On power residues

by

A. Schinzel and M. SkaŁba (Warszawa)

Let n be a positive integer, K a number field, $\alpha_{i} \in K(1 \leq i \leq k), \beta \in K$. A simple necessary and sufficient condition was given in [7] in order that, for almost all prime ideals \mathfrak{p} of K, solubility of the k congruences $x^{n_{i}} \equiv \alpha_{i}$ $(\bmod \mathfrak{p})$ should imply solubility of the congruence $x^{n} \equiv \beta(\bmod \mathfrak{p})$, where $n_{i} \mid n$. The aim of this paper is to extend that result to the case where the congruence $x^{n} \equiv \beta(\bmod \mathfrak{p})$ is replaced by the alternative of l congruences $x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})$. The general result is quite complicated, but it simplifies if n or K satisfy some restrictions. Here are precise statements, in which ζ_{n} denotes a primitive nth root of unity, $|A|$ is the cardinality of a set A, $K^{n}=\left\{x^{n}: x \in K\right\}$ and \mathcal{F} is the family of all subsets of $\{1, \ldots, l\}$.

Theorem 1. Let n and n_{i} be positive integers with $n_{i} \mid n(1 \leq i \leq k)$, K be a number field and $\alpha_{i}, \beta_{j} \in K^{*}(1 \leq i \leq k, 1 \leq j \leq l)$. Consider the implication
(i) solubility in K of the k congruences $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p})$ implies solubility in K of at least one of the l congruences $x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})$.

Then (i) holds for almost all prime ideals \mathfrak{p} of K if and only if
(ii) for every unitary divisor $m>1$ of n and, if $n \equiv 0(\bmod 4)$, for every $m=2 m^{*}$, where m^{*} is a unitary divisor of the odd part of n, there exists an involution σ_{m} of \mathcal{F} such that for all $A \subset\{1, \ldots, l\}$,

$$
\begin{align*}
\left|\sigma_{m}(A)\right| & \equiv|A|+1(\bmod 2) \tag{1}\\
\prod_{j \in \sigma_{m}(A)} \beta_{j} & =\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} m /\left(m, n_{i}\right)} \Gamma^{m} \tag{2}
\end{align*}
$$

where $a_{i} \in \mathbb{Z}, \Gamma \in K\left(\zeta_{m}\right)^{*}$.
Corollary 1. Let $w_{n}(K)$ be the number of nth roots of unity contained in K and assume that

$$
\begin{equation*}
\left(w_{n}(K), \operatorname{lcm}\left[K\left(\zeta_{q}\right): K\right]\right)=1 \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification: 11R20, 11A15.
where the least common multiple is over all prime divisors q of n and additionally $q=4$ if $4 \mid n$. The implication (i) holds for almost all prime ideals \mathfrak{p} of K if and only if there exists an involution σ of \mathcal{F} such that for all $A \subset\{1, \ldots, l\}$,

$$
\begin{equation*}
|\sigma(A)| \equiv|A|+1(\bmod 2) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j}=\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} n / n_{i}} \gamma^{n} \tag{5}
\end{equation*}
$$

where $a_{i} \in \mathbb{Z}, \gamma \in K^{*}$.
The condition (3) holds for every K if $n=2$ or $n=l^{e}$, where l is an odd prime, and for $K=\mathbb{Q}$ if n is odd.

Corollary 2. For $n=n_{i}=2(1 \leq i \leq k)$, (i) holds for almost all prime ideals \mathfrak{p} of K if and only if
(iii) there exists a subset A_{0} of $\{1, \ldots, l\}$ such that

$$
\begin{equation*}
\left|A_{0}\right| \equiv 1(\bmod 2) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{j \in A_{0}} \beta_{j}=\prod_{i=1}^{k} \alpha_{i}^{a_{i}} \gamma_{0}^{2} \tag{7}
\end{equation*}
$$

where $a_{i} \in \mathbb{Z}, \gamma_{0} \in K^{*}$.
Corollary 2 contains as a special case $(K=\mathbb{Q}, k=0)$ a theorem of Fried [3], rediscovered by Filaseta and Richman [2].

The case $n=2^{e}(e \geq 2)$ is covered by the following corollary, in which τ denotes the greatest integer such that $\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1} \in K$. This corollary is of interest only if $\zeta_{4} \notin K$, otherwise (3) holds.

Corollary 3. For $n=2^{e}(e \geq 2)$ and $n_{i}>1(1 \leq i \leq k)$, (i) holds for almost all prime ideals \mathfrak{p} of K if and only if simultaneously (iii) holds and
(iv) there exists an involution σ of \mathcal{F} such that for all $A \subset\{1, \ldots, l\}$ we have (4) and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j}=\varepsilon \prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} n / n_{i}} \gamma^{n} \tag{8}
\end{equation*}
$$

where $a_{i} \in \mathbb{Z}, \gamma \in K^{*}$ and

$$
\varepsilon \in \begin{cases}\{1,-1\} & \text { if } e<\tau \tag{9}\\ \left\{1,(-1)^{n / 2^{\tau}}\left(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2\right)^{n / 2}\right\} & \text { if } e \geq \tau\end{cases}
$$

The case $K=\mathbb{Q}, n$ odd is covered by Corollary 1. The case $K=\mathbb{Q}, n$ even is covered by the following

Theorem 2. Let $n=2^{\nu} n^{*}, \nu>0, n^{*}$ odd, $n_{i} \mid n(1 \leq i \leq k), K=\mathbb{Q}$. The implication (i) holds for almost all prime ideals \mathfrak{p} of K if and only if
(v) for every $m=2^{\nu} m^{*}$ and, if $\nu=2$, for every $m=2 m^{*}$, where m^{*} is a unitary divisor of n^{*}, there exists an involution σ_{m} of \mathcal{F} such that for all $A \subset\{1, \ldots, l\}$ we have (1) and

$$
\prod_{j \in \sigma_{m}(A)} \beta_{j}=\varepsilon \prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} m /\left(m, n_{i}\right)} \delta^{m / 2} \gamma^{m}
$$

where $a_{i} \in \mathbb{Z}, \gamma \in \mathbb{Q}^{*}, \delta$ is a fundamental discriminant dividing m and

$$
\varepsilon \in \begin{cases}\left\{1,-2^{m / 2}\right\} & \text { if } m \equiv 4(\bmod 8) \\ \{1\} & \text { otherwise }\end{cases}
$$

Corollary 4. Let $n=2^{\nu} n^{*}, \nu \geq 0, n^{*}$ odd, $\beta_{1}, \beta_{2} \in \mathbb{Q}^{*}$. The alternative of congruences

$$
x^{n} \equiv \beta_{j}(\bmod p) \quad(1 \leq j \leq 2)
$$

is soluble for almost all primes p, if and only if either

$$
\begin{equation*}
\beta_{i} \in \mathbb{Q}^{n} \tag{10}
\end{equation*}
$$

for some $i \leq 2$, or there is a $j \leq 2$, a prime $q \mid n^{*}$ with $q^{e} \| n^{*}$ and some $\gamma_{1}, \gamma_{2} \in \mathbb{Q}$ such that one of the following holds:

- $\nu=1$ and

$$
\begin{equation*}
\beta_{j}=\left((-1)^{(q-1) / 2} q\right)^{n / 2} \gamma_{1}^{n}, \quad \beta_{3-j}=\gamma_{2}^{n / q^{e}} \tag{11}
\end{equation*}
$$

- $\nu=2$ and either

$$
\begin{equation*}
\beta_{j}=-2^{n / 2} \gamma_{1}^{n}, \quad \beta_{3-j}=\gamma_{2}^{n / 2} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta_{j}=q^{n / 2} \gamma_{1}^{n}, \quad \beta_{3-j} \in\left\{\gamma_{2}^{n / q^{e}},-2^{n / 2 q^{e}} \gamma_{2}^{n / q^{e}}\right\} \tag{13}
\end{equation*}
$$

- $\nu \geq 3$ and either

$$
\begin{equation*}
\beta_{j}=2^{n / 2} \gamma_{1}^{n} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta_{j} \in\left\{q^{n / 2} \gamma_{1}^{n}, 2^{n / 2} q^{n / 2} \gamma_{1}^{n}\right\}, \quad \beta_{3-j} \in\left\{\gamma_{2}^{n / q^{e}}, 2^{n / 2 q^{e}} \gamma_{2}^{n / q^{e}}\right\} \tag{15}
\end{equation*}
$$

The proofs are based on eight lemmas and use the nth power residue symbol, which is defined as follows. If a number field K contains ζ_{n}, then for every prime ideal \mathfrak{p} of K prime to n and every \mathfrak{p}-adic unit α of $K,(\alpha \mid \mathfrak{p})_{n}$ is the unique number ζ_{n}^{j} that satisfies the congruence

$$
\alpha^{(N \mathfrak{p}-1) / n} \equiv \zeta_{n}^{j}(\bmod \mathfrak{p})
$$

where $N \mathfrak{p}$ is the absolute norm of \mathfrak{p}. Moreover, ind α is the index of α with respect to a fixed primitive root modulo the relevant prime ideal.

We give two proofs of Corollary 2, one short using Theorem 1 and the other longer, but using neither Theorem 1 nor the lemmas bellow, except the classical Lemma 3.

At the end of the paper we give a deduction of the more difficult necessity part of Theorem 1 of [7] from Theorem 1 above.

We thank Professor J. Browkin for some helpful suggestions.
Lemma 1. Let G be a finite abelian group, \widehat{G} its group of characters and $g_{j} \in G(1 \leq j \leq l)$. If

$$
\begin{equation*}
\prod_{j=1}^{l}\left(\chi\left(g_{j}\right)-1\right)=0 \tag{16}
\end{equation*}
$$

for every $\chi \in \widehat{G}$ then there exists an involution σ of \mathcal{F} such that for all $A \subset\{1, \ldots, l\}$ we have (4) and

$$
\prod_{j \in \sigma(A)} g_{j}=\prod_{j \in A} g_{j}
$$

Proof. For $g \in G$ let

$$
c(g)=\sum_{\substack{A \subset\{1, \ldots, l\} \\ \prod_{j \in A} g_{j}=g}}(-1)^{|A|}
$$

The equality (16) can be written in the form

$$
\sum_{g \in G} c(g) \chi(g)=0
$$

or, if h is any fixed element of G,

$$
\sum_{g \in G} c(g) \chi\left(g h^{-1}\right)=0
$$

Summing over all characters χ gives $|G| c(h)=0$, hence $c(h)=0$, and h being arbitrary, $c(g)=0$ for all $g \in G$. It follows that for all $g \in G$ the number of subsets A of $\{1, \ldots, l\}$ with $\prod_{j \in A} g_{j}=g$ and $|A|$ odd equals the corresponding number with $|A|$ even, hence there is an involution σ_{g} of the family of subsets A of $\{1, \ldots, l\}$ with $\prod_{j \in A} g_{j}=g$ such that

$$
\left|\sigma_{g}(A)\right| \equiv|A|+1(\bmod 2)
$$

The involution σ is obtained by combining all involutions σ_{g}.
Lemma 2. Let n be a positive integer, K and L be number fields, $K\left(\zeta_{n}\right)$ $\subset L, \beta_{j} \in K^{*}(1 \leq j \leq l)$. Let H be the multiplicative group generated by $\beta_{1}, \ldots, \beta_{l}$, and H_{1} the intersection of H with L^{n}. For every $\chi \in \widehat{H / H_{1}}$ there exists a set \mathcal{P}, with positive Dirichlet density, of prime ideals \mathfrak{P} of L such
that

$$
\begin{equation*}
\chi([x])=(x \mid \mathfrak{P})_{n} \tag{17}
\end{equation*}
$$

where $[x]$ is the coset of H_{1} in H containing x.
Proof. By a theorem of Skolem [9] the field L has a multiplicative basis $\zeta_{w}, \pi_{1}, \pi_{2}, \ldots$, where ζ_{w} is a root of unity and π_{1}, π_{2}, \ldots are generators of infinite order. Let π_{s} be the last generator that occurs in the representation of $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}$. We have

$$
H / H_{1}<J / J^{n}
$$

where J is the group generated by $\zeta_{w}, \pi_{1}, \ldots, \pi_{s}$. Indeed, $H<J$ and the relations $h_{1} \in H, h_{2} \in H$ and $h_{1} h_{2}^{-1} \in J^{n}$ together imply $h_{1} h_{2}^{-1} \in H_{1}$. Hence for every $\chi \in \widehat{H / H_{1}}$ there exists $\chi_{1} \in \widehat{J / J^{n}}$ such that

$$
\begin{equation*}
\chi(y)=\chi_{1}(y) \quad \text { for } y \in H / H_{1} \tag{18}
\end{equation*}
$$

Clearly $\chi_{1}(y)^{n}=1$ for all $y \in J / J^{n}$. On the other hand, by Theorem 4 of [8] with $\sigma=1$, for any integers c_{0}, \ldots, c_{s} there exist infinitely many prime ideals \mathfrak{P} of L such that

$$
\left(\zeta_{w} \mid \mathfrak{P}\right)_{n}=\zeta_{n}^{c_{0}}, \quad\left(\pi_{r} \mid \mathfrak{P}\right)_{n}=\zeta_{n}^{c_{r}} \quad(1 \leq r \leq s)
$$

Since the proof is via the Chebotarev density theorem (see [8, p. 263]), the infinite set of prime ideals in question has a positive Dirichlet density. Hence for every $\chi_{1} \in \widehat{J / J^{n}}$ there exists a set \mathcal{P} of positive Dirichlet density such that for $\mathfrak{P} \in \mathcal{P}$,

$$
\begin{equation*}
\chi_{1}(\bar{x})=(x \mid \mathfrak{P})_{n} \quad \text { for } x \in J \tag{19}
\end{equation*}
$$

where \bar{x} is the coset of J^{n} in J containing x. Since by (18),

$$
\chi([x])=\chi_{1}(\bar{x}) \quad \text { for } x \in H
$$

(17) follows from (19).

Lemma 3. Let $n \in \mathbb{N}$, K be a number field, $\zeta_{n} \in K$, and $\alpha_{1}, \ldots, \alpha_{k}, \beta$ elements of K^{*}. If

$$
\sqrt[n]{\beta} \in K\left(\sqrt[n]{\alpha_{1}}, \ldots, \sqrt[n]{\alpha_{k}}\right)
$$

then

$$
\beta=\prod_{i=1}^{k} \alpha_{i}^{a_{i}} \gamma^{n}
$$

where $a_{i} \in \mathbb{Z}, \gamma \in K^{*}$.
Proof. See [5, p. 222, formula (2)].
Lemma 4. The condition (i) for almost all prime ideals \mathfrak{p} of K implies the existence of an involution σ of \mathcal{F} such that, for all $A \subset\{1, \ldots, l\}$, (4)
holds and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j}=\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} n / n_{i}} \Gamma^{n} \quad \text { for some } a_{i} \in \mathbb{Z}, \Gamma \in K\left(\zeta_{n}\right)^{*} \tag{20}
\end{equation*}
$$

Proof. Let χ be a character of the group H / H_{1} described in Lemma 2 with $L=K\left(\zeta_{n}, \xi_{1}, \ldots, \xi_{k}\right)$, where $\xi_{i}^{n_{i}}=\alpha_{i}(1 \leq i \leq k)$. By Lemma 2 there exists a set \mathcal{P}, with positive Dirichlet density, of prime ideals \mathfrak{P} of L such that

$$
\begin{equation*}
(x \mid \mathfrak{P})_{n}=\chi([x]) \quad \text { for } x \in H \tag{21}
\end{equation*}
$$

where $[x]$ is the coset of H_{1} in H containing x. Since the prime ideals of degree greater than 1 have Dirichlet density 0 and the relative norms of prime ideals from \mathcal{P} have positive Dirichlet density, there is $\mathfrak{P} \in \mathcal{P}$ such that $\mathfrak{p}=N_{L / K} \mathfrak{P}$ has the property that solubility in K of the k congruences $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p})$ implies solubility of at least one of the l congruences $x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})$. Moreover, the congruence $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{P})$ has the solution $x=\xi_{i}$ in L, hence, \mathfrak{P} being of relative degree 1 , the congruence $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p})$ has a solution in K and, by (i),

$$
\prod_{j=1}^{l}\left(\left(\beta_{j} \mid \mathfrak{P}\right)_{n}-1\right)=0
$$

By (21) we have

$$
\prod_{j=1}^{l}\left(\chi\left(\left[\beta_{j}\right]\right)-1\right)=0
$$

and, χ being arbitrary, it follows by Lemma 1 that there exists an involution σ of \mathcal{F} such that (4) holds and

$$
\prod_{j \in \sigma(A)}\left[\beta_{j}\right]=\prod_{j \in A}\left[\beta_{j}\right]
$$

The last formula means that

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j} \prod_{j \in A} \beta_{j}^{-1}=\Gamma_{1}^{n} \quad \text { for some } \Gamma_{1} \in L \tag{22}
\end{equation*}
$$

Since $\Gamma_{1}^{n} \in K\left(\zeta_{n}\right)$, by Lemma 3 we have

$$
\Gamma_{1}^{n}=\prod_{i=1}^{k} \alpha_{i}^{a_{i} n / n_{i}} \Gamma^{n} \quad \text { for some } a_{i} \in \mathbb{Z}, \Gamma \in K\left(\zeta_{n}\right)
$$

which together with (22) gives (20).

Lemma 5. If there exists an involution σ of \mathcal{F} such that, for all $A \subset$ $\{1, \ldots, l\},(4)$ holds and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j}=\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} m /\left(m, n_{i}\right)} \Gamma^{m} \tag{23}
\end{equation*}
$$

for some $a_{i} \in \mathbb{Z}$ and $\Gamma \in K\left(\zeta_{m}\right)$, then the implication (i) holds for all prime ideals \mathfrak{p} of K such that all α_{i}, β_{j} are \mathfrak{p}-adic units and $(N \mathfrak{p}-1, n)=m$.

Proof. Let \mathfrak{p} satisfy the assumptions of the lemma and assume that the k congruences $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p})$, hence also $x^{\left(m, n_{i}\right)} \equiv \alpha_{i}(\bmod \mathfrak{p})$, are soluble in K. Let g be a primitive root $\bmod \mathfrak{p}$ and Φ_{m} the m th cyclotomic polynomial. We have

$$
\Phi_{m}(x) \equiv \prod_{(k, m)=1}\left(x-g^{\frac{N \mathfrak{p}-1}{m} k}\right)(\bmod \mathfrak{p})
$$

hence, by Dedekind's theorem, \mathfrak{p} has a prime ideal factor \mathfrak{P} in $K\left(\zeta_{m}\right)$ of relative degree 1 . Solubility in K of the congruences in question implies

$$
\left(\alpha_{i}^{a_{i} m /\left(m, n_{i}\right)} \mid \mathfrak{P}\right)_{m}=1 \quad(1 \leq i \leq k)
$$

and, since $\left(\Gamma^{m} \mid \mathfrak{P}\right)_{m}=1$, by (23) we have

$$
\left(\prod_{j \in \sigma(A)} \beta_{j} \mid \mathfrak{P}\right)_{m}=\left(\prod_{j \in A} \beta_{j} \mid \mathfrak{P}\right)_{m}
$$

hence

$$
\begin{aligned}
& 2 \prod_{j=1}^{l}\left(1-\left(\beta_{j} \mid \mathfrak{P}\right)_{m}\right) \\
& \quad=\sum_{A \subset\{1, \ldots, l\}}\left((-1)^{|A|}\left(\prod_{j \in A} \beta_{j} \mid \mathfrak{P}\right)_{m}+(-1)^{|\sigma(A)|}\left(\prod_{j \in \sigma(A)} \beta_{j} \mid \mathfrak{P}\right)_{m}\right) \\
& \quad=\sum_{A \subset\{1, \ldots, l\}}\left((-1)^{|A|}+(-1)^{|\sigma(A)|}\right)\left(\prod_{j \in A} \beta_{j} \mid \mathfrak{P}\right)_{m}=0
\end{aligned}
$$

Thus $\left(\beta_{j} \mid \mathfrak{P}\right)_{m}=1$ for at least one $j \leq l$. Since \mathfrak{P} is of relative degree 1 , this means that the congruence

$$
x^{m} \equiv \beta_{j}(\bmod \mathfrak{p})
$$

is soluble in K. Choosing an integer t such that $(N \mathfrak{p}-1) t \equiv m(\bmod n)$ we have, for every \mathfrak{p}-adic unit x of K,

$$
x^{(N \mathfrak{p}-1) t} \equiv 1(\bmod \mathfrak{p}),
$$

hence the congruence $x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})$ is soluble in K.
Lemma 6. Let $m, n_{i} \in \mathbb{N}(1 \leq i \leq k)$ and $n_{i}=n_{i}^{\prime} n_{i}^{\prime \prime}$, where $\left(n_{i}^{\prime \prime}, m\right)=1$. Let $\alpha_{i}, \beta_{j} \in K^{*}(1 \leq i \leq k, 1 \leq j \leq l)$. If there exists a prime ideal \mathfrak{p}_{0} of K
such that $m, n_{i}, \alpha_{i}, \beta_{j}$ are \mathfrak{p}_{0}-adic units, the congruences

$$
\begin{equation*}
x^{n_{i}^{\prime}} \equiv \alpha_{i}\left(\bmod \mathfrak{p}_{0}\right) \quad(1 \leq i \leq k) \tag{24}
\end{equation*}
$$

are soluble in K and the congruences

$$
\begin{equation*}
x^{m} \equiv \beta_{j}\left(\bmod \mathfrak{p}_{0}\right) \quad(1 \leq j \leq l) \tag{25}
\end{equation*}
$$

are insoluble in K, then there exists a set \mathcal{P}, with positive Dirichlet density, of prime ideals of K such that for $\mathfrak{p} \in \mathcal{P}$ the congruences

$$
\begin{equation*}
x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p}) \quad(1 \leq i \leq k) \tag{26}
\end{equation*}
$$

are soluble in K and the congruences

$$
\begin{equation*}
x^{m} \equiv \beta_{j}(\bmod \mathfrak{p}) \quad(1 \leq j \leq l) \tag{27}
\end{equation*}
$$

are insoluble in K.
Proof. Assume first that all n_{i} are prime powers, $n_{i}=l_{i}^{\nu_{i}}$, where l_{i} are primes, and let

$$
\begin{aligned}
I_{0} & =\left\{1 \leq i \leq k: l_{i} \mid m\right\}, \\
I_{1} & =\left\{1 \leq i \leq k: l_{i} \mid N \mathfrak{p}_{0}-1\right\} \backslash I_{0}, \\
I_{2} & =\{1 \leq i \leq k\} \backslash I_{0} \backslash I_{1}
\end{aligned}
$$

Let further $\left(N \mathfrak{p}_{0}-1, m\right)=m^{\prime}$. We set

$$
L=K\left(\zeta_{n_{i}}, \sqrt[n_{i}]{\alpha_{i}}(1 \leq i \leq k), \zeta_{m^{\prime}}, \sqrt[m^{\prime}]{\beta_{j}}(1 \leq j \leq l)\right)
$$

take \mathfrak{P}_{0} to be a prime ideal factor of \mathfrak{p}_{0} in L, and let S be the element of the Galois group of L / K such that

$$
\vartheta^{S} \equiv \vartheta^{N \mathfrak{p}_{0}}\left(\bmod \mathfrak{P}_{0}\right)
$$

for all \mathfrak{P}_{0}-adic units ϑ of L.
By the assumption about the congruences (24) the congruence

$$
x^{n_{i}} \equiv \alpha_{i}\left(\bmod \mathfrak{p}_{0}\right)
$$

has a solution $x_{i} \in K$ for $i \in I_{0}$, hence there exists a zero A_{i} of $x^{n_{i}}-\alpha_{i}$ such that $A_{i} \equiv x_{i}\left(\bmod \mathfrak{P}_{0}\right)$ and then

$$
\begin{equation*}
A_{i}^{S}=A_{i} . \tag{28}
\end{equation*}
$$

For $i \in I_{1} \cup I_{2}$ and $1 \leq j \leq l$, we choose A_{i} and B_{j} to be arbitrary zeros of $x^{n_{i}}-\alpha_{i}$ and $x^{m^{\prime}}-\beta_{j}$, respectively.

By the assumption about the congruences (25) also the congruences

$$
\begin{equation*}
x^{m^{\prime}} \equiv \beta_{j}\left(\bmod \mathfrak{p}_{0}\right) \quad(1 \leq j \leq l) \tag{29}
\end{equation*}
$$

are insoluble in K. We have

$$
\begin{gather*}
\zeta_{m^{\prime}}^{S}=\zeta_{m^{\prime}}^{N \mathfrak{p}_{0}}=\zeta_{m^{\prime}}, \quad \zeta_{n_{i}}^{S}=\zeta_{n_{i}}^{N \mathfrak{p}_{0}} \quad(1 \leq i \leq k), \\
A_{i}^{S}=\zeta_{n_{i}}^{a_{i}} A_{i} \quad\left(i \in I_{1} \cup I_{2}\right), \quad B_{j}^{S}=\zeta_{m^{\prime}}^{b_{j}} B_{j} \quad(1 \leq j \leq l), \tag{30}
\end{gather*}
$$

where $a_{i}, b_{j} \in \mathbb{Z}$. Since the congruences (25) are insoluble in K we have

$$
\begin{equation*}
b_{j} \not \equiv 0\left(\bmod m^{\prime}\right) \quad(1 \leq j \leq l) \tag{31}
\end{equation*}
$$

Put now

$$
n_{0}=\operatorname{lcm}\left\{n_{i}: i \in I_{1}\right\}
$$

We have

$$
\begin{aligned}
1+N \mathfrak{p}_{0}+\ldots+N \mathfrak{p}_{0}^{n_{0}-1} & =\left(N \mathfrak{p}_{0}^{n_{0}}-1\right) /\left(N \mathfrak{p}_{0}-1\right) \equiv 0\left(\bmod n_{i}\right) \quad\left(i \in I_{1}\right) \\
1+N \mathfrak{p}_{0}+\ldots+N \mathfrak{p}_{0}^{n_{0}-1} & \equiv n_{0}\left(\bmod m^{\prime}\right)
\end{aligned}
$$

It follows from (28) that

$$
\begin{equation*}
A_{i}^{S^{n_{0}}}=A_{i} \quad\left(i \in I_{0}\right) \tag{32}
\end{equation*}
$$

and from (30) and (31) that

$$
\begin{align*}
A_{i}^{S^{n_{0}}} & =\zeta_{n_{i}}^{a_{i}\left(1+N \mathfrak{p}_{0}+\ldots+N \mathfrak{p}_{0}^{n_{0}-1}\right)} A_{i}=A_{i} \quad\left(i \in I_{1} \cup I_{2}\right) \tag{33}\\
B_{j}^{S^{n_{0}}} & =\zeta_{m^{\prime}}^{b_{j}\left(1+N \mathfrak{p}_{0}+\ldots+N \mathfrak{p}_{0}^{n_{0}-1}\right)} B_{j}=\zeta_{m^{\prime}}^{b_{j} n_{0}} B_{j} \neq B_{j} \quad(1 \leq j \leq l) \tag{34}\\
\zeta_{m^{\prime}}^{S^{n_{0}}} & =\zeta_{m^{\prime}} \tag{35}
\end{align*}
$$

If now \mathfrak{P} is a prime ideal of L such that the Frobenius symbol

$$
\left[\frac{L / K}{\mathfrak{P}}\right]=S^{n_{0}}
$$

and \mathfrak{p} is the prime ideal of K divisible by \mathfrak{P} we infer from (32)-(35) that the congruences (26) are soluble in K and the congruences

$$
x^{m^{\prime}} \equiv \beta_{j}(\bmod \mathfrak{p}) \quad(1 \leq j \leq l)
$$

hence also the congruences (27), are insoluble in K. However, by Chebotarev's density theorem the set of relevant prime ideals \mathfrak{p} has a positive Dirichlet density.

Consider now the general case. Let

$$
\begin{equation*}
n_{i}=\prod_{j=1}^{h_{i}} q_{i j} \tag{36}
\end{equation*}
$$

where for each $i, q_{i j}\left(1 \leq j \leq h_{i}\right)$ are powers of distinct primes. Since the congruences (24) are soluble in K, for each $i \leq k$ and each j such that $\left(q_{i j}, m\right) \neq 1$ the congruence

$$
x^{q_{i j}} \equiv \alpha_{i}\left(\bmod \mathfrak{p}_{0}\right)
$$

is soluble in K. Now, by the already proved case of the lemma, there exists a set \mathcal{P}, with positive Dirichlet density, of prime ideals of K such that for each $\mathfrak{p} \in \mathcal{P}$ the congruences

$$
x^{q_{i j}} \equiv \alpha_{i}(\bmod \mathfrak{p}) \quad\left(1 \leq i \leq k, 1 \leq j \leq h_{i}\right)
$$

are soluble, but the congruences (27) are insoluble. Thus for all i, j we have

$$
\operatorname{ind} \alpha_{i} \equiv 0\left(\bmod \left(N \mathfrak{p}-1, q_{i j}\right)\right)
$$

It now follows from (36) that for all i,

$$
\operatorname{ind} \alpha_{i} \equiv 0\left(\bmod \left(N \mathfrak{p}-1, n_{i}\right)\right)
$$

hence the congruences (26) are soluble.
Lemma 7. Suppose that (i) holds for almost all prime ideals \mathfrak{p} of K.
(vi) If m is a unitary divisor of n, then for almost all prime ideals \mathfrak{p} of K, solubility in K of the k congruences

$$
\begin{equation*}
x^{\left(m, n_{i}\right)} \equiv \alpha_{i}(\bmod \mathfrak{p}) \tag{37}
\end{equation*}
$$

implies solubility in K of at least one congruence

$$
\begin{equation*}
x^{m} \equiv \beta_{j}(\bmod \mathfrak{p}) \quad(1 \leq j \leq l) \tag{38}
\end{equation*}
$$

(vii) If $n \equiv 0(\bmod 4)$ and $m=2 m^{*}$, where m^{*} is a unitary divisor of the odd part of n, then for almost all prime ideals \mathfrak{p} of K, solubility in K of the k congruences

$$
x^{\left(m, n_{i}\right)} \equiv \alpha_{i}(\bmod \mathfrak{p})
$$

implies solubility in K of at least one congruence

$$
x^{m} \equiv-1(\bmod \mathfrak{p}), \quad x^{m} \equiv \beta_{j}(\bmod \mathfrak{p}) \quad(1 \leq j \leq l)
$$

Proof. In order to prove statement (vi) assume to the contrary that there exists a prime ideal \mathfrak{p}_{0} of K such that m, n_{i}, α_{i} and β_{j} are \mathfrak{p}_{0}-adic units, the congruences (37) are soluble and the congruences (38) are insoluble. We apply Lemma 6 with

$$
n_{i}^{\prime}=\left(m, n_{i}\right), \quad n_{i}^{\prime \prime}=\frac{n_{i}}{\left(m, n_{i}\right)}
$$

The assumptions of the lemma are satisfied, since with our choice of m

$$
\left(m, n_{i}^{\prime \prime}\right)=\frac{\left(m^{2}, n_{i}\right)}{\left(m, n_{i}\right)}=1
$$

and the assertion of the lemma contradicts the assumption of Lemma 7.
A similar argument shows that if statement (vii) were false, there would exist a set \mathcal{P}, with positive Dirichlet density, of prime ideals of K such that for $\mathfrak{p} \in \mathcal{P}$ the congruences

$$
\begin{equation*}
x^{n_{i}^{*}} \equiv \alpha_{i}(\bmod \mathfrak{p}) \quad(1 \leq i \leq k) \tag{39}
\end{equation*}
$$

would be soluble and the congruences

$$
\begin{equation*}
x^{m} \equiv-1(\bmod \mathfrak{p}), \quad x^{m} \equiv \beta_{j}(\bmod \mathfrak{p}) \quad(1 \leq j \leq l) \tag{40}
\end{equation*}
$$

insoluble, where n_{i}^{*} is the greatest divisor of n_{i} not divisible by 4 . However, insolubility of $x^{m} \equiv-1(\bmod \mathfrak{p})$ implies

$$
\frac{N \mathfrak{p}-1}{2}=\operatorname{ind}(-1) \not \equiv \equiv 0(\bmod (N \mathfrak{p}-1, m)),
$$

hence for $m \equiv 2(\bmod 4), N \mathfrak{p} \equiv 3(\bmod 4)$ and then solubility of (39) implies solubility of (26), while (40) is insoluble, contrary to the assumption of the lemma.

Proof of Theorem 1. Necessity. The existence of an involution σ_{m} satisfying (1) and (2) for m being a unitary divisor of n follows at once from Lemma 4 and (vi). In order to prove the same for m of the form $2 m^{*}$, where m^{*} is a unitary divisor of the odd part of n, denote by \bar{m} the least unitary divisor of n divisible by m. Let G_{m}, resp. $G_{\bar{m}}$, be the multiplicative subgroup of K^{*} generated by $\alpha_{i}^{m /\left(m, n_{i}\right)}(1 \leq i \leq k)$ and $K\left(\zeta_{m}\right)^{* m}$, resp. by $\alpha_{i}^{\bar{m} /\left(\bar{m}, n_{i}\right)}$ $(1 \leq i \leq k)$ and $K\left(\zeta_{\bar{m}}\right)^{* \bar{m}}$.

If $G_{\bar{m}} \subset G_{m}$, then it suffices to take $\sigma_{m}=\sigma_{\bar{m}}$.
If $G_{\bar{m}} \not \subset G_{m}$, let $\delta \in G_{\bar{m}} \backslash G_{m}$. We have

$$
\begin{equation*}
\delta=\prod_{i=1}^{k} \alpha_{i}^{a_{i} \bar{m} /\left(\bar{m}, n_{i}\right)} \Gamma^{\bar{m}} \tag{41}
\end{equation*}
$$

where $a_{i} \in \mathbb{Z}, \Gamma \in K\left(\zeta_{\bar{m}}\right)^{*}$. By Theorem 3 of $[8]$ we have $\Gamma^{\bar{m}}=\Gamma_{0}^{\bar{m}}$ for some $\Gamma_{0} \in K\left(\zeta_{4 m^{*}}\right)$. Taking norms of both sides of (41) with respect to $K\left(\zeta_{m}\right)$ and denoting the norm of Γ_{0} by Γ_{1} we obtain

$$
\delta^{2}=\prod_{i=1}^{k} \alpha_{i}^{2 a_{i} \bar{m} /\left(\bar{m}, n_{i}\right)} \Gamma_{1}^{\bar{m}},
$$

hence

$$
\delta= \pm \prod_{i=1}^{k} \alpha_{i}^{a_{i} \bar{m} /\left(\bar{m}, n_{i}\right)} \Gamma_{1}^{\bar{m} / 2},
$$

and, since

$$
\frac{m}{\left(m, n_{i}\right)}\left|\frac{\bar{m}}{\left(\bar{m}, n_{i}\right)}, \quad m\right| \frac{\bar{m}}{2}, \quad \Gamma_{1} \in K\left(\zeta_{m}\right), \quad \delta \notin G_{m},
$$

the plus sign is excluded and we have

$$
-1 \notin G_{m} \quad \text { and } \quad \delta \equiv-1\left(\bmod ^{\times} G_{m}\right) .
$$

Since $\delta \equiv 1\left(\bmod { }^{\times} G_{\bar{m}}\right)$ it follows that

$$
\left[G_{\bar{m}}: G_{m} \cap G_{\bar{m}}\right]=2, \quad G_{\bar{m}}=\left(G_{m} \cap G_{\bar{m}}\right) \cup \delta\left(G_{m} \cap G_{\bar{m}}\right)
$$

From the existence of $\sigma_{\bar{m}}$ satisfying (1) and (2) it follows that for each
$B \in K^{*}$,

$$
\begin{equation*}
\sum_{A \in V(B)}(-1)^{|A|}+\sum_{A \in V(\delta B)}(-1)^{|A|}=0 \tag{42}
\end{equation*}
$$

where

$$
V(B)=\left\{A \in \mathcal{F}: \prod_{j \in A} \beta_{j} \equiv B\left(\bmod ^{\times} G_{m} \cap G_{\bar{m}}\right)\right\}
$$

Let $S=\left\{\prod_{j \in A} \beta_{j}: A \in \mathcal{F}\right\}$ and let $\left\{B_{1}, \ldots, B_{r}\right\}$ be a subset of S maximal with respect to the property that

$$
B_{i} \equiv B\left(\bmod { }^{\times} G_{m}\right), \quad B_{j} \not \equiv B_{i}\left(\bmod ^{\times} G_{m} \cap G_{\bar{m}}\right) \quad \text { for } j \neq i
$$

Set

$$
U(B)=\left\{A \in \mathcal{F}: \prod_{j \in A} \beta_{j} \equiv B\left(\bmod ^{\times} G_{m}\right)\right\}
$$

Replacing B by B_{i} in (42) and summing with respect to i we obtain

$$
\sum_{A \in U(B)}(-1)^{|A|}+\sum_{A \in U(-B)}(-1)^{|A|}=0
$$

However, from (vii) and Lemma 4 it follows that

$$
\sum_{A \in U(B)}(-1)^{|A|}+\sum_{A \in U(-B)}(-1)^{|A|+1}=0
$$

Adding the last two equalities we obtain

$$
2 \sum_{A \in U(B)}(-1)^{|A|}=0
$$

hence there exists an involution ϱ_{B} of the family of all subsets A of $\{1, \ldots, l\}$ with $\prod_{j \in A} \beta_{j}=B$, such that

$$
\left|\varrho_{B}(A)\right| \equiv|A|+1(\bmod 2)
$$

The involution σ_{m} is obtained by combining all involutions ϱ_{B}.
Sufficiency. Consider a prime ideal \mathfrak{p} of K such that α_{i}, β_{j} are all \mathfrak{p}-adic units and let

$$
\begin{equation*}
(N \mathfrak{p}-1, n)=m_{1} \tag{43}
\end{equation*}
$$

If $m_{1}=1$ the implication (i) is obvious.
If $m_{1}>1, m_{1} \not \equiv 0(\bmod 2)$ or $m_{1} \equiv 0(\bmod 4)$, let m be the least unitary divisor of n divisible by m_{1}. By condition (ii) we have (1) and (2) where $\Gamma \in K\left(\zeta_{m}\right)$. However, $\Gamma^{m} \in K$, hence also

$$
\Gamma^{m} \in K\left(\zeta_{q}: q \mid m, q \text { prime or } q=4\right)=: K_{0}
$$

It now follows from Theorem 3 of [8] that $\Gamma^{m}=\Gamma_{0}^{m}$, where $\Gamma_{0} \in K_{0}$. However, by the definition of m, we have $K_{0} \subset K\left(\zeta_{m_{1}}\right)$ and also

$$
\left.\frac{m_{1}}{\left(m_{1}, n_{i}\right)} \right\rvert\, \frac{m}{\left(m, n_{i}\right)}
$$

The implication (i) now follows from Lemma 5.
If $m_{1} \equiv 2(\bmod 4)$, we take $m=2 m^{*}$, where m^{*} is the least unitary divisor of n divisible by $m_{1} / 2$, and argue as before.

Proof of Corollary 1. Under the assumption (3) the conditions $\Gamma^{n} \in K$, $\Gamma \in K\left(\zeta_{n}\right)$ imply, by Theorem 3 of [8], that $\Gamma^{n}=\gamma^{n}, \gamma \in K$, hence for $\sigma=\sigma_{n},(1)$ implies (4) and (2) implies (5).

First proof of Corollary 2. The necessity of condition (iii) follows from Corollary 1 on taking $A_{0}=\sigma(\emptyset)$. Conversely, if (iii) holds, then we define the involution σ in Corollary 1 by $\sigma(A)=A \div A_{0}(\div$ denotes the symmetric difference) and notice that

$$
\prod_{j \in \sigma(A)} \beta_{j}=\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i}}\left(\gamma_{0} \prod_{j \in A \cap A_{0}} \beta_{j}\right)^{2}
$$

hence (4) and (5) are satisfied and, by Corollary 1, (i) holds for almost all prime ideals \mathfrak{p} of K.

Second (direct) proof of Corollary 2. In order to prove the necessity of the condition, choose a maximal subset $\left\{i_{1}, \ldots, i_{s}\right\}$ of $\{1, \ldots, l\}$ such that

$$
\prod_{r=1}^{s} \beta_{i_{r}}^{e_{r}} \in L^{2}, \quad \text { where } \quad L=K\left(\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{k}}\right)
$$

implies $e_{r} \equiv 0(\bmod 2)(1 \leq r \leq s)$.
By the theorem of Chebotarev [1] there exists a set \mathcal{P}, with positive Dirichlet density, of prime ideals \mathfrak{P} of L of degree 1 such that

$$
\begin{equation*}
\left(\beta_{i_{r}} \mid \mathfrak{P}\right)_{2}=-1 \quad(1 \leq r \leq s) \tag{44}
\end{equation*}
$$

Let \mathfrak{p} be the prime ideal of K divisible by \mathfrak{P}. Since \mathfrak{P} is of degree 1 and the k congruences $x^{2} \equiv \alpha_{i}(\bmod \mathfrak{P})$ are soluble in L, they are soluble in K and, by the implication,

$$
\begin{equation*}
\left(\beta_{j} \mid \mathfrak{p}\right)_{2}=1 \quad \text { for at least one } j \leq k \tag{45}
\end{equation*}
$$

On the other hand, for each $j \leq l$, by the maximality of $\left\{i_{1}, \ldots, i_{s}\right\}$ we have

$$
\begin{equation*}
\beta_{j}=\prod_{r=1}^{s} \beta_{i_{r}}^{e_{j r}} \gamma_{j}^{2}, \quad e_{j r} \in\{0,1\}, \gamma_{j} \in L \tag{46}
\end{equation*}
$$

If for each j we have

$$
\sum_{r=1}^{s} e_{j r} \equiv 1(\bmod 2)
$$

then the formulae (44) and (46) imply $\left(\beta_{j} \mid \mathfrak{P}\right)_{2}=-1$, contrary to (45). If for a certain j_{0} we have

$$
\sum_{r=1}^{s} e_{j_{0} r} \equiv 0(\bmod 2)
$$

then taking $A_{0}=\left\{i_{r}: e_{j_{0} r}=1\right\} \div\left\{j_{0}\right\}$ we get (6) and

$$
\prod_{j \in A_{0}} \beta_{j}= \begin{cases}\beta_{j_{0}}^{2} \gamma_{j_{0}}^{-2} & \text { if } j_{0} \in A_{0} \tag{47}\\ \gamma_{j_{0}}^{-2} & \text { if } j_{0} \notin A_{0}\end{cases}
$$

However, since $\gamma_{j_{0}}^{-2} \in K$, it follows by Lemma 3 that

$$
\gamma_{j_{0}}^{-2}=\prod_{i=1}^{k} \alpha_{i}^{a_{i}} \gamma^{2} \quad \text { for some } a_{i} \in \mathbb{Z}, \gamma \in K
$$

which together with (47) implies (7).
In order to prove the sufficiency of the condition, let \mathfrak{p} be a prime ideal of K such that α_{i} and β_{j} are \mathfrak{p}-adic units and the k congruences $x^{2} \equiv \alpha_{i}$ $(\bmod \mathfrak{p})$ are soluble in K. Then (7) gives

$$
\prod_{j \in A_{0}}\left(\beta_{j} \mid \mathfrak{p}\right)_{2}=1 \neq(-1)^{\left|A_{0}\right|}
$$

hence $\left(\beta_{j} \mid \mathfrak{p}\right)_{2}=1$ for at least one $j \in A_{0}$.
Proof of Corollary 3. Necessity. For $n=2^{e}$, by a theorem of Hasse [4] (see also Lemma 6 in $[8]$), $\Gamma^{n} \in K$ with $\Gamma \in K\left(\zeta_{n}\right)$ implies $\Gamma^{n}=\varepsilon \gamma^{n}$, where ε is given by (9) and $\gamma \in K$, hence (iv) follows from (ii) for $\sigma=\sigma_{n}$. Also (iii) follows from (ii), on taking $m=2$ and $A_{0}=\sigma_{2}(\emptyset)$.

Sufficiency. There is only one unitary divisor $m>1$ of $n=2^{e}$, namely $m=n$, and for this m, (ii) follows from (iv) by the theorem of Hasse quoted above, used in the opposite direction. For $m=2$, (ii) follows from (iii) on taking $\sigma_{2}(A)=A \div A_{0}$.

Lemma 8. Let m be even and $\alpha \in \mathbb{Q}^{*}$. Then $\alpha \in \mathbb{Q}\left(\zeta_{m}\right)^{m}$ if and only if

$$
\alpha=\varepsilon \delta^{m / 2} \gamma^{m}
$$

where $\gamma \in \mathbb{Q}^{*}, \delta$ is a fundamental discriminant dividing m and

$$
\varepsilon \in \begin{cases}\left\{1,-2^{m / 2}\right\} & \text { if } m \equiv 4(\bmod 8) \\ \{1\} & \text { otherwise }\end{cases}
$$

Proof. This is a reformulation of a lemma of Mills [6].

Proof of Theorem 2. The necessity of the conditions follows at once from Theorem 1 and Lemma 8. In order to prove the sufficiency we consider the cases $\nu \leq 2$ and $\nu \geq 3$ separately. If $\nu \leq 2$, then (ii) follows from (v) and Lemma 8 for every even unitary divisor m of n. For an odd unitary divisor m of n it suffices to take $\sigma_{m}=\sigma_{2 m}$.

For $\nu \geq 3$ and $m \not \equiv 2(\bmod 4)$, (ii) follows as before, while for $m \equiv 2$ $(\bmod 4)$ it suffices to take $\sigma_{m}=\sigma_{n}$. Indeed, for $\nu \geq 3$ we have $\varepsilon=1$ and every number of the form $\varepsilon \delta^{n / 2} \gamma^{n}$ with $\delta, \gamma \in \mathbb{Q}$ belongs to \mathbb{Q}^{m}.

Proof of Corollary 4. Necessity. In the case $\nu=0$ the assertion follows at once from Corollary 1 . We shall consider in detail only the case $\nu=1$; the proof in the other cases is similar and will be only indicated briefly.

Applying Theorem 2 for $\nu=1$ and $m=n$ we infer that for $\{j\}=\sigma_{n}(\emptyset)$,

$$
\begin{equation*}
\beta_{j}=\delta_{n}^{n / 2} \gamma_{n}^{n} \quad \text { for some } \gamma_{n} \in \mathbb{Q} \text {, } \tag{48}
\end{equation*}
$$

where δ_{n} is a fundamental discriminant dividing n. If $\delta_{n}=1$ we have $\beta_{j} \in$ \mathbb{Q}^{n}, hence (10) with $i=j$.

If $\delta_{n}=(-1)^{(q-1) / 2} q$, where q is an odd prime, we have β_{j} as in (11). Now we apply Theorem 2 for $m_{0}=2$ and $m_{1}=n / q^{e}$. If $\sigma_{m_{i}}(\emptyset)=\{j\}$ then

$$
\begin{equation*}
\beta_{j}=\delta_{m_{i}}^{m_{i} / 2} \gamma_{i}^{m_{i}} \quad \text { for some } \gamma_{i} \in \mathbb{Q} \quad(i=0,1), \tag{49}
\end{equation*}
$$

where $\delta_{m_{i}}$ is a fundamental discriminant dividing m_{i}. Now the equations (48) and (49) are incompatible, since denoting by $k(x)$ the squarefree kernel of an integer x, we have

$$
k\left(\delta_{m_{i}}^{m_{i} / 2} \gamma_{i}^{m_{i}}\right)=\delta_{m_{i}} \neq \delta_{n}=k\left(\delta_{n}^{n / 2} \gamma_{n}^{n}\right) .
$$

Therefore, $\sigma_{m_{i}}(\emptyset)=\{3-j\}(i=0,1)$ and we obtain

$$
\beta_{3-j}=\delta_{m_{i}}^{m_{i} / 2} \gamma_{i}^{m_{i}} \quad(i=0,1) .
$$

We have $\delta_{m_{0}}=1$, hence $\beta_{3-j} \in \mathbb{Q}^{\left[2, n / 2 q^{e}\right]}=\mathbb{Q}^{n / q^{e}}$, which proves (11).
Suppose now that δ_{n} has at least two distinct prime factors q_{1} and q_{2} and $q_{i}^{e_{i}} \| n$. Applying Theorem 2 for $m_{0}=2, m_{i}=n / q_{i}^{e_{i}}(i=1,2)$ we obtain, as before, $\sigma_{m_{i}}(\emptyset)=\{3-j\}(i=0,1,2)$. Then

$$
\beta_{3-j} \in \mathbb{Q}^{2} \cap \bigcap_{i=1}^{2} \mathbb{Q}^{n / 2 q_{i}^{e_{i}}},
$$

hence $\beta_{3-j} \in \mathbb{Q}^{n}$, which gives (10) with $i=3-j$.
For $\nu=2$, let $\sigma_{n}(\emptyset)=\{j\}$.
If $\varepsilon=1$ and $\delta_{n}=1$ or -4 we obtain (10) with $i=j$.
If $\varepsilon=-2^{n / 2}$ and $\delta_{n}=1$ or -4 we consider $m_{0}=2, m_{1}=n / 2$ and obtain (12).

If $\varepsilon=-2^{n / 2}$ and $\delta_{n} \neq 1,-4$ we consider $m_{0}=4, m_{1}=n / 2$ and obtain (10) with $i=3-j$.

If $\varepsilon=1$ and δ_{n} has one odd prime factor q we consider $m_{0}=4, m_{1}=n / q^{e}$ and obtain (13).

If $\varepsilon=1$ and δ_{n} has at least two odd prime factors q_{1}, q_{2} we consider $m_{0}=4, m_{i}=n / q_{i}^{e_{i}}(i=1,2)$ and obtain (12) with j and $3-j$ interchanged.

For $\nu \geq 3$ let $\sigma_{n}(\emptyset)=\{j\}$ and

$$
\beta_{j}=\delta_{n}^{n / 2} \gamma_{n}^{n}
$$

If $\delta_{n}=1$ or -4 we obtain the case (10) with $i=j$.
If $\delta_{n}= \pm 8$ we obtain the case (14). If δ_{n} has one odd prime factor q we consider $m_{0}=2^{\nu}, m_{1}=n / q^{e}$ and obtain (15). If δ_{n} has at least two odd prime factors q_{1} and q_{2} we consider $m_{0}=2^{\nu}, m_{i}=n / q_{i}^{e_{i}}(i=1,2)$ and obtain (10) with $i=3-j$ or (14) with $3-j$ in place of j.

Sufficiency. If (10) holds then for each relevant divisor m of n we take $\sigma_{m}=c_{i} d_{i}$, where c_{i}, d_{i} are the cycles $(\emptyset \rightarrow\{i\})$ and $(\{3-i\} \rightarrow\{1,2\})$, respectively.

If (11) holds, we take

$$
\sigma_{m}= \begin{cases}c_{j} d_{j} & \text { if } q \mid m \\ c_{3-j} d_{3-j} & \text { if } q \nmid m\end{cases}
$$

If (12) holds, we take

$$
\sigma_{m}= \begin{cases}c_{j} d_{j} & \text { if } 4 \mid m \\ c_{3-j} d_{3-j} & \text { if } 4 \nmid m\end{cases}
$$

If (13) holds, we take

$$
\sigma_{m}= \begin{cases}c_{j} d_{j} & \text { if } q \mid m, \text { or } 4 \nmid m \\ c_{3-j} d_{3-j} & \text { if } q \nmid m \text { and } 4 \mid m\end{cases}
$$

If (14) holds, we take

$$
\sigma_{m}=c_{j} d_{j}
$$

If (15) holds, we take

$$
\sigma_{m}= \begin{cases}c_{j} d_{j} & \text { if } q \mid m \\ c_{3-j} d_{3-j} & \text { if } q \nmid m\end{cases}
$$

Deduction of Theorem 1 of [7] (necessity part) from Theorem 1 (above). Let $n=\prod_{j=0}^{l} p_{j}^{e_{j}}$, where $p_{0}=2, p_{j}$ are distinct odd primes and $e_{j}>0$ for $j>0$. Applying Theorem 1 above with $m=p_{j}^{e_{j}}$ we infer that

$$
\begin{equation*}
\beta=\prod_{i=1}^{k} \alpha_{i}^{a_{i j} p_{j}^{e_{j}} /\left(n_{i}, p_{j}^{e_{j}}\right)} \Gamma_{j}^{p_{j}^{e_{j}}} \tag{50}
\end{equation*}
$$

for some $a_{i j} \in \mathbb{Z}$ and $\Gamma_{j} \in K\left(\zeta_{p_{j}{ }_{j}}\right)$ (for $m=1$ the conclusion is trivial). By
the theorem of Hasse [4] (see [8, Lemma 6])

$$
\begin{equation*}
\Gamma_{j}^{p_{j}^{e_{j}}}=\varepsilon_{j} \gamma_{j}^{p_{j}^{e_{j}}} \quad \text { for some } \gamma_{j} \in K, \varepsilon_{j}=1 \text { for } j>0 \tag{51}
\end{equation*}
$$

and

$$
\begin{align*}
\varepsilon_{0} \in\{1\} & \text { if } e_{0} \leq 1 \\
\varepsilon_{0} \in\{1,-1\} & \text { if } 1<e_{0}<\tau \tag{52}\\
\varepsilon_{0} \in\left\{1,(-1)^{2^{e_{0}-\tau}}\left(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2\right)^{2^{e_{0}-1}}\right\} & \text { if } e_{0} \geq \tau
\end{align*}
$$

We take integers u_{0}, \ldots, u_{l} satisfying the linear equation

$$
\sum_{j=0}^{l} \frac{n}{p_{j}^{e_{j}}} u_{j}=1
$$

and set

$$
\gamma=\prod_{j=0}^{l} \gamma_{j}^{u_{j}}
$$

By (50) and (51) we have

$$
\gamma^{n}=\prod_{j=0}^{n}\left(\gamma_{j}^{p_{j}^{e_{j}}}\right)^{\frac{n}{p_{j}} u_{j}}=\beta \varepsilon_{0}^{-\frac{n}{p^{e}{ }^{e_{j}}} u_{0}} \prod_{j=0}^{l} \prod_{i=1}^{k} \alpha_{i}^{\left.-a_{i j} \frac{n u_{j}}{\left(n_{i}, p_{j} j_{j}\right.}\right)}
$$

hence

$$
\begin{equation*}
\beta \prod_{i=1}^{k} \alpha_{i}^{m_{i} n / n_{i}}=\varepsilon^{\frac{n}{2^{e} 0} u_{0}} \gamma^{n} \tag{53}
\end{equation*}
$$

for some $m_{i} \in \mathbb{Z}, \gamma \in K^{*}$.
If $e_{0} \leq 1$, or $e_{0}>\tau$, or $\varepsilon_{0}=1$, or u_{0} is even, we obtain, by (51), condition (i) or (iv) of Theorem 1 of [7]. If $1<e_{0} \leq \tau, \varepsilon \neq 1$ and u_{0} is odd we apply Theorem 1 above with $m=2$. We obtain

$$
\beta=\prod_{2 \mid n_{i}} \alpha_{i}^{a_{i}} \gamma^{2}
$$

which combined with (53) gives, by (52),

$$
\prod_{2 \mid n_{i}} \alpha_{i}^{l_{i}}=-\delta^{2}
$$

and

$$
\beta \prod_{i=1}^{k} \alpha_{i}^{m_{i} n / n_{i}}= \begin{cases}-\gamma^{n} & \text { if } 1<e_{0}<\tau \\ -\left(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2\right)^{n / 2} \gamma_{1}^{n} & \text { if } e_{0}=\tau\end{cases}
$$

for some $\delta, \gamma_{1} \in K^{*}$. These are just conditions (ii) and (iii) of Theorem 1 of [7]. The proof that conditions (i)-(iv) are sufficient is easy.

References

[1] N. G. Chebotarev, Der Hilbertsche Satz, Visti VUAN 1923, 3-7; Russian translation: Collected Works, Vol. 1, Moscow-Leningrad, 1949, 14-17.
[2] M. Filaseta and D. R. Richman, Sets which contain a quadratic residue mod p for almost all p, Math. J. Okayama Univ. 31 (1989), 1-8.
[3] M. Fried, Arithmetical properties of value sets of polynomials, Acta Arith. 15 (1969), 91-115.
[4] H. Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math. 188 (1950), 40-64.
[5] -, Vorlesungen über Klassenkörpertheorie, Physica-Verlag, Würzburg, 1967.
[6] W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963), 179-181.
[7] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397-420.
[8] -, Abelian binomials, power residues and exponential congruences, ibid. 32 (1977), 245-274; Addendum and corrigendum 36 (1980), 101-104.
[9] T. Skolem, On the existence of a multiplicative basis for an arbitrary algebraic field, Norske Vid. Selsk. Forh. (Trondheim) 20 (1947), no. 3.

Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21

00-956 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

Department of Mathematics Computer Science and Mechanics University of Warsaw

Banacha 2
02-097 Warszawa, Poland
E-mail: skalba@mimuw.edu.pl

