/aal52-3-4 [279] © Instytut Matematyczny PAN, 2012



280 Y. G. Chen and M. Tang

of solutions of
ai; +ag, + - +a;, < T
For a positive constant c, let
Py(A,c,z) =rp(A,x) — cx.
In particular, if A = {0,(-1)2,12,(-2)2,2%,(-3)%,32%,...}, then

ro(A,x) = Z r(n).

0<n<z
In 1956, Erdés and Fuchs [2] proved the following unusual result:
THEOREM A. If A is an infinite sequence of nonnegative integers, then
ro(A,n) = cn + o(n'/*(logn)~Y/?) cannot hold
for any constant ¢ > 0.

Jurkat (unpublished), and later Montgomery and Vaughan [8] improved
the Erdés—Fuchs theorem by eliminating the log power on the right-hand
side:

THEOREM B. If A is an infinite sequence of nonnegative integers, then
ro(A,n) = cn + o(n'/*) cannot hold
for any constant ¢ > 0.

Up to now, the Erdés—Fuchs theorem has been extended in various di-
rections. See [1], [3], [4], [5], [10] and [11].
Recently, the authors [I] proved that
|Py(A, e,n)| = |re(A, n) — en| > 0.04([k/2]1)%/?(en) /4

for infinitely many positive integers n.

Motivated by the Erdés—Fuchs theorem and (|1.2)), we consider the asymp-
totic properties of

b's
S P3(A, ¢, x)dr.
0

Since A is a general sequence, the method for the classical circle problem
cannot be applied here. Note that not even the assumption rq(A, z) = cx +
o(x) guarantees

X
| PI(A c,z)do = O(X3/?).
0
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For example, let A = {0,12,22,3%2 ...}; by (1.1)) we find that

ro(A,x) =1+ i Z r(n) + [Vx] = lwx + vV + iP(m) +0(1)

4
1<n<zx
1
= + v+ O(z'/3).

In this case, we have ¢ = iw and

(13) PQ(A,C,,f) :TQ(A,CI:)—CLL’: \/5+O($1/3)

By we get
b'e X )
| P2(A,c.0)do = [ (Vo + O('?)?de = 5 X7 + O(XM/P).
0 0

Now we consider the following problem:

PROBLEM 1.1. Is it true that for any infinite sequence A of nonnegative
integers, any ¢ > 0 and € > 0 we have

X
S P22(A7 c7 1') d.’If >>A7C7a‘ X3/27E?
0

In this paper, we prove that under the natural assumption of ro(A, x) =
cx + o(x) the answer to Problem [1.1|is affirmative.

THEOREM 1.2. Let A be an infinite sequence of nonnegative integers,
k > 2 be a fized integer and c be a positive constant. Then for any € > 0 the
estimate

M
\ PX(A,c,x)da > (H(k,c)(I'(5/2)) 7" — &) M*/?
0

holds for infinitely many positive integers M, where 7, = k — 2[k/2] and
2 3k/(k—71)
H(k,c) = 2792¢2¢1/2 k= T ko 2m |k ! ' )
’ k+ 27, 3(k+ 1) |2

COROLLARY 1.3. Let A be an infinite sequence of nonnegative integers,
k > 2 be a fixed integer, and c, 3 be positive constants with 5 < 1. Assume
that 7,(A, ) = cx + O(2P). Then for any e > 0,

{0 <n< M : |Pu(Aeon)| > (1(5/2)7 2 VH ko) )MV 5 M2~

for infinitely many positive integers M.

THEOREM 1.4. Let A be an infinite sequence of nonnegative integers,
k > 2 be a fized integer and ¢ be a positive constant. Assume that ri(A,x) =
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cx + o(x). Then for any e > 0,

M / M \*?
2 —3/2
(g) P2(A,c,z)dx > (5732H(k,c) —¢) <1OgM>

for all sufficiently large numbers M, where H(k,c) is as in Theorem|1.2]

We pose the following conjecture:

CONJECTURE 1.5. For any infinite sequence A of nonnegative integers,
any integer k > 2 and any positive constant c,
M
\ P2(A,c,x) da >y o M
0
for all sufficiently large numbers M.
REMARK. By (1.2), the case of the circle problem shows that if Conjec-
ture 1.5 is true then it is sharp. In the above results and the conjecture we
have the corresponding conclusions for

M
Z P2(A,c,n).
n=0

These can be derived from Lemmal[2.2]of Section[2] In fact, the corresponding
results are contained in the proofs.

— 627rw¢

2. Proofs. Throughout this paper, let z = re(«), where e(«) ,
r=1—1/N and « is a real number. We write F(z) = > .4 2% A(n) =
> acA a<n | (counting repetitions).

LEMMA 2.1. Let 8 > 0 and r = 1 — 1/N, where N is a large positive
integer. Then

i nPrt = I3+ 1)NPTL (1 4+ on(1)).
n=0

The proof is similar to that of [I, Lemma 2.3].

LEMMA 2.2. For positive integers M, we have

M+1 M
| Pl(Acx)de=(1+0(1)> P2(A c,n)+ O(Mlog M).
0 n=0

Proof. Let n be a nonnegative integer. Then for n < x < n + 1 we have
Pi(A e x) =rp(A,z) —cx =rp(A,n) —en+ O(1) = Pi(A,¢,n) + O(1).

Thus .
n+
| P2(A c,2)de = P}(A c,n) + O(Pi(A, ¢,n)) + O(1).

n
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Hence

M+1
S P2(A,c,x)dx
0

Dllﬂs

P2(A,c,n —i—O(Z\Pk (A, e, n)\) +O(M)

i
[e=)

P2(A,c,n +O< <ZPk A cn)l/g) +O(M)

tllﬁ:

n=0
Mo 2L, 1/2
:(ZPk(A,c,n)> <(2Pk(A,c,n)> +O(\/J\7))+O(M)
n=0 n=0
M
= (1+0(1))Y_ P}(A,c,n) + O(Mlog M).
n=0

To prove Theorems [I.2] and [T.4] we first prove the following result.

THEOREM 2.3. Let A be an infinite sequence of nonnegative integers,
k > 2 be a fized integer and c be a positive constant. Assume that ri,(A, x) =
cx + o(x) if k is odd. Then for any e > 0,

Y Pi(Ae,n)r™ > (H(k,c) — )N/
n=0
for all sufficiently large numbers N, where H(k,c) is as in Theorem .

Proof. Since 1 —1/N > 1 —1/[N] and [N]3/? = N3/2(1 4 oy(1)), it is
enough to prove Theorem [2.3| for all sufficiently large integers N.
Suppose that there is an g9 > 0 such that

o0
(2.1) > Pi(A ;)™ < (H(k,c) — g9)N*/?

n=0
for infinitely many positive integers N. Then > o, PZ(A,c,n)2" is abso-
lutely convergent for |z| < 1. Since so also is Y .-, 2", the same is true
of

Z(l + P2(A,c,n))z"
n=0
As
|Pe(A,e,n)| < 1+ P2(A,c,n),
the series

Z Py(A e,n)z"
n=0
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is absolutely convergent for |z| < 1. Since 0 < ri(A,n) < cn+ |Py(A, ¢, n)|,
also the series Y ° ri(A,n)z" is absolutely convergent for |z| < 1. By

1ir<Z ) Zr’“A”

i=1

we know that ) 4 2% converges absolutely for |z| < 1. For |z| < 1, we have

ZrkAn ( z) +ZPkAcn)

n=0
That is,

(2.2) FF(z) = 10_,22 +(1—2) ZPk(A, c,n)z"
n=0

Using the idea of Jurkat, by differentiation of (2.2), we have
2. FFML2)F'(2) = Pi(A,
@3 FTEFE = Zk ¢n)

+(1-2) ank(A, c,n)z""L.

n=1

Let & be a positive constant to be determined later, m = [§¢/2N1/?],
and let

1_ m
7 =S ) da,
1—-2
0
1 2
1 1—2m
Jl:cxll—zp ‘1—2 de,
0
1 oo 1—Zm2
JQ—(S)‘RZ:OP]C(A,C,TL)Zn ‘1_2 do,
: > 1—zm|?
J3:(S)‘(l—z);nPk(A,c,n)z”_l‘ ‘l—z do.

By (2.3), we have
(2.4) J < Ji+ o+ Js.

By Cauchy’s inequality, (2.1] . and . we have
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C’I“2

=1 + (1 —17%) Z Pi(A, c,n)r®"

n=0

(2.5) F*(r?)
= SN +ox(1)

ro(§ () (e enr)”)

n=0

= SN(1+on(1)) + O(NY4) = SN (1 +on(1)).

By (2.1), (2.3), Cauchy’s inequality and Lemma (noting that r2" < ),

we have
(2.6)  kEFFLHF (r?)

C e o] B
T ZPk(A,C,n)Tzn +(1—1r?) ank(A,C, n)r2n2
n=0

n=1

_ ZNQ(l Fon(1) + O((i 74271)1/2 (i PY(A,c, n)r2n>1/2>
n=0 n=0

+0 <Jif (i n27‘2n> 2 (i P2(A,c, n)r2”) UZ)
n=0 n=0

- ZNQ(l +on(1)) + O(N/Y) + O(;Ng/‘*) = §N2(1 +on(1)).

By (2.5) and (2.6) we have
(2.7) Flor2) = %2—1—1/%1/%1“/‘@(1 +on(1)).

If k£ = 2l is even, similarly to the proof of [Il, Theorem 1.1], by (2.5)), (2.7),
0< F(rt) < F(r?) and 0 < F'(r%) < F'(r?), we find that
(2.8) J > [k/2)1273/26N2(1 4 on(1)).
If k =20+ 1is odd, then by (A, z) = cx + o(x) and

ARy = YT T=r(A M),

ag, ++ag <M
we have
A(M) > VeM(1+ 0p(1)).
Thus, similarly to the proof of [I, Theorem 1.1], by (2.5, (2.7), 0 < F(r%) <
F(r?) and 0 < F'(r*) < F'(r?), we see that
k

(2.9) J > [k:/2]!2_3/2+1/(2k)mé”l/kNQ(l +on(1)).
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By (2.8) and (2.9) we get

k
2.1 > [k /212 3/2+7/(2k)
(2.10) J > [k/2] i

where 7, = k — 2[k/2]. Similarly to the proof of [Il, Theorem 1.1], we deduce

51+Tk/kN2(1+ON( ))

1 1
(2.11) Ji < §cm2N(1 +on(1)) = 552N2(1 + on(1)).
By Cauchy’s inequality, Parseval’s formula and (2.1)) we have
1 oo
(2.12) Jy < ng ’ Z Py(A,c,n)z2"| do
0 n=0
) 1 oo 1/2
<m (HZP’“ (A, e,n)z" da)
0 n=0
1/2
= m2< \Pk (A, c,n)|*r 2”)
= O(m2N3/4) = O(NT/%).
Similarly,

da

1 oo 1 m
= S ) ZnPk(A’ c, n)z”fl‘ . ’ (1—2")

1—2z
0 n=1

< (i ‘ inPk(A, ¢, n)z"il‘2 da> s . (S) ’ 11—_,2;” (1—2")

2 1/2
da>

=1 7=0
1/2 22 on-2) /2
< (2m) (Zn Pi(A,e,n)r )
n=1

flx) < f< 2 > = de < 4e72N2.

logr log? r
Thus, by (2.1) we have

Z n?PZ(A,c,n)r*" 2 < 4e 2 N?r 2 Z P2(A,c,n)r
n=1 —

< 4e72N%r72(H(k,c) — o) N>/
= 4e 2(H(k,c) — e0)NT2(1 + on(1)).
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Hence
(2.13) J3 < 2v2e Y (H(k, ¢) — e0) ?m' 2NT/4(1 + on (1))
< 2V2e (H (k) — e0) /2462 N2 (1 + o (1)).
By and — we have

k
k+ T

< %521\72 + O(N™MY 4 2v/2e Y (H (k, ¢) — g9) /27146 2N? + o(N?).

[k/Z]!2—3/2+Tk/(2k) 51+Tk/kN2

Dividing by N? and letting N — oo, we find that

[k}/Q]'Q 3/2+Tk/(2k)kf7—k61+rk/k < %624_2\@671(}[(1{:,6) _60)1/2071/451/2.
So

PSTERS V2 1 lo—3/247/(2k) K cijoqmk Lz
(H(k,c) — o) e ([k/2] 27 k—l—Tk(S 2(5 .
Taking

1 k/(k—7k)

5 — 3k /(k— Tk)\f(“r k:—k k) (e /2)1)H/ =),
we get

a2 s V2 1/4 19—3/2+74/(2k) k 1/2+7/k _1 3/2
(H(k,c) —eo)/* > € ([k‘/Q] 2 k‘—l—Tk6 25

i ke (b 2n [K]) )
k4271 \3(k+ 1) 2]

= (H(k,0)"?,
a contradiction. This completes the proof of Theorem 2.3 =
Proof of Theorem[1.2 Suppose that there exists an g9 > 0 such that

(2.14)  Sk(A, ¢, M) Zpk (A,e,n) < (H(k,c) —eo)(I'(5/2)) " M3/

for all sufficiently large integers M. Then PZ(A,c, M) < M?3/2_ This means
that 7,(A, z) = cz + O(x3/*). Since

Z‘P’C A, c,n)r Z(Sk(A,c, n) — Sg(A,c,n—1))r"

n=0

= Z Sk(A,c,n)r™ — Z Sk(A,e,n—1)r
n=0 n=0
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—ZSkAcnr—ZSkAcn ntl — ZSkAcn
n=0 n=0

by Theorem [2.3] we have

Z Sk(A,c,n)r’™ > (H(k’, c) — ;Eo> N°/2,

n=0
On the other hand, by (2.14)) and Lemma we get

ZSk(A,c,n)r"§0(1)+(H(k,c)—50 (5/2)) 12713/2 "
n=0

= (H(k,c) — ) N>2(1+o(1)),

a contradiction. Therefore
Zpk A e,n) > (H(k,e)(I'(5/2)) ! — &) M3/?

for infinitely many positive integers M. The proof of Theorem [I.2] is com-
pleted by an appeal to Lemma [2.2] =

Proof of Corollary . Let 6 = (I'(5/2))"Y/2\/H(k,c) — ¢ > ¢. Since
re(A, ) = cx + O(2%), there exists a constant C' > 0 such that

|Pe(A, c,n)| = |re(A,n) — cn| < CnP
for all n > 1. By Theorem [I.2] and Lemma [2.2] we have

f:P?(A cn) > <H(k; C)(F(5/2))*1 . 152> 312
n=0 ‘ o B ’ 2

for infinitely many positive integers M. Since

M
> Pi(Ac,n)
n=0
= > Rl4cen)+ Y. PlAcen)

0<n<M 0<n<M
| (A,en)| <6 MY/ |Pe(A,c,n)[>6 M1/
< §2MV? > 1+ C?M?8 > 1
0<n<M 0<n<M
| P (A,en)| <6 MY/ |Py(A,c,n)[>6M1/4

< B2MB32 4 82MY? 4 CPMPP){0 < n < M : |Py(A, ¢,n)| > 6MYAY,

we have
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{0 <n < M:|Py(Acn)| > oMY
> (H(k, c)(I'(5/2)"" — %52 R N

I'(5/2))~Y2\/H(k,c) C 2 M3/?728
for infinitely many posmve integers M. =
Proof of Theorem[I.J. By Theorem [2.3]
o0
1
Z P]?(Aa ¢, n)rn > (H(k7 C) - 25> N3/2

n=0
for all sufficiently large N. Since 71(A, x) = cz + o(x), we have
P2(A,c,n) = o(n?).

Z P,?(A,c,n)r”zo( Z n%”).

n>5N log N n>5N log N
Let f(z) = 22r%/2. Then

Thus

1 1
f(z) = 2zr*/? + 5% 222 og r = 5;1:7””"/2(4 + xlogr)

1
< 2:57“’3/2(4;}) <0

for x > 5N log N. Hence
log f(n) <log f(5N log N) = 2log(5N log N) + gNlogNlogr <0

for n > 5N log N and sufficiently large N. Thus f(n) < 1 for n > 5N log N
and sufficiently large N. Hence

Z P,?(A,c,n)r”zo( Z n2r”)

n>5N log N n>5N log N
Z /o T2.5N10gN
= o( r’ ) = o<>
n>5N log N 1= \/;
— 0(62.5NlogNlong(1 + \/,,j)) _ 0(1)
Thus
Y. FAen) = > BlAcnp" > (H(kc) - )N/
n<5N log N n<5N log N

for all sufficiently large N. Let M be any sufficiently large number. Let N
be a positive number with M = 5N log N. Then

= 510gM(l +o0(1))
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and

2 3/2 M\
> (5~ —a)——) .
3 P e = 6700 ) ()

By Lemma [2.2] the proof of Theorem is complete. =
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