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Let n be a positive integer, K a number field, o; € K (1 <i<k),f € K.
A simple necessary and sufficient condition was given in [7] in order that,
for almost all prime ideals p of K, solubility of the k congruences =™ = «;
(mod p) should imply solubility of the congruence x™ = § (modp), where
n; |n. The aim of this paper is to extend that result to the case where the
congruence z" =  (modp) is replaced by the alternative of [ congruences
" = f; (modp). The general result is quite complicated, but it simplifies
if n or K satisfy some restrictions. Here are precise statements, in which
(n denotes a primitive nth root of unity, |A| is the cardinality of a set A,
K™ ={2" :x € K} and F is the family of all subsets of {1,...,1}.

THEOREM 1. Let n and n; be positive integers with n;|n (1 < i < k),
K be a number field and oy, 5; € K* (1 <i <k, 1<j <1). Consider the
implication

(i) solubility in K of the k congruences ™ = «; (modp) implies solu-
bility in K of at least one of the | congruences z™ = [3; (modp).

Then (i) holds for almost all prime ideals p of K if and only if

(ii) for every unitary divisor m > 1 of n and, if n =0 (mod4), for every
m = 2m*, where m* is a unitary divisor of the odd part of n, there exists an
involution o, of F such that for all A C {1,...,1},

(1) lom(A)] = [A] +1 (m0d2)
(2) H 5] H ﬁ] H alm/ mn,)Fm
j€Tm(A) jEA =1

where a; € Z, I' € K((m)*.

COROLLARY 1. Let w,(K) be the number of nth roots of unity contained
i K and assume that

(3) (wn(K),lem[K () : K]) =1,
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where the least common multiple is over all prime divisors q of n and addi-
tionally ¢ = 4 if 4|n. The implication (i) holds for almost all prime ideals

p of K if and only if there exists an involution o of F such that for all
AC {1,...,1},

(4) lo(A)] = |A| + 1 (mod2)

and

(5) IT 5= H@H i/ n
j€o(A) jeA  i=1

where a; € Z, v € K*.

The condition (3) holds for every K if n =2 or n = [°, where [ is an odd
prime, and for K = Q if n is odd.

COROLLARY 2. Forn =n; = 2 (1 < i < k), (i) holds for almost all
prime ideals p of K if and only if

(iii) there exists a subset Ay of {1,...,1l} such that

(6) |Ap] =1 (mod ?2)
and
k
(7) 1T 5 =11 e,
jer =1

where a; € Z,v9 € K*.

Corollary 2 contains as a special case (K = Q, k = 0) a theorem of Fried
[3], rediscovered by Filaseta and Richman [2].

The case n = 2¢ (e > 2) is covered by the following corollary, in which
7 denotes the greatest integer such that (or + Cz_fl € K. This corollary is of
interest only if (4 ¢ K, otherwise (3) holds.

COROLLARY 3. Forn =2°(e>2) and n; >1 (1 <i<k), (i) holds for
almost all prime ideals p of K if and only if simultaneously (iii) holds and

(iv) there exists an involution o of F such that for all A C {1,...,1} we
have (4) and

(8) I1 ﬁj—sHﬁJH i/ gn,

jeo(A) jEA i=1
where a; € Z, v € K* and
{1,-1} if e<T,
(9) 1yn/27 -1 n/2 ;
{L (=D (Gr +Gr +2)"7} if e>T.
The case K = QQ, n odd is covered by Corollary 1. The case K = Q, n
even is covered by the following
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THEOREM 2. Let n =2"n*, v > 0, n* odd, n;|n (1 <i<k), K=Q.
The implication (i) holds for almost all prime ideals p of K if and only if

(v) for every m = 2"m* and, if v =2, for every m = 2m*, where m* is
a unitary divisor of n*, there exists an involution o, of F such that for all
AcC{l,...,l} we have (1) and

k
IT 8 =cIls L/ mmsmym,

j€om(A) JEA =1
where a; € Z, v € QF, § is a fundamental discriminant dividing m and
e {{1,—2m/2} if m=4 (mod8),
{1} otherwise.

COROLLARY 4. Let n =2Yn*, v >0, n* odd, By, P2 € Q*. The alterna-
tive of congruences

2" = f; (modp) (1<5<2)
s soluble for almost all primes p, if and only if either
(10) i € @n

for some i < 2, or there is a j < 2, a prime q|n* with ¢°||n* and some
Y1, 72 € Q such that one of the following holds:

ev—1and

(11) B = (1)@ D 2qn/2an gy =2/
o v =2 and either

(12) B; =220, By = 73/2

or

(13) Bi=q"*}, P € {73/‘1 ,—2n/2q€7§/q 1,
e v > 3 and either

(14) B = 2"/

or

(15) B € {q"/*0. 2" 2qV20), Bsj e {2y

The proofs are based on eight lemmas and use the nth power residue
symbol, which is defined as follows. If a number field K contains (,, then for
every prime ideal p of K prime to n and every p-adic unit o of K, (ap)n, is
the unique number ¢}, that satisfies the congruence

a1/ = 3 (mod )

where Np is the absolute norm of p. Moreover, ind « is the index of o with
respect to a fixed primitive root modulo the relevant prime ideal.
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We give two proofs of Corollary 2, one short using Theorem 1 and the
other longer, but using neither Theorem 1 nor the lemmas bellow, except
the classical Lemma 3.

At the end of the paper we give a deduction of the more difficult necessity
part of Theorem 1 of [7] from Theorem 1 above.

We thank Professor J. Browkin for some helpful suggestions.

LEMMA 1. Let G be a finite abelian group, G its group of characters and
GEeG<j<). If

l
(16) [ -1 =0
j=1

for every x € G then there exists an involution o of F such that for all

AcC{l,...,l} we have (4) and
IT o=119
j€o(A) jeA
Proof. For g € G let
o)=Y (=DM

Ac{1,...l}
[ljca9i=9

The equality (16) can be written in the form
> elg)x(g) =0
geG

or, if h is any fixed element of G,

> elg)x(gh™) =0.
geG

Summing over all characters x gives |G|c(h) = 0, hence ¢(h) = 0, and h
being arbitrary, ¢(g) = 0 for all g € G. It follows that for all ¢ € G the
number of subsets A of {1,...,l} with HjeA gj = g and |A| odd equals the
corresponding number with |A| even, hence there is an involution o, of the
family of subsets A of {1,... 1} with HjeA g; = g such that

log(A)| = |A| + 1 (mod 2).
The involution ¢ is obtained by combining all involutions .

LEMMA 2. Let n be a positive integer, K and L be number fields, K((y,)
CL,Bje K*(1<j<Il). Let H be the multiplicative group generated by

Bi,..., 01, and Hy the intersection of H with L"™. For every x € H/H; there
exrists a set P, with positive Dirichlet density, of prime ideals P of L such
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that
(17) x([2]) = (z[FB)n,
where [x] is the coset of Hy in H containing x.
Proof. By a theorem of Skolem [9] the field L has a multiplicative basis
Cw, ™1, T2, ..., where (, is a root of unity and =y, 7o, ... are generators of

infinite order. Let ws be the last generator that occurs in the representation
of a1,...,ax,51,...,05. We have

H/H1 < J/Jn,

where J is the group generated by (y,71,...,7s. Indeed, H < J and the
relations hy € H, hy € H and hlhgl € J" together imply h1h2_1 € Hy.
Hence for every y € H/H; there exists x; € J/J" such that

(18) x(y) =xi(y) forye H/H.
Clearly x1(y)™ = 1 for all y € J/J"™. On the other hand, by Theorem 4 of
[8] with o = 1, for any integers cy, ..., cs there exist infinitely many prime

ideals P of L such that

(Cw’('p)n = 7207 (71'7‘|q3)n = ’rCLT (1 <r< S)‘

Since the proof is via the Chebotarev density theorem (see [8, p. 263]), the
infinite set of prime ideals in question has a positive Dirichlet density. Hence

for every x1 € Jﬁ” there exists a set P of positive Dirichlet density such
that for P € P,

(19) x1(T) = (z|P), for xz € J,

where 7 is the coset of J" in J containing z. Since by (18),
x([z]) =x1(z) forz e H,

(17) follows from (19).

LEMMA 3. Let n € N, K be a number field, ¢, € K, and aq,...,ax, 0
elements of K*. If

VB e K(yar,..., ya),

then
k
B=1] "
i=1
where a; € Z, v € K*.

Proof. See [5, p. 222, formula (2)].

LEMMA 4. The condition (i) for almost all prime ideals p of K implies
the ezistence of an involution o of F such that, for all A C {1,...,1}, (4)



82 A. Schinzel and M. Skalba

holds and

(20) H Bj = H Bj H am/nzf” for some a; € Z, I' € K((n)™.

j€a(A) jeA i=1

Proof. Let x be a character of the group H/H; described in Lemma 2
with L = K((n, &1, .-+, &), where " = oy (1 <4 < k). By Lemma 2 there
exists a set P, with positive Dirichlet density, of prime ideals B of L such
that

(21) (z|B)n = x([z]) for x € H,

where [z] is the coset of H; in H containing z. Since the prime ideals of
degree greater than 1 have Dirichlet density 0 and the relative norms of
prime ideals from P have positive Dirichlet density, there is 8 € P such
that p = Nz, x*P has the property that solubility in K of the k£ congruences
z™ = «; (modp) implies solubility of at least one of the I congruences

" = (; (modp). Moreover, the congruence z™ = «a; (mod‘P) has the
solution x = &; in L, hence, P being of relative degree 1, the congruence
2™ = a; (modp) has a solution in K and, by (i),

[
[TB1%)n 1) =0.

Jj=1

By (21) we have
!

[T -n=0

j=1

and, y being arbitrary, it follows by Lemma 1 that there exists an involution
o of F such that (4) holds and

IT 81 =111
jea(A) jEA
The last formula means that
(22) H B; H 6_ =[] for some I € L.
jeo(A) jeEA
Since I € K((,), by Lemma 3 we have

k
= Ha?i”/"ifn for some a; € Z,I" € K((p),
i=1

which together with (22) gives (20).
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LEMMA 5. If there exists an involution o of F such that, for all A C
{1,...,1}, (4) holds and

(23) H ﬁ] H 6] H alm/ mnz)l—,m

jeo(A) jEA i=1
for some a; € Z and I' € K((p), then the implication (i) holds for all prime
ideals p of K such that all o, B; are p-adic units and (Np —1,n) = m.

Proof. Let p satisfy the assumptions of the lemma and assume that the
k congruences z™ = oy (modp), hence also z("") = a; (modp), are sol-
uble in K. Let g be a primitive root mod p and &,, the mth cyclotomic
polynomial. We have

Sn(e)= [[ (@—g " ") (modp),
(k,m)=1

hence, by Dedekind’s theorem, p has a prime ideal factor P in K((,,) of
relative degree 1. Solubility in K of the congruences in question implies

(@™ Mgy, =1 (1 <i< k)
and, since (I'"™|P),, = 1, by (23) we have

(1), - (I,

jeo(A)

hence

2 li[(l — (Bi|B)m)
= X (0 (TTef), o IT 5im),)

AC{1,...)l} JjEA jEa(A
= > (O DT Bfw) o
Ac{1,...,l} JEA

Thus (5;|B)m = 1 for at least one j < [. Since ‘P is of relative degree 1, this
means that the congruence

2™ = B; (modp)
is soluble in K. Choosing an integer ¢ such that (Np — 1)t = m (modn) we
have, for every p-adic unit x of K,
NPVt =1 (modp),
hence the congruence z™ = (3; (modp) is soluble in K.

LEMMA 6. Let m,n; € N (1 <i <k) and n; = n/n}, where (n],m) = 1.

’LZ7

Let oy, 35 € K* (1 <i <k, 1<j<lI). If there exists a prime ideal po of K
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such that m,n;, oy, 3; are po-adic units, the congruences

(24) 2" = q; (modpy) (1 <i<k)
are soluble in K and the congruences
(25) ™ = B (modpy) (1<j<I)

are insoluble in K, then there exists a set P, with positive Dirichlet density,
of prime ideals of K such that for p € P the congruences

(26) 2" =q; (modp) (1<i<k)
are soluble in K and the congruences
(27) " = 6 (modp) (1<j<1)

are insoluble in K.

Proof. Assume first that all n; are prime powers, n; = [, where [; are
primes, and let
Iy={1<i<k:l;|m},
11:{1§Z§kll|Np0—1}\Io,
L={1<i<k}\Ip\ .
Let further (Npg — 1,m) = m’. We set
L = K (Gog Wai (1 <i < k), G, /B85 (1< 5 <)),
take Lo to be a prime ideal factor of pg in L, and let S be the element of
the Galois group of L/K such that

9% = 9NP0 (mod Po)

for all Po-adic units 9 of L.
By the assumption about the congruences (24) the congruence

2™ = oy (modpo)

has a solution z; € K for i € Iy, hence there exists a zero A; of ™ — «;
such that A; = x; (mod‘Bp) and then
(28) A7 = A,
For ¢ € Iy Ul and 1 < j <, we choose A; and B; to be arbitrary zeros of
2" — q; and 2™ — B;, respectively.

By the assumption about the congruences (25) also the congruences
(29) 2™ = f; (modpy) (1<j<I)
are insoluble in K. We have
Cor =G = Cmrr G =GP0 (1<i<h),

AS = (%A, (Z el UIQ)7 BS = C:-),i/Bj (1 <j< l),

% n; <t J

(30)
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where a;, b; € Z. Since the congruences (25) are insoluble in K we have
(31) bj #0 (modm') (1<j<I).
Put now
no = lem{n; : i € I1}.
We have
1+ Npo+ ...+ Npj°~' = (Npg® —1)/(Npo — 1) =0 (modn;) (i € Ih),
1+ Npo+ ...+ Nppo~t = ng (modm).
It follows from (28) that
(32) A7 = A (i€ D)
and from (30) and (31) that

ng—1
(33) AS”O _ gz(l-&-N}Jo—i—...-&-NPoO )Ai — Ai (Z c Il UIQ),

(2
nog—1
(34) B = (HAHNrotANN" D i s g (1< <),

(35) (50" =G
If now B is a prime ideal of L such that the Frobenius symbol
[L/K } _ gno
B
and p is the prime ideal of K divisible by B we infer from (32)—(35) that
the congruences (26) are soluble in K and the congruences
2™ =B (modp)  (1<j<1),

hence also the congruences (27), are insoluble in K. However, by Chebo-
tarev’s density theorem the set of relevant prime ideals p has a positive
Dirichlet density.

Consider now the general case. Let

hi
(36) n; = H qij
7=1

where for each i, ¢;; (1 < j < h;) are powers of distinct primes. Since the
congruences (24) are soluble in K, for each ¢ < k and each j such that
(gij, m) # 1 the congruence

x4 = a; (modpy)

is soluble in K. Now, by the already proved case of the lemma, there exists
a set P, with positive Dirichlet density, of prime ideals of K such that for
each p € P the congruences

2% =qa; (modp) (1<i<k, 1<j<h)
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are soluble, but the congruences (27) are insoluble. Thus for all 7, j we have
inda; =0 (mod (Np — 1, ¢55)).

It now follows from (36) that for all 4,
inda; =0 (mod (Np — 1,n,)),

hence the congruences (26) are soluble.

LEMMA 7. Suppose that (i) holds for almost all prime ideals p of K.

(vi) If m is a unitary divisor of n, then for almost all prime ideals p of
K, solubility in K of the k congruences

(37) ") = o (mod p)
implies solubility in K of at least one congruence
(38) " = (modp) (1<) <1).

(vii) If n =0 (mod4) and m = 2m*, where m* is a unitary divisor of
the odd part of n, then for almost all prime ideals p of K, solubility in K of
the k congruences

") = o (modp)
implies solubility in K of at least one congruence
z™ = -1 (modp), z™=p; (modp) (1<j5<I).

Proof. In order to prove statement (vi) assume to the contrary that there
exists a prime ideal pg of K such that m,n;, «; and 3; are pp-adic units, the
congruences (37) are soluble and the congruences (38) are insoluble. We
apply Lemma 6 with

n
”; = (m,ny), ny = (miln)
9 (2

The assumptions of the lemma are satisfied, since with our choice of m

(m?,n;) _1q

(m’ nz) = (m7 nl)

and the assertion of the lemma contradicts the assumption of Lemma 7.
A similar argument shows that if statement (vii) were false, there would

exist a set P, with positive Dirichlet density, of prime ideals of K such that
for p € P the congruences

(39) 2" =aq; (modp) (1<i<k)
would be soluble and the congruences

(40) 2™ = —1 (modp), 2™ =0 (modp) (1<5<)
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insoluble, where n; is the greatest divisor of n; not divisible by 4. However,
insolubility of 2™ = —1 (mod p) implies
Np—1
p2 =ind(—1) Z 0 (mod (Np — 1,m)),
hence for m = 2 (mod4), Np = 3 (mod4) and then solubility of (39) implies
solubility of (26), while (40) is insoluble, contrary to the assumption of the
lemma.

Proof of Theorem 1. Necessity. The existence of an involution o, sat-
isfying (1) and (2) for m being a unitary divisor of n follows at once from
Lemma 4 and (vi). In order to prove the same for m of the form 2m*, where
m™ is a unitary divisor of the odd part of n, denote by m the least unitary
divisor of n divisible by m. Let G, resp. G, be the multiplicative subgroup
of K* generated by a;-n/(m’m) (1 <i<k)and K((n)™™, resp. by a;n/(m’ni)
(1 <i<k)and K(¢gr)™.

If G C Gy, then it suffices to take o, = om.

If G & Gy, let 0 € G \ Gy, We have

k
(41) 5= H a?im/(mvni)lﬂm’
i=1
where a; € Z, I' € K((m)*. By Theorem 3 of [8] we have I'™ = I']" for some
I'y € K(Cam~). Taking norms of both sides of (41) with respect to K ((pm,)
and denoting the norm of I by I we obtain

k
2 = [ a2/ n)
=1
hence
k
im/(m,n;) ~m/2
S = :I:Ha?m/(mn )Flm/ ,
=1

and, since

m m m
‘(m n)? m‘?? FIEK(gm)7 6¢Gm7

(m,n;)
the plus sign is excluded and we have
-1¢G, and 0=-1 (mod*Gp).
Since 6 = 1 (mod *GH) it follows that
Gri : G NGm] =2, G = (Gm N Gm) UI(Gm N Ga).

From the existence of o satisfying (1) and (2) it follows that for each
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B e K*,

(42) S Y (M=o,
AeV(B) A€V (6B)

where

V(B) = {A e F: [[ 8= B (mod*Gy Gm)}.
JEA
Let S ={[[;caBj: A€ F} and let {Bi,..., B} be a subset of S maximal
with respect to the property that

B; = B (mod *G,,), Bj# B; (mod*G,, NGm) for j #i.
Set
v(B)={acF: 5= B mod*Gn)}.
JjEA
Replacing B by B; in (42) and summing with respect to i we obtain
doo=pHe Y (—pHi=o.

AeU(B) AeU(-B)
However, from (vii) and Lemma 4 it follows that

o=+ Y (—pHitt =0

A€U(B) A€U(~B)
Adding the last two equalities we obtain
A€U(B)

hence there exists an involution pp of the family of all subsets A of {1,...,1}
with HjEA Bj = B, such that

lop(A)| = |A| 4+ 1 (mod?2).
The involution ¢, is obtained by combining all involutions op.

Sufficiency. Consider a prime ideal p of K such that «;, 8; are all p-adic
units and let

(43) (Np—1,n) =mjy.

If my = 1 the implication (i) is obvious.

If my > 1, m; # 0 (mod2) or m; =0 (mod4), let m be the least unitary
divisor of n divisible by m;. By condition (ii) we have (1) and (2) where
I' € K((m). However, I'™ € K, hence also

I'" e K((;: ¢|m,q prime or ¢ = 4) =: K.
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It now follows from Theorem 3 of [8] that I'"™ = I}", where I € Kj.
However, by the definition of m, we have Ky C K((y,) and also

mi m

(m1,n;) | (m,n;)

The implication (i) now follows from Lemma 5.
If m; = 2 (mod4), we take m = 2m*, where m* is the least unitary
divisor of n divisible by m;/2, and argue as before.

Proof of Corollary 1. Under the assumption (3) the conditions I'"™ € K,
I' € K((,) imply, by Theorem 3 of [8], that I'"™ = +", v € K, hence for
0 = op, (1) implies (4) and (2) implies (5).

First proof of Corollary 2. The necessity of condition (iii) follows from
Corollary 1 on taking Ay = o(()). Conversely, if (iii) holds, then we define
the involution o in Corollary 1 by 0(A) = A+ Ao (< denotes the symmetric
difference) and notice that

H /Bj:Hﬁjﬁa?i(’YO H ﬁj)Z,

jeo(A) jeA  i=1 JEANAQ

hence (4) and (5) are satisfied and, by Corollary 1, (i) holds for almost all
prime ideals p of K.

Second (direct) proof of Corollary 2. In order to prove the necessity of
the condition, choose a maximal subset {i1,...,is} of {1,...,l} such that

S
Hﬂf: € L? where L=K(J/ai,...,\/ar),
r=1

implies e, =0 (mod2) (1 <r <s).
By the theorem of Chebotarev [1] there exists a set P, with positive
Dirichlet density, of prime ideals ¢ of L of degree 1 such that

(44) (Bi,|P)2=-1 (1 <r<s).

Let p be the prime ideal of K divisible by 3. Since 3 is of degree 1 and the
k congruences x? = o; (mod ) are soluble in L, they are soluble in K and,
by the implication,

(45) (Bjlp)2 =1 for at least one j < k.
On the other hand, for each j <[, by the maximality of {i1,...,is} we have

S
(46) Bi =157 ewre{0,1}, v €L
r=1
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If for each j we have
S
Zeﬁ =1 (mod?2),
r=1

then the formulae (44) and (46) imply (5;|B)2 = —1, contrary to (45). If
for a certain jo we have

s

Zejor =0 (mod?2),

r=1
then taking Ay = {4, : €j,r = 1} = {jo} we get (6) and
2.-2 e
c 2 i jg € Ag,
(47) H Bj = { J_OQJO .
e, Yo if jo & Ao.

However, since 7]702 € K, it follows by Lemma 3 that
k
7;)2 = Ha‘;wg for some a; € Z, v € K,
i=1

which together with (47) implies (7).

In order to prove the sufficiency of the condition, let p be a prime ideal
of K such that a; and §; are p-adic units and the k congruences 2 = «
(mod p) are soluble in K. Then (7) gives

T Bilp)2 =1 # (1),
JEAQ
hence (3j|p)2 = 1 for at least one j € Ay.

Proof of Corollary 3. Necessity. For n = 2¢, by a theorem of Hasse [4]
(see also Lemma 6 in [8]), I'™ € K with I € K((,) implies I = 7", where
e is given by (9) and v € K, hence (iv) follows from (ii) for ¢ = o,,. Also
iii) follows from (ii), on taking m = 2 and Ay = o3(0).

Sufficiency. There is only one unitary divisor m > 1 of n = 2¢, namely
m = n, and for this m, (ii) follows from (iv) by the theorem of Hasse quoted
above, used in the opposite direction. For m = 2, (ii) follows from (iii) on
taking UQ(A) = A=+ Ap.

LEMMA 8. Let m be even and o € Q*. Then o € Q((n)™ if and only if

o =ed™ 2y
where v € Q, § is a fundamental discriminant dividing m and
{ {1,-2™/2} if m =4 (mod8),
{1} otherwise.

Proof. This is a reformulation of a lemma of Mills [6].
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Proof of Theorem 2. The necessity of the conditions follows at once from
Theorem 1 and Lemma 8. In order to prove the sufficiency we consider the
cases v < 2 and v > 3 separately. If v < 2, then (ii) follows from (v) and
Lemma 8 for every even unitary divisor m of n. For an odd unitary divisor
m of n it suffices to take o,, = gon,.

For v > 3 and m # 2 (mod4), (ii) follows as before, while for m = 2
(mod4) it suffices to take o, = oy,. Indeed, for v > 3 we have ¢ = 1 and
every number of the form £6™/24" with §, € Q belongs to Q™.

Proof of Corollary 4. Necessity. In the case v = 0 the assertion follows
at once from Corollary 1. We shall consider in detail only the case v = 1;
the proof in the other cases is similar and will be only indicated briefly.

Applying Theorem 2 for v = 1 and m = n we infer that for {j} = o,(0),

(48) Bj = 624™  for some v, € Q,
where ), is a fundamental discriminant dividing n. If §,, = 1 we have 3; €
Q", hence (10) with i = j.

If 6, = (—1)(‘1_1)/2q7 where ¢ is an odd prime, we have §; as in (11).
Now we apply Theorem 2 for mo = 2 and m; = n/q°. If o,,,(0) = {j} then
(49) B = (5%/27?1' for some v, € Q (i =0,1),

where d,,, is a fundamental discriminant dividing m;. Now the equations
(48) and (49) are incompatible, since denoting by k(z) the squarefree kernel
of an integer x, we have

KO/ = O, # 60 = k(61/%37).
Therefore, o, (0) = {3 —j} (i =0,1) and we obtain
Bs—j = oy (i=0,1).
We have 0,,, = 1, hence 33_; € QRn/24°) = /9" which proves (11).
Suppose now that d,, has at least two distinct prime factors ¢; and go and

¢;" || n. Applying Theorem 2 for mg = 2, m; = n/q;’ (i = 1,2) we obtain,
as before, o, (0) = {3 —j} (i =0,1,2). Then

2
Bs-j € QN Q2
i=1
hence f3_; € Q", which gives (10) with ¢ =3 — j.
For v =2, let 0, (0) = {j}.
If e =1 and 6, = 1 or —4 we obtain (10) with ¢ = j.

Ife = —2/2 and §,, = 1 or —4 we consider my = 2, m; = n/2 and obtain
(12).
If e = —27/2 and 6, # 1, —4 we consider mg = 4, m; = n/2 and obtain

(10) with i = 3 — j.
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If e = 1 and d,, has one odd prime factor g we consider mg = 4, m; = n/q°
and obtain (13).

If e = 1 and 6, has at least two odd prime factors q1,q2 we consider
mo =4, m; =n/q;" (i =1,2) and obtain (12) with j and 3— j interchanged.

For v > 3 let 0,,(0) = {j} and

B = 63

If 6, = 1 or —4 we obtain the case (10) with i = j.

If 6, = £8 we obtain the case (14). If §,, has one odd prime factor ¢ we
consider mo = 2¥, m; = n/q° and obtain (15). If §,, has at least two odd
prime factors ¢; and g2 we consider my = 2, m; = n/q;* (i = 1,2) and
obtain (10) with ¢ =3 — j or (14) with 3 — j in place of j.

Sufficiency. If (10) holds then for each relevant divisor m of n we take
om = cid;, where ¢;,d; are the cycles (0 — {i}) and ({3 —i} — {1,2}),
respectively.

If (11) holds, we take

. dej if q ‘ m,
Im = C3_jd3_j if qJ(m.
If (12) holds, we take

. dej if 4 ‘ m,
om = Cgfjdgfj if 4J(m.
If (13) holds, we take
[ cd; if ¢|m, or 44m,
Im = Cg_jdg_j if qJ(m and 4 ‘ m.
If (14) holds, we take
Om = dej.
If (15) holds, we take
5 :{cjdj if ¢ |m,
" c3—jdz—; if gfm.

Deduction of Theorem 1 of [7] (necessity part) from Theorem 1 (above).
Let n = Hé’:o pjj , where pg = 2, p; are distincﬁ odd primes and e; > 0 for
j > 0. Applying Theorem 1 above with m = pjj we infer that

k ej
(50) 6 H aaz]p] n'mpj 1—1;7]
=1

for some a;; € Z and I'; € K Cpej) (for m = 1 the conclusion is trivial). By
J
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the theorem of Hasse [4] (see [8, Lemma 6])

e

°J '
(51) F]PJ = Sjvfj for some v; € K, ¢j =1for j >0

and

g0 € {1} ifep <1,

(52) eo€{l,~1} ifl<eo<m,
g0 € {1, ()% (Cor + GG+ 22"} ifeg > T
We take integers ug, . .., u; satisfying the linear equation
l
> % uj =1
i=0P;
and set

j=0
By (50) and (51) we have
A S . S
,Yn:H(,ij )P]— 256020 HHal i
j=0 j=0i=1
hence
k
(53) Bl o = ooy
i=1

for some m; € Z, v € K*.

Ifeg < 1,0reg > 7,o0reg =1, or ug is even, we obtain, by (51), condition
(i) or (iv) of Theorem 1 of [7]. If 1 < eg < 7, € # 1 and ug is odd we apply
Theorem 1 above with m = 2. We obtain

B= 1o
2|n;
which combined with (53) gives, by (52),

Haii — _52

2[n;
and
ﬁﬁa;ﬂm/n" _ { —" » ?f 1<eg <,
paley —(Gor + G+ 2" ifeg =,

for some §,v; € K*. These are just conditions (ii) and (iii) of Theorem 1 of
[7]. The proof that conditions (i)—(iv) are sufficient is easy.
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