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1. Introduction

Definition 1.1. The Tornheim double zeta function T (s, t, u), for s, t, u
∈ C, ℜ(s + u) > 1, ℜ(t + u) > 1 and ℜ(s + t + u) > 2, is defined by

(1.1) T (s, t, u) :=

∞
∑

m,n=1

1

msnt(m + n)u
.

This function T (s, t, u) is a generalization of the Riemann zeta function
ζ(s), s ∈ C. Furthermore, T (s, t, u) is continued meromorphically to C

3

in [4]. By the definition, we have

T (s, t, u) = T (t, s, u), T (s, t, 0) = ζ(s)ζ(t).

The case of t = 0, that is T (s, 0, u), is called the Euler–Zagier double zeta

function [10].
The values T (a, b, c) for a, b, c ∈ N were first investigated by Tornheim

[7] in 1950 and later Mordell [5] in 1958. Tornheim [7, Theorem 7] showed
that T (a, b, c) can be expressed as a polynomial in {ζ(j) | 2 ≤ j ≤ a+ b+ c}
with rational coefficients when a + b + c is odd, and that the same is true
for T (2r, 2r, 2r) and T (2r− 1, 2r, 2r +1) [7, Theorem 8], but he did not give
the coefficients. Mordell [5, Theorem III] proved that T (2r, 2r, 2r) = krπ

6r

for some rational number kr. In 1985 Subbarao and Sitaramachandrarao [6,
Theorem 4.1] explicitly determined T (2p, 2q, 2r)+T (2q, 2r, 2p)+T (2r, 2p, 2q)
(p, q, r ∈ N). Then, by taking p = q = r, they gave an explicit formula for
T (2r, 2r, 2r) (r ∈ N) [6, Remark 3.1]. In 1996 Huard, Williams and Zhang [3,
Theorems 1–3] determined T (r, 0, N−r) (r ∈ N, N ∈ 2N+1, 1 ≤ r ≤ N−2),
T (p, q, N − p − q) (p, q ∈ N ∪ {0}, N ∈ 2N + 1, 1 ≤ p + q ≤ N − 1, 0 ≤
p, q ≤ N − 2) and T (r, r, r) (r ∈ N). In 2002 Tsumura [8, Theorem 1]
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proved that T (p, q, r) + (−1)pT (p, r, q) + (−1)p+rT (r, q, p) is a polynomial
in {ζ(k) | 2 ≤ k ≤ p + q + r} with rational coefficients for p, q, r ∈ N ∪ {0}
with p + q ≥ 2 and r ≥ 2. Recently, Espinosa and Moll provided an explicit
formula for T (x, y, z), x, y, z ∈ R, in terms of integrals involving Hurwitz zeta
functions (see [2, Proposition 2.1 and Theorem 2.4]). Also in 2006 Tsumura
[9, Theorem 4.5] proved the following functional relation:

(1.2) T (a, b, s) + (−1)bT (b, s, a) + (−1)aT (s, a, b)

= 2
a

∑

j=0
j≡a (2)

(21−a+j − 1)ζ(a − j)

j/2
∑

l=0

(iπ)2l

(2l)!

(

b − 1 + j − 2l

j − 2l

)

ζ(b + j + s − 2l)

− 4

a
∑

j=0
j≡a (2)

(21−a+j − 1)ζ(a − j)

(j−1)/2
∑

l=0

(iπ)2l

(2l + 1)!

b
∑

k=0
k≡b (2)

ζ(b − k)

×

(

k − 1 + j − 2l

j − 2l − 1

)

ζ(k + j + s − 2l)

(where (2) means mod 2), for a, b ∈ N ∪ {0}, b ≥ 2, s ∈ C, except for the
singular points of each side of this formula.

In this paper, we prove the following result.

Theorem 1.2. For all a, b ∈ N and s ∈ C except for the singular points,
we have

(1.3) T (a, b, s) + (−1)bT (b, s, a) + (−1)aT (s, a, b)

=
2

a! b!

max(a,b)/2
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

(a + b − 2k − 1)!(2k)!

× ζ(2k)ζ(a + b + s − 2k).

This functional relation is considerably simpler than that of Tsumura.
We are not aware of a direct proof which shows that the right-hand sides
of (1.2) and (1.3) are the same. “Mathematica 5.0” shows that they are
equal for all 1 ≤ a ≤ b ≤ 100, a, b ∈ N. It therefore seems unlikely that a
non-trivial functional relation can be deduced by equating (1.2) and (1.3).

In Section 3, we obtain new proofs of formulas for the special values of
T (a, b, c), a, b, c ∈ N mentioned in the introduction by using the functional
relation (1.3).

2. Proof of Theorem 1.2. Firstly, we define log t, t ∈ C, and ts,
s, t ∈ C, by

log t := log |t| + i arg t, ts := es log t, 0 ≤ arg t < 2π.
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And for s, t, u ∈ C, ℜ(s + u) > 1, ℜ(t + u) > 1 and ℜ(s + t + u) > 2, we put

(2.1) S(s, t, u) :=
∑

m 6=0, n 6=0
m+n 6=0

1

msnt(m + n)u
.

Lemma 2.1. For all a, b ∈ N and s ∈ C except for the singular points,
we have

S(a, b, s) = (1 + e−πi(a+b+s))(2.2)

× (T (a, b, s) + (−1)bT (b, s, a) + (−1)aT (s, a, b)).

Proof. Let

T1(a, b, s) :=
∑

m,n>0

1

manb(m + n)s
= T (a, b, s),

T2(a, b, s) :=
∑

m<0, n>0
n>−m

1

manb(m + n)s
=

∑

m,n>0
n>m

1

(−m)anb(n − m)s

= (−1)−a
∑

m,k>0

1

ma(m + k)bks
= (−1)−aT (s, a, b),

T3(a, b, s) :=
∑

m<0, n>0
−m>n

1

manb(m + n)s
=

∑

m,n>0
m>n

1

(−m)anb(n − m)s

= e−πi(a+s)
∑

n,k>0

1

(n + k)anbks
= e−πi(a+s)T (b, s, a),

T4(a, b, s) :=
∑

m,n<0

1

manb(m + n)s
= e−πi(a+b+s)T (a, b, s),

T5(a, b, s) :=
∑

m>0, n<0
−n>m

1

manb(m + n)s
=

∑

m,n>0
n>m

1

ma(−n)b(m − n)s

= e−πi(b+s)T (s, a, b),

T6(a, b, s) :=
∑

m>0, n<0
m>−n

1

manb(m + n)s
=

∑

m,n>0
m>n

1

ma(−n)b(m − n)s

= (−1)−bT (b, s, a).

Obviously we have
6

∑

j=1

Tj(a, b, s) = S(a, b, s).

This implies (2.2). We can also see that the convergence of S(a, b, s) is
equivalent to the convergence of T (a, b, s).
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Lemma 2.2 ([11]). For ℜ(s) > 1, ℜ(t) > 1 and ℜ(u) > 1, we have

(2.3) S(s, t, u) =

1\
0

∑

m 6=0

e2πimx

ms

∑

n 6=0

e2πinx

nt

∑

l 6=0

e−2πilx

lu
dx.

Proof. By putting l = m + n, we have

S(s, t, u) =
∑

m,n,l 6=0
m+n=l

1

msntlu
=

∑

m,n,l 6=0

1\
0

e2πi(m+n−l)x

msntlu
dx

=

1\
0

∑

m,n,l 6=0

e2πi(m+n−l)x

msntlu
dx =

1\
0

∑

m 6=0

e2πimx

ms

∑

n 6=0

e2πinx

nt

∑

l 6=0

e−2πilx

lu
dx.

Changing the order of summation and integration is justified by absolute
convergence.

We denote by Bj(x) the Bernoulli polynomial of order j defined by

text

et − 1
=

∞
∑

j=0

Bj(x)
tj

j!
, |t| < 2π.

It is known (see [1, p. 266, (22), and p. 267, (24)]) that

B2j := B2j(0) = (−1)j+12(2j)!(2π)−2jζ(2j), j ∈ N,(2.4)

Bj(x) = −
j!

(2πi)j
lim

K→∞

K
∑

k=−K
k 6=0

e2πikx

kj
, j ∈ N.(2.5)

For k ∈ Z, j ∈ N we have

(2.6)

1\
0

e−2πikxBj(x) dx =

{

0, k = 0,

−(2πik)−jj!, k 6= 0.

In fact, the case of k = 0 is obvious, and in the case of k 6= 0, we get (2.6)
by using (2.5). Next we quote [1, p. 276, 19(b)], for p + q ≥ 2, which is

(2.7) Bp(x)Bq(x)

=

max(p,q)/2
∑

k=0

{

p

(

q

2k

)

+ q

(

p

2k

)}

B2kBp+q−2k(x)

p + q − 2k
− (−1)p p!q!

(p + q)!
Bp+q.
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Proof of Theorem 1.2. Firstly, we assume a, b ≥ 2, 1 + e−πi(a+b+s) 6= 0
and ℜ(s) > 1. By using (2.6) and (2.7), we have

−

1\
0

Ba(x)Bb(x)
∑

l 6=0

e−2πilx

ls
dx

= −

1\
0

max(a,b)/2
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

B2kBa+b−2k(x)

a + b − 2k

∑

l 6=0

e−2πilx

ls
dx

=

max(a,b)/2
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

(a + b − 2k − 1)!B2k

(2πi)a+b−2k

× ζ(a + b + s − 2k)(1 + e−πi(a+b+s)).

Because of (2.2), (2.4) and (2.5), we obtain (1.3) in this region. By analytic
continuation, we have (1.3) for all a, b ∈ N, a, b ≥ 2 and s ∈ C except for
the singular points of each side of this formula.

Next we consider the case of a = 1, b ≥ 2. For a, b ∈ N, a, b ≥ 2 and s ∈ C

except for the singular points, we define K(a, b, s) by the right-hand side of
(1.3). We quote some basic properties [3, (1.5)] proved by easy computations,
for s, t, u ∈ C except for the singular points:

(2.8)







T (s, t − 1, u + 1) + T (s − 1, t, u + 1) = T (s, t, u),

T (s, t + 1, u − 1) − T (s − 1, t + 1, u) = T (s, t, u),

T (s + 1, t, u − 1) − T (s + 1, t − 1, u) = T (s, t, u).

For b ≥ 2, we have

K(2, b, s) = T (2, b, s) + (−1)bT (b, s, 2) + (−1)2T (s, 2, b)

= T (1, b, s + 1) + (−1)bT (b, s + 1, 1) + (−1)T (s + 1, 1, b)

+T (2, b − 1, s + 1) + (−1)b−1T (b − 1, s + 1, 2)

+ (−1)2T (s + 1, 2, b − 1)

by (2.8) and the result in the case a, b ≥ 2 which we have already shown.
Hence we have to show

K(2, b, s) = K(1, b, s + 1) + K(2, b − 1, s + 1), b ≥ 2.

In fact we have

2

b!

{(

b

2k

)

+ b

(

1

2k

)}

+
2

2! (b − 1)!

{

2

(

b − 1

2k

)

+ (b − 1)

(

2

2k

)}

=
2

2! b!

{

2

(

b

2k

)

+ b

(

2

2k

)}

(b + 1 − 2k), 0 ≤ k ≤ b/2.

In the cases of k = 0, 1, b/2, we have this equation immediately. For 2 ≤ k ≤
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(b − 1)/2, we obtain it by

b

(

b − 1

l

)

=
b(b − 1) · · · (b − l + 1)(b − l)

l!
= (b − l)

(

b

l

)

, 0 ≤ l ≤ b.

We can prove (1.3) for the case of a = b = 1 similarly.

3. New proofs of known formulas. In this section, from our theorem
we deduce formulas for the special values of T (a, b, c) (a, b, c ∈ N) mentioned
in the introduction. By taking a = 2p, b = 2q, s = 2r in (1.3), we have

T (2p, 2q, 2r) + T (2q, 2r, 2p) + T (2r, 2p, 2q)

=
2

(2p)! (2q)!

max(p,q)
∑

k=0

{

2p

(

2q

2k

)

+ 2q

(

2p

2k

)}

(2p + 2q − 2k − 1)!(2k)!

× ζ(2k)ζ(2p + 2q + 2r − 2k).

This formula coincides with [6, Theorem 4.1]. (There is a misprint in [6,
Theorem 4.1], “min” is to be replaced by “max”.) Putting a = b = s = r in
(1.3) we have, after easy computations of binomial coefficients,

T (r, r, r) =
4

1 + 2(−1)r

r/2
∑

k=0

(

2r − 2k − 1

2k − 1

)

ζ(2k)ζ(3r − 2k).

This formula is [3, Theorem 3].
For a, b, c ∈ N, we define N(a, b, c) as half of the right-hand side of (1.3).

We recall the harmonic product formula

T (a, 0, b) + T (b, 0, a) = ζ(a)ζ(b) − ζ(a + b).

Putting s = 0 in (1.3) and multiplying by (−1)a, we obtain

(−1)aζ(a)ζ(b) + (−1)a+bT (b, 0, a) + T (a, 0, b) = 2(−1)aN(a, b, 0).

When a + b ∈ 2N + 1, we can remove T (b, 0, a) by summing the above two
formulas. Hence

(3.1) T (a, 0, b) = −
ζ(a + b)

2
+

1 + (−1)b

2
ζ(a)ζ(b) + (−1)aN(a, b, 0)

for all a, b ≥ 2, a + b ∈ 2N + 1. Next by changing the variables in (1.3), we
obtain

{

(−1)bT (a, b, c) + T (b, c, a) + (−1)cT (c, a, b) = 2N(b, c, a),

(−1)aT (a, b, c) + (−1)cT (b, c, a) + T (c, a, b) = 2N(c, a, b).

In the case of a + b + c ∈ 2N + 1, we can remove T (b, c, a) and T (c, a, b)
by multiplying the former equality by (−1)b and the latter by (−1)a, and
summing the resulting formulas. Hence we have

(3.2) T (a, b, c) = (−1)bN(b, c, a) + (−1)aN(c, a, b), a+ b+ c ∈ 2N +1.
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By putting s = t = 1 in the first equation of (2.8), we obtain

T (1, 1, u) = 2T (1, 0, u + 1).

Hence we can calculate T (1, 0, c + 1) if c + 1 ∈ 2N. Therefore we obtain
another proof of [3, Theorems 1, 2]. Moreover we get

T (p, q, r) + (−1)pT (p, r, q) + (−1)p+rT (r, q, p) = 2(−1)pN(p, r, q)

by taking a = p, b = r and s = q in (1.3), and multiplying by (−1)p. Hence
we obtain another proof of [8, Theorem 1], because N(p, q, r) is a polynomial
in {ζ(k) | 2 ≤ k ≤ p + q + r} with rational coefficients for p, q, r ∈ N ∪ {0}
with p + q ≥ 2 and r ≥ 2.
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