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Sparse polynomial exponential sums

by

Todd Cochrane, Christopher Pinner and
Jason Rosenhouse (Manhattan, KS)

1. Introduction. In this paper we estimate the complete exponential
sum

S(f, q) =
q∑

x=1

eq(f(x)),(1.1)

where eq(·) is the additive character eq(·) = e2πi·/q, and f is a sparse integer
polynomial,

f(x) = a1x
k1 + . . .+ arx

kr(1.2)

with 0 < k1 < . . . < kr. We always assume that the content of f , (a1, . . . , ar),
is relatively prime to the modulus q. Let d = d(f) = kr denote the degree
of f and for any prime p let dp(f) denote the degree of f read modulo p.
A fundamental problem is to determine whether there exists an absolute
constant C such that for an arbitrary positive integer q,

|S(f, q)| ≤ Cq1−1/d,(1.3)

if f is not a constant function modulo p for each prime p | q. It is well known
that the exponent 1−1/d is best possible. For the case of Gauss sums (r = 1)
Shparlinski [26], [27] showed that one may take C = 1+O(d−1/4+ε) and this
was sharpened to C = 1 +O(d−1+ε) in his subsequent work with Konyagin
[14, Theorem 6.7].

The best upper bounds available for general f are

|S(f, q)| ≤ ed+O(d/log d)q1−1/d,

due to Stechkin [29], and

|S(f, q)| ≤ e1.74dq1−1/d,
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due to Qi and Ding [25]; see also Chen [2], [3], Hua [11]–[13], Lu [17]–[19],
Nechaev [20], [21], Nechaev and Topunov [22], Qi and Ding [23], [24] and
Zhang and Hong [31]. These authors noted that in order to make any further
improvement one must first obtain a nontrivial upper bound on the prime
modulus exponential sum |S(f, p)| for p < (d−1)2, the interval where Weil’s
[30] bound |S(f, p)| ≤ (d − 1)

√
p is worse than the trivial bound. In [5] we

obtained a bound of this type in terms of the number of terms r of f(x).
Using this bound we establish here

Theorem 1.1. For any positive integer r there exists a constant C(r)
such that for any polynomial f of type (1.2) and positive integer q relatively
prime to the content of f ,

|S(f, q)| ≤ C(r)q1−1/d.

Although our proof yields C(r) ≤ eO(r4), no attempt was made to obtain
the best possible value for C(r).

For prime power moduli one can replace C(r) with an absolute constant
as shown by Stechkin [29] and Cochrane and Zheng [8], the latter result
being

Lemma 1.1 [8, Theorem 1.1]. Let f be a polynomial over Z of degree d
and p a prime with dp(f) ≥ 1. Then for any m ≥ 1,

|S(f, pm)| ≤ 4.41pm(1−1/d).(1.4)

It is also well known (see [20], [3] or [8]) that for p ≥ (d− 1)2d/(d−2) and
m ≥ 1,

|S(f, pm)| ≤ pm(1−1/d).(1.5)

The significance of the constant one in (1.5) lies in the fact that bounds
for exponential sums modulo prime powers lead to bounds for a general
modulus q =

∏k
i=1 p

ei
i via the multiplicative formula

S(f, q) =
k∏

i=1

S(λif, p
ei
i ),(1.6)

where the λi are such that
∑k

i=1 λiq/p
ei
i = 1. Thus if (1.5) holds for all prime

power divisors of q then it follows that |S(f, q)| ≤ q1−1/d. It is desirable to
extend the inequality in (1.5) to an interval of the type p > Cd for some
constant C.

In closing we note that for sums over reduced residue systems,

S∗(f, q) =
q∑

x=1, (x,q)=1

eq(f(x)),(1.7)
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the exponent in the upper bound can be dramatically reduced. Shparlinski
[28] showed that

|S∗(f, q)| ≤ C(d, ε)q1−1/r+ε,

for any sparse polynomial in r terms with content relatively prime to q. Loh
[16] obtained a related upper bound but an error in his Lemma 3 leaves his
results in doubt.

2. The method of recursion. A standard method for bounding expo-
nential sums modulo prime powers is the method of recursion, also known
as the method of critical points. For any polynomial f let t = tp(f) =
ordp(f ′) be the largest power of p dividing all of the coefficients of f ′,
d1 = dp(p−tf ′), and let A = A(f, p) be the set of zeros of the congru-
ence p−tf ′(x) ≡ 0 (modp). A is called the set of critical points associated
with the sum S(f, pm), for any m ≥ 2. Write

S(f, pm) =
p−1∑

α=0

Sα(f, pm)

with
Sα(f, pm) =

∑

x≡α (mod p)

epm(f(x)).

A fact of central importance is that if m is sufficiently large then Sα(f, pm)
= 0 unless α is a critical point.

Lemma 2.1 [6, Proposition 4.1]. Suppose that p is an odd prime and
m ≥ t + 2, or p = 2 and m ≥ t + 3, or p = 2, t = 0 and m = 2.
Then if α is not a critical point , Sα(f, pm) = 0. Consequently ,

S(f, pm) =
∑

α∈A
Sα(f, pm).

For any α ∈ A define

σ = σα := ordp(f(px+ α)− f(α)),

gα(x) := p−σ(f(px+ α)− f(α)).
(2.1)

Lemma 2.2 [6, Proposition 4.1] (The recursion relationship). Suppose
that p is an odd prime and m ≥ t+ 2, or p = 2 and m ≥ t + 3, or p = 2,
t = 0 and m = 2. Then if α ∈ A,

Sα(f, pm) = epm(f(α))pσ−1S(gα, pm−σ),(2.2)

where

S(gα, pm−σ) =

{∑pm−σ
x=1 epm−σ(gα(x)) if m > σ,

pm−σ if m ≤ σ.
(2.3)
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Under the hypotheses of the lemma we have

|S(f, pm)| ≤
∑

α∈A
|Sα(f, pm)| =

∑

α∈A
pσα−1|S(gα, pm−σα)|.(2.4)

In particular, since there are at most d1 critical points we immediately have
the upper bound

|S(f, pm)| ≤ d1p
m−1.(2.5)

In [8] we established the following bounds for Sα(f, pm) and S(f, pm):

Lemma 2.3 [8, Theorem 2.1]. Let f be a polynomial over Z and p a
prime with dp(f) ≥ 1. Suppose that p is odd and m ≥ t + 2, or p = 2
and m ≥ t+ 3. Set λ = (5/4)5 ≈ 3.05 and d1 = dp(p−tf ′). Then

(i) For any critical point α of multiplicity ν we have

|Sα(f, pm)| ≤ min{ν, λ}pt/(ν+1)pm(1−1/(ν+1)),(2.6)

with equality if ν = 1.
(ii) |S(f, pm)| ≤ λpt/(d1+1)pm(1−1/(d1+1)).

Related results using the method of critical points were obtained by
Chalk [1], Cochrane [4], Cochrane and Zheng [6], [7], Ding [9], [10], and
Loh [15].

For any critical point α set

τ := ordp(g′α(x)), g1(x) := p−τg′α(x).(2.7)

The following relations are well known (see e.g. [6, Lemma 3.1]) and play a
central role in the proof of the preceding lemma.

Lemma 2.4.

σ ≥
{
t+ 2 if p is odd or ν > 1,

t+ 1 if p = 2 and ν = 1.
(2.8)

σ ≤ ν + 1 + t− τ.(2.9)

dp(gα) ≤
{
σ − t+ ordp(dp(gα)) ≤ ν + 1 + ordp(dp(gα)),

σ ≤ ν + 1 + t− τ.
(2.10)

dp(g1) ≤ σ + τ − t− 1 ≤ ν.(2.11)

pτ | dp(gα).(2.12)

An immediate consequence that we frequently make reference to is

Lemma 2.5. Suppose that α is a critical point of multiplicity ν with
ν ≥ 2 and p > ν + 2. Then dp(gα) ≤ ν + 1.

Proof. Let dp = dp(gα). Suppose that ordp(dp) ≥ 1. If dp = p then
by (2.10) we have p = dp ≤ ν + 2 contradicting our assumption. Otherwise
dp ≥ 2p and we have p ≤ dp/2 ≤ dp−ordp(dp) ≤ ν+1, again a contradiction.
Thus p - dp and we obtain (by (2.10)) dp ≤ ν + 1.
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3. Preliminary upper bounds. We begin with a couple of auxiliary
lemmas.

Lemma 3.1. Define λi = i for i = 1, 2, 3 and λi = λ for i ≥ 4, where
λ = (5/4)5 ≈ 3.05. Then for 1 ≤ i ≤ d we have

dλiλ
(i−d)/(i+1) ≤ iλ.

Proof. For any fixed i ≥ 1 the function fi(x) := (λi/i)xλ(i−x)/(i+1) at-
tains its maximum value at x = (i+ 1)/log(λ) < i+ 1, and is decreasing for
larger values of x. Thus for d ≥ i, the maximum value of fi(d) occurs at d = i
or d = i+ 1. Now, fi(i) = λi ≤ λ and fi(i+ 1) = λi(1 + 1/i)λ−1/(i+1) ≤ λ,
as can be seen by considering the different cases i = 1, 2, 3 and i ≥ 4.

Lemma 3.2. If p > cd1 for some constant c then for 1 ≤ i ≤ d1 − 1 we
have

(4p/(cd1))(i−d1)/(i+1) ≤ i/d1.

Proof. We first note that

(d1/i)(i+1)/(d1−i) ≤ 4 for 1 ≤ i ≤ d1 − 1.

This can be checked directly for i = 1, 2, 3. For i ≥ 4 it follows from Lemma
3.1. Then p > cd1 ≥ (c/4)d1(d1/i)(i+1)/(d1−i) and the result follows.

Lemma 3.3. Let p be a prime and f be any integer polynomial with
t = 0 and either d1 = 0, 1 or p > d

2+4/(d1−1)
1 where d1 = dp(p−tf ′). Then

for m ≥ 2,

|S(f, pm)| ≤ pm(1−1/(d1+1)).(3.1)

Proof. If d1 = 0 then there are no critical points and the sum is zero. If
d1 = 1 then there is a single critical point of multiplicity one and the result
follows from Lemma 2.3(i). Suppose that d1 ≥ 2. Let A = A(f, p) ⊂ Fp
be the set of critical points. We prove by induction on m that, under the
hypotheses of the theorem,

|Sα| ≤ pm(1−1/(ν+1))(3.2)

for any critical point α ∈ A. We first note that (3.1) is an immediate con-
sequence of (3.2). Indeed, if pm ≤ (p/d1)d1+1 then using the trivial up-
per bound |Sα(f, pm)| ≤ pm−1 we have |S(f, pm)| ≤ ∑α∈A |Sα(f, pm)| ≤
d1p

m−1 ≤ pm(1−1/(d1+1)). Next, if there is a critical point α of multiplic-
ity d1 then it is the only critical point and we have |S(f, pm)| = |Sα(f, pm)| ≤
pm(1−1/(d1+1)).

Finally, suppose that pm > (p/d1)d1+1 and that every critical point is of
multiplicity less than d1. Letting ni denote the number of critical points of



42 T. Cochrane et al.

multiplicity i we deduce from (3.2) that

|S(f, pm)| ≤
∑

α∈A
|Sα(f, pm)| ≤

d1−1∑

i=1

nip
m(1−1/(i+1))(3.3)

= pm(1−1/(d1+1))
( d1−1∑

i=1

nip
m(i−d1)/((i+1)(d1+1))

)
.

Then from pm > (p/d1)d1+1, p > 4d1 and Lemma 3.2 with c = 4 we obtain

|S(f, pm)| ≤ pm(1−1/(d1+1))
( d1−1∑

i=1

ni(p/d1)(i−d1)/(i+1)
)

(3.4)

≤
( d1−1∑

i=1

nii/d1

)
pm(1−1/(d1+1)) ≤ pm(1−1/(d1+1)).

We now proceed to establish (3.2). If ν = 1 then by Lemma 2.3 we have
equality in (3.2). So we may assume that ν ≥ 2. When m = 2 the bound is
trivial, |Sα| ≤ p ≤ p2(1−1/(ν+1)). Suppose m ≥ 3. If σ ≥ m then the result
follows trivially,

|Sα| ≤ pm−1 ≤ pm(1−1/(ν+1))p(σ−ν−1)/(ν+1) ≤ pm(1−1/(ν+1)),

the latter inequality following from (2.9). Suppose next that σ = m−1. Put
dp = dp(gα). Since p > d2

1 ≥ ν2 ≥ ν + 2 it follows from Lemma 2.5 that
dp ≤ ν + 1 ≤ d1 + 1. If dp ≥ 3 then p ≥ (dp − 1)2+4/(dp−2), so by the Weil
bound, |S(gα, p)| ≤ (dp − 1)

√
p ≤ p1−1/dp ≤ p1−1/(ν+1). If dp = 1 or 2 the

same bound is elementary. It follows from the recursion formula of Lemma
2.2 that

|Sα| = pσ−1|S(gα, p)|
≤ pm−1−1/(ν+1) = p(σ−ν−1)/(ν+1)pm(1−1/(ν+1)) ≤ pm(1−1/(ν+1)).

Suppose finally that m ≥ σ + 2. We note that τ = 0 since by (2.12), pτ ≤
dp(gα) ≤ ν+1 ≤ d1+1 < p, and so we can apply the induction assumption to
S(gα, pm−σ). Putting d2 = dp(g′α) ≤ ν ≤ d1 and noting that either d2 = 0, 1

or p ≥ d2+2/(d2−1)
2 we obtain

|Sα| = pσ−1|S(gα, pm−σ)| ≤ pσ−1p(m−σ)(1−1/(d2+1))

≤ pσ−1p(m−σ)(1−1/(ν+1)) ≤ pm(1−1/(ν+1)).

4. Multiplicity estimates. Next, we obtain an upper bound on the
multiplicity of a nonzero zero of a sparse polynomial

f(x) = a1x
k1 + . . .+ arx

kr (modp).
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Let a 6≡ 0 (modp) be a zero of multiplicity ν (mod p), that is,
(x− a)ν ‖ f(x) (modp).

For 1 ≤ i ≤ r let
S(i, α) = {kj : kj ≡ ki (modpα)},

and set
αi = max{α : |S(i, α)| ≥ 2},(4.1)

ri = |S(i, αi)|.(4.2)

Lemma 4.1. The multiplicity ν of any nonzero zero of f(x) (mod p)
satisfies ν < mini ripαi . In particular , if p does not divide any ki − kj with
i 6= j then ν < r.

Lemma 4.1 follows from the more precise

Lemma 4.2. Suppose that k1, . . . , kt are the smallest distinct exponents
modulo p so that

f(x) = xk1f1(x)p + . . .+ xktft(x)p (modp),
where

fi(x) =
∑

kj=ki+ljp

ajx
lj .

Then if f(x) has a nonzero zero a of multiplicity ν (modp), we have
ν = kp+ u

where u < t and (x− a)k is the highest power dividing all the f1, . . . , ft.

Proof. Suppose that (x − a)k | f1, . . . , ft with (x − a)k+1 - f1, and write
fi(x) = (x− a)kgi(x) (mod p), ν = kp+ u, so that

(x− a)u ‖ g(x) = xk1g1(x)p + . . .+ xktgt(x)p.
Writing ∇ = x d

dx we must have ∇ig(a) ≡ 0 (modp) for j = 0, . . . , u − 1.
That is,

kj1a
k1g1(a)p + . . .+ kjta

ktgt(a)p ≡ 0 (modp)

for j = 0, . . . , u−1. Since |det(kji )i=1,...,t, j=0,...,t−1| =
∏ |ki−kj | 6≡ 0 (mod p)

and ak1g1(a)p 6≡ 0 (modp) we must therefore have u < t.

Proof of Lemma 4.1. Pick an arbitrary ki, i = 1, . . . , t, and use the
preceding lemma and induction on αi: If αi = 0 then plainly k = 0 and
ν = u < t ≤ r = ri. If αi ≥ 1 then since (x − a)k | fi(x) we have (by
induction) k < rip

αi−1 and u < p giving
ν = pk + u ≤ (ripαi−1 − 1)p+ (p− 1) < rip

αi .

In practice we apply the multiplicity estimate to the polynomial p−tf ′(x)
and so we let r1 = r1(f, p) be the number of nonzero terms modulo p of the
polynomial p−tf ′(x). For critical points having multiplicity less than r1 we
have the following upper bound.
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Lemma 4.3. Let f be a sparse polynomial as in (1.2) and suppose that
either r1 = 1, 2 or p > (r1 − 1)2r1/(r1−2). Then if m ≥ t + 2 and α is a
critical point of multiplicity ν < r1 we have

|Sα| ≤ pt/(ν+1)pm(1−1/(ν+1)).(4.3)

Proof. If ν = 1 the result follows from Lemma 2.3, and so we may
assume ν ≥ 2 and r1 ≥ 3. Let dp = dp(gα). Since p > ν2+4/(ν−1), we get
dp ≤ ν + 1 by Lemma 2.5, and thus p > (dp − 1)2dp/(dp−2). Also, since
pτ ≤ dp(gα) ≤ ν + 1 ≤ r1 + 1 < p we must have τ = 0.

If σ ≥ m the result follows trivially,
|Sα| ≤ pm−1 = p(m−ν−1)/(ν+1)pm(1−1/(ν+1)) ≤ pt/(ν+1)pm(1−1/(ν+1)).

Suppose next that σ = m−1. Then applying the bound in (1.5) to S(gα, p),
we obtain

|Sα| = pσ−1|S(gα, p)| ≤ pσ−1p1−1/(ν+1)

= p(σ−ν−1)/(ν+1)pm(1−1/(ν+1)) ≤ pt/(ν+1)pm(1−1/(ν+1)).

Finally, if σ ≤ m − 2 then we can apply Lemma 3.3 to S(gα, pm−σ), since
d2 := dp(g′α) ≤ ν < r1 and so p ≥ d2+4/(d2−1)

2 . We obtain

|Sα| ≤ pσ−1|S(gα, pm−σ)|
≤ pσ−1p(m−σ)(1−1/(d2+1)) = p(σ−ν−1)/(ν+1)pm(1−1/(ν+1)).

5. Bounds for exponential sums with p small relative to d. First
we consider sums modulo p. From the bound of Weil, one deduces (see [8,
Lemma 3.1]) the upper bound

|S(f, p)| ≤ 1.75p1−1/d(5.1)

for any polynomial f with dp(f) ≥ 1. Moreover the constant 1.75 may
be replaced by 1 provided p � d2. For our purposes here we need the
constant 1 for p � d. We obtain this from the following result established
in the authors’ work [5, Corollary 1.1].

Lemma 5.1. Let f be an integer polynomial of degree d as in (1.2). Then
for any δ > 0, if p > (9/δ1.06)d and p > C1(δ), then

∣∣∣
p∑

x=1

ep(f(x))
∣∣∣ ≤ p

(
1− 1

rpδ

)
.(5.2)

Lemma 5.2. Let f be a polynomial as in (1.2) of degree d = dp(f) ≥ 1
(modp) and suppose that p > C2 (an absolute constant), p > 50d and
p > r4. Then

|S(f, p)| ≤ p1−1/d.

Proof. The result is elementary for d = 1, 2 and so we assume d > 2. If
p > 16d2 then the result follows from the Weil bound |S(f, p)| ≤ (d− 1)

√
p.
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Suppose that p ≤ 16d2. Applying Lemma 5.1 with δ = 1/5 we deduce that
if p > 50d and p > C1(1/5) then |S(f, p)| ≤ p(1 − 1/(rp1/5)). Since p > r4

it follows that |S(f, p)| ≤ p(1 − 1/p9/20), and since p ≤ 16d2 the latter is
≤ p1−1/d for p > 1060.

Lemma 5.3. Let f be a sparse polynomial as in (1.2) with p ≥ 50(d1+1),
p > C2 (the constant in Lemma 5.2), p > r4 and m ≥ t + 2. Then for any
critical point α of multiplicity ν we have

|Sα| ≤ pt/(ν+1)pm(1−1/(ν+1)),(5.3)

and
|S(f, pm)| ≤ pt/(d1+1)pm(1−1/(d1+1)).(5.4)

Proof. We first observe that (5.4) is always an immediate consequence
of (5.3). Indeed, if pm−t ≤ (p/d1)d1+1 then using the trivial upper bound
|Sα(f, pm)| ≤ pm−1 we have |S(f, pm)| ≤ ∑

α∈A |Sα(f, pm)| ≤ d1p
m−1 ≤

pt/(d1+1)pm(1−1/(d1+1)). Next, if there is a critical point α of multiplicity d1
then it is the only critical point and we have |S(f, pm)| = |Sα(f, pm)| ≤
pt/(d1+1)pm(1−1/(d1+1)).

Finally, suppose that pm−t > (p/d1)d1+1 and that every critical point is
of multiplicity less than d1. Letting ni denote the number of critical points
of multiplicity i we deduce from (5.3) that

|S(f, pm)| ≤
d1∑

i=1

nip
t/(i+1)pm(1−1/(i+1))

≤ pt/(d1+1)pm(1−1/(d1+1))
∑

i

nip
(m−t)(i−d1)/((i+1)(d1+i))

≤ pt/(d1+1)pm(1−1/(d1+1))
∑

i

ni(p/d1)(i−d1)/(i+1)

≤ pt/(d1+1)pm(1−1/(d1+1)),

the last inequality following from Lemma 3.2 (with c = 4) and
∑

i nii ≤ d1.
We now establish (5.3) by induction on m. The result is trivial if m = 2.

Suppose that m > 2. If σ ≥ m then from (2.9),

|Sα| ≤ pm−1 ≤ pt/(ν+1)pm(1−1/(ν+1)).

If σ = m − 1 and α 6= 0 then since p > d1 it follows from Lemma 4.1 that
ν < r. Also, since p ≥ 50d1 ≥ 50ν we see by Lemma 2.5 that

dp(g) ≤ ν + 1 ≤ r < p1/4,

and so by (1.5), |S(gα, p)| ≤ p1−1/dp(g) ≤ p1−1/(ν+1). It then follows from the
recursion relation that

|Sα| ≤ pσ−1|S(gα, p)| ≤ pσ−1/(ν+1) ≤ pt/(ν+1)pm(1−1/(ν+1)),(5.5)
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by (2.9). If α = 0 then we have to argue differently since the multiplicity
may be larger than r. In this case gα(x) = f(px) is a sparse polynomial with
the same number of terms as f . Since p > 50(d1 +1) ≥ 50(ν+1) ≥ 50dp(gα)
we can apply Lemma 5.2 to obtain |S(gα, p)| ≤ p1−1/dp(gα), and the result
follows as before.

Suppose now that σ ≤ m − 2. We first note that by (2.12), τ = 0 since
p > dp(gα). Set d2 = dp(g′α). If α 6= 0 then by (2.11) and Lemma 4.1,
d2 ≤ ν < r < p1/4. Thus by Lemma 3.3,

|S(gα, pm−σ)| ≤ p(m−σ)(1−1/(d2+1)).

If α = 0 then we can apply the induction assumption to the polynomial
gα = p−σf(px) and obtain the same bound. From the recursion relationship
we then obtain

|S(f, pm)| ≤ pσ−1p(m−σ)(1−1/(d2+1))

≤ p−1+σ/(ν+1)pm(1−1/(ν+1)) ≤ pt/(ν+1)pm(1−1/(ν+1)).

Next we obtain a bound valid for even smaller values of p. Again, let
d1 and r1 = r1(f, p) be the degree and number of nonzero terms of the
polynomial p−tf ′(x) read modulo p.

Lemma 5.4. Let f be a sparse polynomial in r terms and p a prime with
p > r4, p > C3 and such that p - (kj − ki) for all ki < kj ≤ d1. Then for
m ≥ t+ 2 and any critical point α of multiplicity ν we have

(i) If α 6= 0 then |Sα(f, pm)| ≤ pt/(ν+1)pm(1−1/(ν+1)).

(ii) For α = 0, |S0(f, pm)| ≤ p(2r+t)/(ν+1)pm(1−1/(ν+1)).
(iii) |S(f, pm)| ≤ p(2r+t)/(d1+1)pm(1−1/(d1+1)).

Proof. We take C3 = max{C2, 200} where C2 is the constant in Lemma
5.3. The condition p - (ki − kj) implies (by Lemma 4.1) that ν < r1 for any
nonzero critical point. So (i) is implied by Lemma 4.3. If p ≥ 50(d1 +1) then
the lemma is implied by Lemma 5.3 and so we may assume p < 50(d1 + 1).
In particular, it follows that r ≤ d1 (if r ≥ 4 then r4 < p < 50(d1 + 1)
implies r < r · r3/50 < d1 + 1; if r ≤ 3 then p > 200 implies d1 > 3 ≥ r).

The proof of (ii) is by induction on m, but first we show that (i) and (ii)
together imply (iii). If zero is the only critical point then (ii) immediately
implies (iii) and so we assume henceforth that r ≥ 2 and that ν(0) < d1.

If m−t ≤ 2r then the upper bound in (iii) follows from the trivial bound
|S(f, pm)| ≤ pm. Next write m− t = 2r + 1 + j with j ≥ 0 and set

∆ = p(t+2r)/(d1+1)pm(1−1/(d1+1)),

the desired bound. We have

|S(f, pm)| ≤ |S0(f, pm)|+
∑

α6=0

|Sα(f, pm)|.
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For the first term we have the trivial bound

|S0(f, pm)| ≤ pm−1 = p(j−d1)/(d1+1)∆.(5.6)

Now there are at most p − 1 nonzero critical points, each of multiplicity
≤ r1 − 1 ≤ r − 1, and so by (i),

(5.7)
∑

α6=0

|Sα(f, pm)| ≤ p · pt/rpm(1−1/r)

= p(j(r−d1−1)−rd1−d1−1)/((d1+1)r)∆ = p(j−d1)/(d1+1)−(1+j)/r∆.

Combining (5.6) and (5.7) we have, for j ≤ d1/2,

|S(f, pm)| ≤ p−d1/(2(d1+1))(1 + p−1/r)∆ < 2p−1/4∆ < ∆,

and for d1 > j > d1/2,

|S(f, pm)| ≤ (p−d1/(2r) + 1)p−1/(d1+1)∆ ≤ (r−2d1/r + 1)r−4/(d1+1)∆ < ∆.

If j ≥ d1 then by the bound in (ii) (replacing ν with d1 − 1) we obtain

|S0(f, pm)| ≤ p(−j−1)/(d1(d1+1))∆ ≤ p−1/d1∆.

For the remaining critical points we use the upper bound of (5.7) replacing j
with d1. Thus

|S(f, pm)| ≤ (p−1/d1 + p(−d1−1)/r)∆ ≤ (r−4/d1 + r−4(d1+1)/r)∆ < ∆.

We return to the task of proving (ii) by induction on m. The bound
follows trivially from |S0(f, pm)| ≤ pm−1 if m ≤ ν + 1 + t + 2r, and so we
assume m ≥ ν + 2 + t+ 2r. By (2.9) we have

m− σ ≥ ν + 2 + t+ 2r − (ν + 1 + t− τ) = 1 + 2r + τ ≥ τ + 2,

and by the recursion formula of Lemma 2.2, |S0(f, pm)| = pσ−1|S(g0, p
m−σ)|,

where g0(x) = p−σf(px). Since g0 has the same degree monomials as f we
can apply the induction assumption to g0 and obtain,

|S0(f, pm)| ≤ pσ−1p(τ+2r)/(d2+1)p(m−σ)(1−1/(d2+1)),

where d2 := dp(p−τg0) ≤ d1. Now by (2.11), d2 ≤ ν and so replacing d2 by ν
in the previous inequality and using the upper bound in (2.9) we deduce the
inequality in (ii).

6. Dealing with the primes that divide ki − kj for some i 6= j. If
p | (kj − ki) for some ki < kj ≤ d1 then there may be nonzero critical points
of multiplicity exceeding r and so we have to argue more carefully. Let f(x)
be a sparse polynomial as in (1.2) of degree d and set d1 = dp(p−tf ′(x)).
For any pair (i, j) with 1 ≤ i < j ≤ r let pij be the maximal prime divisor
of kj − ki (taking pij = 1 in case kj − ki = 1) and put

P = {pij : 1 ≤ i < j ≤ r}.(6.1)
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Assume now that p > 4r, p | (kj − ki) for some ki < kj ≤ d1 but that p 6∈ P.
Let

pls = min{pij : p | (kj − ki), ki < kj ≤ d1},
and define

M := rd1/pls.

Then if pe ‖ (kj − ki) is the maximum power of p dividing any of the differ-
ences kj−ki that actually occur in the critical point congruence for S(f, pm),
it follows from Lemma 4.1 that the multiplicity ν of any nonzero critical
point satisfies

ν < rpe ≤ r(kj − ki)/pij ≤M.(6.2)

Let S∗(f, pm) denote the sum over a reduced residue system (modulo
pm) as in (1.7). For j ≥ 0 define µj , tj by

pµj ‖ (a1p
jk1 , . . . , arp

jkr), pµj+tj ‖ (a1k1p
jk1 , . . . , arkrp

jkr).(6.3)

Then we can write

S(f, pm) =
m∑

j=0

S∗(f(pjx), pm−j) =
m∑

j=0

pµj−jS∗j ,(6.4)

where for 0 ≤ j ≤ m,

S∗j = S∗(p−µjf(pjx), pm−µj ).(6.5)

The critical point congruence associated with the sum S∗j is just

gj(x) := p−µj−tj (a1k1p
jk1xk1−1 + . . .+ arkrp

jkrxkr−1) ≡ 0 (modp).

Viewing gj(x) as a polynomial over Fp we observe that for any j < m
the largest degree term of gj+1(x) is at most the smallest degree term
of gj(x). Indeed, if ptj+µj ‖ aIkIpjkI then ptj+µj+kI ‖ aIkIp(j+1)kI and
ptj+µj+kI+1 ‖ alklp(j+1)kl for l > I. It follows that the degrees of the gj
are nonincreasing (with j) and that at most r of the gj(x) can have more
than one nonzero term. The rest of the gj(x) are monomials and therefore
the associated sums S∗j are zero, provided m − µj ≥ 2. Thus there are at
most r values of j ≤ m for which m − µj ≥ 2 and S∗j is nonzero. More-
over, for these nonzero sums the multiplicity of any nonzero critical point is
bounded above by M .

Say d1 = kI − 1 for some I. Then since pt ‖ aIkI it is easily seen that for
0 ≤ j ≤ m,

µj + tj ≤ t+ j(d1 + 1).(6.6)

We split the sum in (6.4) into two parts according as m− tj − µj ≥ 8M
or not. If this inequality holds then since S∗j has at most p critical points,
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each of multiplicity ≤M , it follows from Lemma 2.3 that

pµj−j |S∗j | ≤ pµj−j4pptj/Mp(m−µj)(1−1/M) =
4p

p(m−µj−tj)/(2M)

pm−j

p(m−µj−tj)/(2M)
.

Now (m− µj − tj)/(2M) ≥ 4. Also, since p > 2r, 2M < d1 and so by (6.6),

m− µj − tj
2M

≥ m− t− j(d1 + 1)
d1 + 1

=
m− t
d1 + 1

− j.

It follows that

pµj−1|S∗j | ≤
4
p3 p

t/(d1+1)pm(1−1/(d1+1)).(6.7)

We consider next the set of j for which m − tj − µj < 8M and let j0
denote the least such j. Then

∑

j≥j0
pµj−j |S∗j | ≤ pm−j0 = p(m−t)/(d1+1)−j0pt/(d1+1)pm(1−1/(d1+1)).

Now

(m− t)− j0(d1 + 1) ≤ 8M + tj0 + µj0 − t− j0(d1 + 1) ≤ 8M = 8rd1/pls,

by (6.6). Thus
∑

j≥j0
pµj−j |S∗j | ≤ p8r/plspt/(d1+1)pm(1−1/(d1+1)).(6.8)

From (6.7) and (6.8) we conclude that

|S(f, pm)| ≤ (4r/p3 + p8r/pls)pt/(d1+1)pm(1−1/(d1+1))

≤ p8r/pls(1 + 1/p2)pt/(d1+1)pm(1−1/(d1+1)).

This establishes

Lemma 6.1. Suppose that p | (kj − ki) for some ki < kj ≤ d1, p > 4r
and p 6∈ P. Then

|S(f, pm)| ≤ (1 + 1/p2)p8r/plspt/(d1+1)pm(1−1/(d1+1))

for some pls ∈ P with p | (kl − ks), p < pls.

7. Proof of Theorem 1.1. For any prime power pm and polynomial f
let

R(f, pm) =
|S(f, pm)|
pm(1−1/d)

.(7.1)

Let f be a sparse polynomial with r terms and let q be a positive integer
such that dp(f) ≥ 1 for all prime divisors p of q. Write

∏

pm ‖ q
R(f, pm) = P1P2P3P4P5P6
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where the Pi are products over the prime power divisors of q satisfying the
following constraints (counting prime powers only once if they happen to
satisfy more than one constraint):

P1 =
∏

m=1

R(f, pm),(7.2)

P2 =
∏

1<m≤t+1

R(f, pm),(7.3)

P3 =
∏

p≤C3 or
p≤r4 or p∈P

R(f, pm),(7.4)

P4 =
∏

p>r4

p|(kj−ki) for some ki<kj≤d1, p6∈P

R(f, pm),(7.5)

P5 =
∏

m≥t+2, 50d>p>r4, p>C3 and
p-(kj−ki) for all ki<kj≤d1

R(f, pm),(7.6)

P6 =
∏

m≥t+2, p>r4, p>C2 and
p≥50d

R(f, pm),(7.7)

where C2, C3 are the constants in Lemmas 5.3 and 5.4 respectively, and P is
the set (6.1) of exceptional primes. By (1.6) the theorem follows if we show
that each of the products Pi is bounded by a constant depending only on r.

By Lemma 5.2, the Weil bound (5.1) and the trivial bound R(f, p) ≤ p1/d

we have
P1 ≤

∏

p<C2

R(f, p)
∏

p≤r4

R(f, p)
∏

p<50d

R(f, p)

≤ (1.75)C2+r4 ∏

p<50d

p1/d � (1.75)r
4
.

For the next few products we need the following

Lemma 7.1. Let f be a sparse polynomial with r terms of degree d. For
any prime p let tp = ordp(f ′(x)). Then letting p run through the set of all
primes for which dp(f) ≥ 1 we have

∏

p, dp(f)≥1

ptp ≤ dr.

Proof. Let f(x) = a1x
k1 + . . .+ arx

kr and p be a prime with dp(f) ≥ 1.
Then for some i, p - ai, and so for this value of i, ptp | ki. Thus the product
over all such ptp is a divisor of k1 . . . kr.
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(We continue to write t for tp.) For P2 the condition 1 < m ≤ t + 1
implies that t ≥ 1 and so m ≤ 2t. Thus we trivially have

P2 ≤
∏

p

pm/d ≤
∏

p

p2t/d ≤ d2r/d ≤ 2.1r.

The number of primes in the product P3 is less than r4/2 + r2 + C3 <

r4 +C3 and so by Lemma 1.1, P3 ≤ 5r
4+C3 . For P4 we apply Lemma 6.1, to

obtain

P4 ≤
∏

p

(
1 +

1
p2

)(∏

p

pt/d
) ∏

1≤i<j≤r

∏

p≤pi,j
p8r/pij

� dr/d
∏

1≤i<j≤r
C4r

5 � 1.5rC2r3

5

for some absolute constant C5. We may take C5 = supx e
θ(x)/x, where θ(x) =∑

p≤x log p.
For P5, we apply Lemma 5.4(iii) to obtain,

P5 ≤
∏

p<50d

p(2r+t)/d ≤
∏

p

pt/d
∏

p<50d

p2r/d ≤ dr/de2rθ(50d)/d ≤ 1.5rC100r
5 .

Finally, we apply Lemma 5.3 to P6 to obtain

P6 ≤
∏

p

pt/d ≤ dr/d ≤ 1.5r.

Thus the product P1P2P3P4P5P6 is bounded above by a constant depending
only on r.
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