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1. Introduction

DEFINITION 1.1. The Tornheim double zeta function T (s,t,u), for s,t,u
eC, R(s+wu)>1, R({t+u) >1and R(s+t+ u) > 2, is defined by

(1.1) T(s,tu) = 3 m

m,n=

[e.9]

This function T'(s,t,u) is a generalization of the Riemann zeta function
((s), s € C. Furthermore, T(s,t,u) is continued meromorphically to C3
in [4]. By the definition, we have

T(s,t,u) =T(t, s,u), T(s,t,0) = C(s)¢(t).
The case of t = 0, that is T'(s,0,u), is called the Euler—Zagier double zeta
function [10].

The values T'(a, b, c) for a,b,c € N were first investigated by Tornheim
[7] in 1950 and later Mordell [5] in 1958. Tornheim [7, Theorem 7] showed
that T'(a, b, c) can be expressed as a polynomial in {((j) |2 <j<a+b+c}
with rational coefficients when a + b + ¢ is odd, and that the same is true
for T'(2r, 2r,2r) and T'(2r —1,2r,2r 4+ 1) [7, Theorem 8], but he did not give
the coefficients. Mordell [5, Theorem III] proved that T'(2r,2r,2r) = kw5
for some rational number k,. In 1985 Subbarao and Sitaramachandrarao [6,
Theorem 4.1] explicitly determined T'(2p, 2q, 2r)+T'(2q, 2r, 2p)+T'(2r, 2p, 2q)
(p,q,r € N). Then, by taking p = ¢ = r, they gave an explicit formula for
T(2r,2r,2r) (r € N) [6, Remark 3.1]. In 1996 Huard, Williams and Zhang [3,
Theorems 1-3] determined T'(r,0, N—r) (r e N, N € 2N+1, 1 <r < N-2),
T(p,q,N —p—¢q) (p,g e NU{0}, N€2N+1,1<p+qg< N-1,0<
p,qg < N —2) and T(r,r,r) (r € N). In 2002 Tsumura [8, Theorem 1]
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proved that T(p,q,7) + (=1)PT(p,r,q) + (—1)PT"T(r,q,p) is a polynomial
in {{(k) | 2 <k <p+ q+r} with rational coefficients for p,q,r € NU {0}
with p+ ¢ > 2 and r > 2. Recently, Espinosa and Moll provided an explicit
formula for T'(z,y, ), z,y, z € R, in terms of integrals involving Hurwitz zeta
functions (see [2, Proposition 2.1 and Theorem 2.4]). Also in 2006 Tsumura
[9, Theorem 4.5] proved the following functional relation:

(1.2)  T(a,b,s) 4+ (=1)°T(b,s,a) + (—1)*T(s,a,b)
2 (im)2 <b— 144 -2

—9 Z (2179 — 1)¢(a - §) >C(b+j+s—2l)
=0

— — (20)! J—21
j=a(2)
(j-1)/2 (Z.ﬂ_)gl b
_ l—at+j _ _ N _
4 Z (2 1)¢(a - j) lz; O z:: ¢(b—k)
J= a(2) k=b(2)

E—1+4+j5-21 .
k -2l
x( ioo1 )C( +j+s—2l)
(where (2) means mod 2), for a,b € NU {0}, b > 2, s € C, except for the
singular points of each side of this formula.
In this paper, we prove the following result.

THEOREM 1.2. For all a,b € N and s € C except for the singular points,
we have

(13) T(CL, b, S) + (—1)bT(b,8,CL) + (_1)aT(37a7 b)
max(a,b)/2

:ﬁ > {a<;’k)+b<2k)}(a+b—2k—1)!(2k)!

k=0
X ((2k)C(a+ b+ s —2k).

This functional relation is considerably simpler than that of Tsumura.
We are not aware of a direct proof which shows that the right-hand sides
of (1.2) and (1.3) are the same. “Mathematica 5.0” shows that they are
equal for all 1 < a < b < 100, a,b € N. It therefore seems unlikely that a
non-trivial functional relation can be deduced by equating (1.2) and (1.3).

In Section 3, we obtain new proofs of formulas for the special values of
T(a,b,c), a,b,c € N mentioned in the introduction by using the functional
relation (1.3).

2. Proof of Theorem 1.2. Firstly, we define logt, ¢t € C, and ¢,
s,t € C, by

logt :=log |t| +iargt, t°:=¢°l%®! 0 <argt< 2.
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And for s,t,u € C, R(s+u) > 1, R(t+u) > 1 and R(s+t+u) > 2, we put

(2.1) St = Y m

m##0, n#0
m~+n£0

LEMMA 2.1. For all a,b € N and s € C except for the singular points,
we have
(2.2)  S(a,b,s) = (14 e mlatbts))
X (T(CL, b, 5) + (_1)bT(b7 S, CL) + (_1)aT(57 a, b))

Proof. Let
1
T (a,b,s) = —— =1T(a,b, s),
1( ) m%O manb(m+ Tl)s ( )
1 1
Ts(a,b,s) == _ =
A TG =
n>’—m n’>m
1
= (=1)"¢ ————— = (=1)"T(s,a,b),
D7 Y e — )T
Tiabs)i= 3 —m > 1
3(a,0,8) = T s
m<0,n>0 manb<m + n)s m,n>0 (—m)anb<n o m)s
—m’>n rr’7,>n
. 1 4
— o milats) - _ o—mi(ats)
= ¢ milets) N TR T =l eI (b, s, a),
n,k>0
1 .
Ty(a,b,s) == = =ttt b, 8),
4( ) m;() m“nb(m + n)s ( )
1 1
T5(a,b,s) == _ =
B N T PN DL T
—n’>m n7>m

= e )T (s, a,b),

1 1
Tg(a,b, S) = E b 1 s = E b
m>0,n<0 men (’I’)’L + n)s m,n>0 ma(_n) (’I’)’L - n)s
m>—n m>n

= (=1)7°T(b, 5, a).

Obviously we have

6
ZTj(a, b,s) = S(a,b,s).
j=1

This implies (2.2). We can also see that the convergence of S(a,b,s) is
equivalent to the convergence of T'(a,b,s). m
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LEMMA 2.2 ([11]). For R(s) > 1, R(t) > 1 and R(u) > 1, we have

e27rzmx e27rm:c 27ilx

(2.3) Slstu) =D — =Y > o —dr.

0m##0 n#0 1#0

Proof. By putting | = m + n, we have

1 e27ri(m+n—l)x

1
Setw= 3, o= 2 N\

m,n,l#0 m,n,l#0 0
m~+n=l
1 eQﬂ'i(m—i—n—l)z 1 e2mimz e2min e 2milz
D et Gl DY > da.
msnti® ms n v
0 m,n,l#£0 0m#0 n#0 1#0

Changing the order of summation and integration is justified by absolute
convergence. m

We denote by Bj(x) the Bernoulli polynomial of order j defined by

tet > t
GL_1=§:Bﬂ@3? It| < 2.
j=0

It is known (see [1, p. 266, (22), and p. 267, (24)]) that

(24)  Byji= By(0) = (=1)7T12(2))!(2m)"¥¢(2)), Jj €N,
j] K eQwikm

2. Bi(z) = ———— 1 : i € N.

(25) 5(@) (270)] Koo o JEN
k=K
k#£0

For k € Z, 7 € N we have

: 0 k=0
2.6 2R R (@) do = { . N
(2:6) Je (@) du {—@mmﬂﬂ,k¢0

0

In fact, the case of k = 0 is obvious, and in the case of k # 0, we get (2.6)
by using (2.5). Next we quote [1, p. 276, 19(b)], for p + ¢ > 2, which is

(2.7)  Bp(x)By(x)

max(p,q)/2
_ #0)/ o( ) g P BokBptg—2k(®) (—1)? pldt o
pr 2%k 2k p+q—2k (p+q) "
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Proof of Theorem 1.2. Firstly, we assume a,b > 2, 1 4 e~ ™ilatb+s) £ ¢
and R(s) > 1. By using (2.6) and (2.7), we have

1 —27ilx

| Bu(@)By(2) 3" © i da
0 10

1 max(a,b)/2 —2milx

B b a\ | BoxBatv—2k(T) x— €

= - {a<2k>+b<2k>} D Dy
0 k=0 1#0

- maux(za,:b)/2 . b b a (a +b—2k — 1)‘B2k

- P 2k 2k (2mri)atb—2k

X C(a+b+s—2k)(1 4 e mHatbts)),

Because of (2.2), (2.4) and (2.5), we obtain (1.3) in this region. By analytic
continuation, we have (1.3) for all a,b € N, a,b > 2 and s € C except for
the singular points of each side of this formula.

Next we consider the case of a = 1,b > 2. Fora,b € N, a,b > 2and s € C
except for the singular points, we define K(a, b, s) by the right-hand side of
(1.3). We quote some basic properties [3, (1.5)] proved by easy computations,
for s,t,u € C except for the singular points:

T(s,t—1l,iu+1)+T(s—1,t,u+1)="T(s,t,u),
(2.8) T(s,t+1,u—1)—T(s—1,t+1,u) =T(s,t,u),
T(s+1L,t,u—1)—T(s+1,t — 1,u) =T(s,t,u).
For b > 2, we have
K(2,b,s) = T(2,b,5) + (=1)°T(b, 5,2) + (—1)*T(s, 2, b)
=T(1,b,5 4+ 1)+ (=1)°T(b,s + 1,1) + (=1)T(s + 1,1,b)
+T(2,0—1,s+1)+ (1) 'T(b—1,5+1,2)
+(=1)2T(s+1,2,b—1)
by (2.8) and the result in the case a,b > 2 which we have already shown.
Hence we have to show

K(2,b,s) = K(1,b,s+1)+ K(2,b—1,s+1), b>2.

In fact we have

il (ae) o) () o0 ()

_ 2'%‘{2(22) +b<22k)}(b+1 —9k), 0<k<b/2

In the cases of k = 0,1,b/2, we have this equation immediately. For 2 < k <
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(b—1)/2, we obtain it by

b(bf) :b(b_l)...(bl!—l+1)(b—l) _ - )<ll>> 0<1<b.

We can prove (1.3) for the case of a = b = 1 similarly. =

3. New proofs of known formulas. In this section, from our theorem
we deduce formulas for the special values of T'(a, b, ¢) (a, b, c € N) mentioned
in the introduction. By taking a = 2p, b = 2¢, s = 2r in (1.3), we have

T(2p,2q,2r) + T(2q, 2r, 2p) + T'(2r, 2p, 2q)

) m ma;xf,q){% (;Z) +2q <§z> }(gp +2q — 2k — 1)!(2k)!

=0
X C(2k)C(2p + 2q + 2r — 2k).
This formula coincides with [6, Theorem 4.1]. (There is a misprint in [6,

Theorem 4.1], “min” is to be replaced by “max”.) Putting a =b=s=rin
(1.3) we have, after easy computations of binomial coefficients,

r/2

4 2r — 2k —1
T(r,r,r)= m;)( 9k — 1 >C(2k‘)<(3r—2kj).

This formula is [3, Theorem 3].

For a,b,c € N, we define N(a, b, ¢) as half of the right-hand side of (1.3).
We recall the harmonic product formula

T(a,0,b) +T(b,0,a) = ¢(a)((b) — ((a + ).
Putting s = 0 in (1.3) and multiplying by (—1)%, we obtain
(=1)*¢(a)¢(b) + (=1)***T(b,0,a) + T(a,0,b) = 2(~1)*N(a, b, 0).

When a + b € 2N + 1, we can remove 7'(b,0,a) by summing the above two
formulas. Hence

a _1\b
¢( 2+b)+1+(2 D ¢(a)c(b) + (~1)*N(a,b,0)

for all a,b > 2, a4+ b € 2N + 1. Next by changing the variables in (1.3), we
obtain

{ (_1)bT(a7 ba C) + T(bv ¢, a) + (_1)CT(C> a, b) = QN(ba ¢, a)a
(—1)*T'(a,b,c) + (=1)°T'(b,c,a) + T(c,a,b) = 2N (c,a,b).
In the case of a + b+ ¢ € 2N + 1, we can remove T'(b,c,a) and T'(c,a,b)

by multiplying the former equality by (—1)? and the latter by (—1)?, and
summing the resulting formulas. Hence we have

(3.2)  T(a,b,c) = (~1)°N(b,c,a)+(~1)*N(c,a,b), a+b+ce€2N+1.

(3.1) T(a,0,b) = —
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By putting s = ¢ = 1 in the first equation of (2.8), we obtain

T(1,1,u) = 27(1,0,u + 1).

Hence we can calculate T'(1,0,¢ + 1) if ¢ + 1 € 2N. Therefore we obtain
another proof of [3, Theorems 1, 2]. Moreover we get

T(p7 q, 7") + (_1)pT(pa T, q) + (_1)p+7"T(,r’ Q7p) = 2(_1)]7N(p’ T, q)

by taking a = p, b =1 and s = ¢ in (1.3), and multiplying by (—1)?. Hence
we obtain another proof of [8, Theorem 1], because N (p, ¢, ) is a polynomial
in {{(k) | 2 <k < p+ q+r} with rational coefficients for p,q,7 € NU {0}
with p4+¢ > 2 and r > 2.
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