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Note on a variant of the Erdős–Ginzburg–Ziv problem

by

Chao Wang (Tianjin)

1. Introduction. P. Erdős, A. Ginzburg and A. Ziv [3] proved that from
any sequence of integers of length 2n − 1 one can extract a subsequence of
length n whose sum is congruent to zero modulo n.

A. Bialostocki and P. Dierker [1] proved that if A = (a1, . . . , a2n−2) is
a sequence of integers of length 2n − 2 and there are no indices i1, . . . , in
belonging to {1, . . . , 2n− 2} such that

ai1 + ai2 + . . .+ ain ≡ 0 (modn),(1)

then there are two residue classes modulo n such that n−1 of the ai’s belong
to one of the classes and the remaining n− 1 belong to the other class.

In order to study the relation between the number of classes present in
a sequence A = (a1, . . . , ag) and the possibility to have a relation like (1),
A. Bialostocki and M. Lotspeich [2] introduced the following function.

Definition 1.1 ([2]). Let n, k be positive integers, 1 ≤ k ≤ n. We
define f(n, k) to be the least integer g for which the following holds: If
A = (a1, . . . , ag) is a sequence of integers of length g such that the number
of ai’s that are distinct modulo n is equal to k, then there are n indices
i1, . . . , in belonging to {1, . . . , g} such that ai1 + . . .+ ain ≡ 0 (modn).

The Erdős–Ginzburg–Ziv theorem implies that f(n, k) exists and is not
greater than 2n − 1. It is easy to see that f(n, 1) = n, f(n, 2) = 2n − 1,
f(n, k) ≥ n, and

f(n, k) ≤ 2n− 2 for 2 < k ≤ n.
For given n, we will formulate the problem and work in the context

of Zn, the cyclic group of residue classes modulo n. Let us define f(n, k) in
the following equivalent way.

Definition 1.2 ([4]). Let n, k be positive integers, 1 ≤ k ≤ n. Denote
by f(n, k) the least integer g for which the following holds: IfA = (a1, . . . , ag)
is a sequence of elements of Zn of length g such that the number of distinct
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ai’s is equal to k, then there are n indices i1, . . . , in belonging to {1, . . . , g}
such that ai1 + . . .+ ain = 0.

Notation. A sequence A = (0, 0, 1, 1, 1, 2, 3, 5) will also be denoted by
A = (02, 13, 2, 3, 5). The elements of Zn will be denoted by 0, 1, . . . , n− 1.

L. Gallardo, G. Grekos and J. Pihko [4] proved

Theorem 1.1 ([4]). Let n be a positive integer. Then f(n, n) = n if n
is odd and f(n, n) = n+ 1 if n is even.

Theorem 1.2 ([4]). Let n ≥ 5 and 1+n/2 < k ≤ n−1. Then f(n, k) =
n+ 2.

In this article, k and n will be positive integers. We prove the following
theorems.

Theorem 1.3. If k = 2m+ 1 ≥ 3 is odd and

n ≥ max{4m2 − 4,m(m+ 3)/2 + 2},
then

f(n, k) = 2n−m2 − 1.

Theorem 1.4. If k = 2m is even and

n ≥ max{4m(m− 1)− 4,m(m+ 1)/2 + 1},
then

f(n, k) = 2n−m(m− 1)− 1.

2. Proofs. In order to prove Theorems 1.3 and 1.4, we need some pre-
liminaries that appeared in [5].

Theorem 2.1 ([5]). Let n ≥ 2 and 2 ≤ k ≤ [n/4] + 2, and let (a1, . . . ,
a2n−k) be a sequence of length 2n− k in Zn. Suppose that for any n-subset
I of {1, . . . , 2n− k}, ∑i∈I ai 6= 0. Then one can rearrange the sequence as

(a, . . . , a︸ ︷︷ ︸
u

, b, . . . , b︸ ︷︷ ︸
v

, c1, . . . , c2n−k−u−v),

where u ≥ n − 2k + 3, v ≥ n − 2k + 3, u + v ≥ 2n − 2k + 2 and a − b
generates Zn.

In [5], Weidong Gao introduced the following two definitions.

Definition 2.1 ([5]). Let S = (a1, . . . , ak) be a sequence of elements
in Zn. For any b ∈ Zn, we denote by b+ S the sequence (b+ a1, . . . , b+ ak).
For any 1 ≤ r ≤ k, we define

∑
r(S) to be the set of all elements in Zn

which can be expressed as a sum over an r-term subsequence of S, i.e.,
∑

r(S) = {ai1 + . . .+ air | 1 ≤ i1 < . . . < ir ≤ k}.
Definition 2.2 ([5]). Let S = (a1, . . . , am) and T = (b1, . . . , bm) be two

sequences of elements in Zn with |S| = |T |. We say that S is equivalent
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to T (written S ∼ T ) if there exist an integer c coprime to n, an element
x ∈ Zn, and a permutation δ of {1, . . . ,m} such that ai = c(bδ(i) − x) for
every i = 1, . . . ,m. Clearly, “∼” is an equivalence relation; and if S ∼ T ,
then 0 ∈∑n(S) if and only if 0 ∈∑n(T ).

With the above two definitions, Theorem 2.1 is equivalent to

Lemma 2.2. Let n≥2 and 2≤k≤ [n/4] + 2, and let A=(a1, . . . , a2n−k)
be a sequence of length 2n− k in Zn. If 0 6∈∑n(A), then

A ∼ (0u, 1v, c1, . . . , c2n−k−u−v),

where u ≥ n− 2k + 3, v ≥ n− 2k + 3, u+ v ≥ 2n− 2k + 2.

Proof of Theorem 1.3. Since k = 2m+ 1 ≥ 3, we have m ≥ 1. Consider
the sequence

E=(0n−m(m+3)/2−1, 1n−m(m+1)/2, 2, 3, . . . ,m︸ ︷︷ ︸
m−1

, n−m,n−m+ 1, . . . , n− 1︸ ︷︷ ︸
m

),

which contains exactly k = 2m+ 1 distinct elements of Zn and has

n−m(m+ 3)/2− 1 + n−m(m+ 1)/2 +m− 1 +m = 2n−m2 − 2

terms. Every n-term subsequence of E has non-zero sum, so

f(n, k) ≥ 2n−m2 − 1.

Suppose E = (a1, . . . , a2n−m2−1) is a sequence containing exactly k dis-
tinct elements of Zn. Since n ≥ 4m2 − 4 = 4(m2 + 1)− 8, from Lemma 2.2,
we know that

E ∼ (0u, 1v, c1, . . . , cq),

where u ≥ n − 2m2 + 1, v ≥ n − 2m2 + 1, u + v ≥ 2n − 2m2, all ci 6= 0, 1.
As E contains k distinct elements of Zn, we have q ≥ 2m − 1, u + v ≤
2n−m2 − 1− (2m− 1) = 2n−m(m+ 2).

Let F = (0u, 1v, c1, . . . , cq). Suppose 0 6∈∑n(E). Then 0 6∈∑n(F ).
It is easy to verify that u+v ≥ n, so n−v ≤ u < u+1. For each 1 ≤ i ≤ q,

if n − v ≤ ci ≤ u + 1, then (0ci−1, 1n−ci , ci) is an n-term subsequence of F
which has zero sum, which is impossible, so ci > u+1 or ci < n−v. Without
loss of generality, we can assume that c1, . . . , cs are all greater than u + 1,
and cs+1, . . . , cq are all less than n− v.

It is easy to see that ci + cj ≥ n+ 2, 1 ≤ i 6= j ≤ s. Since

2n− ci − cj ≤ 2n− 2(u+ 2) = v + 2n− u− (u+ v)− 4

≤ v + 2n− (n− 2m2 + 1)− (2n− 2m2)− 4

= v − (n− 4m2 + 4)− 1 < v,
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it follows that if ci + cj ≤ n+ u+ 2, then (0ci+cj−n−2, 12n−ci−cj , ci, cj) is an
n-term subsequence of F which has zero sum, so

ci + cj > n+ u+ 2, 1 ≤ i 6= j ≤ s.(2)

Suppose that for some t > 1 we have proved

(3) ci1 + . . .+ cit−1 > (t− 2)n+ u+ (t− 1), 1 ≤ i1, . . . , it−1 ≤ s,
i1, . . . , it−1 pairwise distinct.

Then for every it such that 1 ≤ it ≤ s and it 6= ij , 1 ≤ j ≤ t− 1,

ci1 + . . .+ cit−1 + cit ≥ (t− 2)n+ u+ (t− 1) + 1 + (u+ 2)(4)

= (t− 2)n+ 2u+ t+ 2

≥ (t− 2)n+ 2(n− 2m2 + 1) + t+ 2

= (t− 1)n+ (n− 4m2 + 4) + t

≥ (t− 1)n+ t,

and

(5) tn− ci1 − . . .− cit−1 − cit
≤ tn− [(t− 2)n+ u+ (t− 1) + 1]− (u+ 2)

= 2n− 2u− t− 2

= v + 2n− u− (u+ v)− t− 2

≤ v + 2n− (n− 2m2 + 1)− (2n− 2m2)− t− 2

= v − (n− 4m2 + 4)− (t− 1) < v.

If ci1 + . . .+ cit−1 + cit ≤ (t− 1)n+ u+ t, then (4) and (5) show that

(0ci1+...+cit−(t−1)n−t, 1tn−ci1−...−cit , ci1 , . . . , cit)

is an n-term subsequence of F which has zero sum, so

(6) ci1 + . . .+ cit > (t− 1)n+ u+ t, 1 ≤ i1, . . . , it ≤ s,
i1, . . . , it pairwise distinct.

So we have proved that (6) holds for each 1 ≤ t ≤ s by induction. In
particular, letting t = s, we have

c1 + . . .+ cs > (s− 1)n+ u+ s.(7)

On the other hand, it is easy to see that cs+i+cs+j ≤ n, 1 ≤ i 6= j ≤ q−s.
Since

ci + cj − 2 ≤ 2(n− v − 1)− 2

= u+ 2n− v − (u+ v)− 4

≤ u+ 2n− (n− 2m2 + 1)− (2n− 2m2)− 4

= u− (n− 4m2 + 4)− 1 < u,



Erdős–Ginzburg–Ziv problem 57

it follows that if cs+i + cs+j ≥ n − v, then (0cs+i+cs+j−2, 1n−cs+i−cs+j , cs+i,
cs+j) is an n-term subsequence of F which has zero sum, so

cs+i + cs+j < n− v, 1 ≤ i 6= j ≤ q − s.
Suppose that for some t > 1 we have proved

(8) cs+i1 + . . .+ cs+it−1 < n− v, 1 ≤ i1, . . . , it−1 ≤ q − s,
i1, . . . , it−1 pairwise distinct.

Then for every it such that 1 ≤ it ≤ q − s and it 6= ij , 1 ≤ j ≤ t− 1,

(9) cs+i1 + . . .+ cs+it−1 + cs+it − t
≤ (n− v − 1) + (n− v − 1)− t
= 2n− 2v − t− 2

= u+ 2n− v − (u+ v)− t− 2

≤ u+ 2n− (n− 2m2 + 1)− (2n− 2m2)− t− 2

= u− (n− 4m2 + 4)− (t− 1) < u.

If cs+i1 + . . .+ cs+it−1 + cs+it ≥ n− v, then (8) and (9) show that

(0cs+i1+...+cs+it−t, 1n−cs+i1−...−cs+it , cs+i1 , . . . , cs+it)

is an n-term subsequence of F which has zero sum, so

(10) cs+i1 + . . .+ cs+it < n− v, 1 ≤ i1, . . . , it ≤ q − s,
i1, . . . , it pairwise distinct.

So we have proved (10) for each 1 ≤ t ≤ q − s by induction. In particular,
letting t = q − s, we have

cs+1 + . . .+ cq < n− v.
The inequality (7) is equivalent to

(n− c1) + (n− c2) + . . .+ (n− cs) < n− u− s.
For 1 ≤ i ≤ s, let ei = n− ci. Then 0 < ei < n− u− 1 and

e1 + . . .+ es ≤ n− u− s− 1.(11)

For 1 ≤ i ≤ q − s, let di = cs+i. Then 1 < di < n− v and

d1 + . . .+ dq−s ≤ n− v − 1.(12)

Suppose that {e1, . . . , es} has w distinct elements. Then {d1, . . . , dq−s} has
2m− 1− w distinct elements. From (11) and (12), we know that

e1 + . . .+ es + d1 + . . .+ dq−s ≤ 2n− u− v − s− 2.
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But in fact,

(e1 + e2 + . . .+ es + d1 + d2 + . . .+ dq−s)− (2n− u− v − s− 2)

≥ 1 + 2 + 3 + . . .+ w + 1 · (s− w) + 2 + 3 + . . .+ (2m− w)

+ 2 · (2n−m2 − 1− u− v − s− (2m− 1− w))− (2n− u− v − s− 2)

≥ w(w + 1)/2 + s− w + (2m− w − 1)(2m− w + 2)/2 + 2n− 2m2

− 4m− u− v − s+ 2w + 2

= 2n− u− v + w2 − 2mw + w − 3m+ 1

≥ m(m+ 2) + w2 − 2mw + w − 3m+ 1

= (m− w − 1/2)2 + 3/4 > 0.

Contradiction! So 0 ∈∑n(E), which means f(n, k) ≤ 2n−m2 − 1, and the
proof is finished.

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. We
leave it to the interested reader.

Letting k = 2, 3, 4, 5, 6, we get the following corollary.

Corollary 2.3.
f(n, 2) = 2n− 1, n ≥ 2,

f(n, 3) = 2n− 2, n ≥ 4,

f(n, 4) = 2n− 3, n ≥ 4,

f(n, 5) = 2n− 5, n ≥ 12,

f(n, 6) = 2n− 7, n ≥ 20.
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