
ACTA ARITHMETICA
108.1 (2003)

On power residues

by

A. Schinzel and M. Skałba (Warszawa)

Let n be a positive integer, K a number field, αi ∈ K (1 ≤ i ≤ k), β ∈ K.
A simple necessary and sufficient condition was given in [7] in order that,
for almost all prime ideals p of K, solubility of the k congruences xni ≡ αi
(modp) should imply solubility of the congruence xn ≡ β (modp), where
ni |n. The aim of this paper is to extend that result to the case where the
congruence xn ≡ β (modp) is replaced by the alternative of l congruences
xn ≡ βj (mod p). The general result is quite complicated, but it simplifies
if n or K satisfy some restrictions. Here are precise statements, in which
ζn denotes a primitive nth root of unity, |A| is the cardinality of a set A,
Kn = {xn : x ∈ K} and F is the family of all subsets of {1, . . . , l}.

Theorem 1. Let n and ni be positive integers with ni |n (1 ≤ i ≤ k),
K be a number field and αi, βj ∈ K∗ (1 ≤ i ≤ k, 1 ≤ j ≤ l). Consider the
implication

(i) solubility in K of the k congruences xni ≡ αi (modp) implies solu-
bility in K of at least one of the l congruences xn ≡ βj (modp).

Then (i) holds for almost all prime ideals p of K if and only if

(ii) for every unitary divisor m > 1 of n and , if n ≡ 0 (mod 4), for every
m = 2m∗, where m∗ is a unitary divisor of the odd part of n, there exists an
involution σm of F such that for all A ⊂ {1, . . . , l},

|σm(A)| ≡ |A|+ 1 (mod 2),(1)

∏

j∈σm(A)

βj =
∏

j∈A
βj

k∏

i=1

α
aim/(m,ni)
i Γm,(2)

where ai ∈ Z, Γ ∈ K(ζm)∗.

Corollary 1. Let wn(K) be the number of nth roots of unity contained
in K and assume that

(wn(K), lcm[K(ζq) : K]) = 1,(3)
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where the least common multiple is over all prime divisors q of n and addi-
tionally q = 4 if 4 |n. The implication (i) holds for almost all prime ideals
p of K if and only if there exists an involution σ of F such that for all
A ⊂ {1, . . . , l},

|σ(A)| ≡ |A|+ 1 (mod 2)(4)
and

∏

j∈σ(A)

βj =
∏

j∈A
βj

k∏

i=1

α
ain/ni
i γn,(5)

where ai ∈ Z, γ ∈ K∗.
The condition (3) holds for every K if n = 2 or n = le, where l is an odd

prime, and for K = Q if n is odd.

Corollary 2. For n = ni = 2 (1 ≤ i ≤ k), (i) holds for almost all
prime ideals p of K if and only if

(iii) there exists a subset A0 of {1, . . . , l} such that

|A0| ≡ 1 (mod 2)(6)

and
∏

j∈A0

βj =
k∏

i=1

αaii γ
2
0 ,(7)

where ai ∈ Z, γ0 ∈ K∗.
Corollary 2 contains as a special case (K = Q, k = 0) a theorem of Fried

[3], rediscovered by Filaseta and Richman [2].
The case n = 2e (e ≥ 2) is covered by the following corollary, in which

τ denotes the greatest integer such that ζ2τ + ζ−1
2τ ∈ K. This corollary is of

interest only if ζ4 6∈ K, otherwise (3) holds.

Corollary 3. For n = 2e (e ≥ 2) and ni > 1 (1 ≤ i ≤ k), (i) holds for
almost all prime ideals p of K if and only if simultaneously (iii) holds and

(iv) there exists an involution σ of F such that for all A ⊂ {1, . . . , l} we
have (4) and

∏

j∈σ(A)

βj = ε
∏

j∈A
βj

k∏

i=1

α
ain/ni
i γn,(8)

where ai ∈ Z, γ ∈ K∗ and

ε ∈
{ {1,−1} if e < τ ,

{1, (−1)n/2
τ
(ζ2τ + ζ−1

2τ + 2)n/2} if e ≥ τ .
(9)

The case K = Q, n odd is covered by Corollary 1. The case K = Q, n
even is covered by the following
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Theorem 2. Let n = 2νn∗, ν > 0, n∗ odd , ni |n (1 ≤ i ≤ k), K = Q.
The implication (i) holds for almost all prime ideals p of K if and only if

(v) for every m = 2νm∗ and , if ν = 2, for every m = 2m∗, where m∗ is
a unitary divisor of n∗, there exists an involution σm of F such that for all
A ⊂ {1, . . . , l} we have (1) and

∏

j∈σm(A)

βj = ε
∏

j∈A
βj

k∏

i=1

α
aim/(m,ni)
i δm/2γm,

where ai ∈ Z, γ ∈ Q∗, δ is a fundamental discriminant dividing m and

ε ∈
{ {1,−2m/2} if m ≡ 4 (mod 8),

{1} otherwise.
Corollary 4. Let n = 2νn∗, ν ≥ 0, n∗ odd , β1, β2 ∈ Q∗. The alterna-

tive of congruences

xn ≡ βj (modp) (1 ≤ j ≤ 2)

is soluble for almost all primes p, if and only if either

βi ∈ Qn(10)

for some i ≤ 2, or there is a j ≤ 2, a prime q |n∗ with qe ‖n∗ and some
γ1, γ2 ∈ Q such that one of the following holds:

• ν = 1 and

βj = ((−1)(q−1)/2q)n/2γn1 , β3−j = γ
n/qe

2 ,(11)

• ν = 2 and either

βj = −2n/2γn1 , β3−j = γ
n/2
2(12)

or

βj = qn/2γn1 , β3−j ∈ {γn/q
e

2 ,−2n/2q
e
γ
n/qe

2 },(13)

• ν ≥ 3 and either

βj = 2n/2γn1(14)

or

βj ∈ {qn/2γn1 , 2n/2qn/2γn1 }, β3−j ∈ {γn/q
e

2 , 2n/2q
e
γ
n/qe

2 }.(15)

The proofs are based on eight lemmas and use the nth power residue
symbol, which is defined as follows. If a number field K contains ζn, then for
every prime ideal p of K prime to n and every p-adic unit α of K, (α|p)n is
the unique number ζjn that satisfies the congruence

α(Np−1)/n ≡ ζjn (mod p),

where Np is the absolute norm of p. Moreover, indα is the index of α with
respect to a fixed primitive root modulo the relevant prime ideal.
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We give two proofs of Corollary 2, one short using Theorem 1 and the
other longer, but using neither Theorem 1 nor the lemmas bellow, except
the classical Lemma 3.

At the end of the paper we give a deduction of the more difficult necessity
part of Theorem 1 of [7] from Theorem 1 above.

We thank Professor J. Browkin for some helpful suggestions.

Lemma 1. Let G be a finite abelian group, Ĝ its group of characters and
gj ∈ G (1 ≤ j ≤ l). If

l∏

j=1

(χ(gj)− 1) = 0(16)

for every χ ∈ Ĝ then there exists an involution σ of F such that for all
A ⊂ {1, . . . , l} we have (4) and

∏

j∈σ(A)

gj =
∏

j∈A
gj .

Proof. For g ∈ G let

c(g) =
∑

A⊂{1,...,l}∏
j∈A gj=g

(−1)|A|.

The equality (16) can be written in the form
∑

g∈G
c(g)χ(g) = 0

or, if h is any fixed element of G,
∑

g∈G
c(g)χ(gh−1) = 0.

Summing over all characters χ gives |G|c(h) = 0, hence c(h) = 0, and h
being arbitrary, c(g) = 0 for all g ∈ G. It follows that for all g ∈ G the
number of subsets A of {1, . . . , l} with

∏
j∈A gj = g and |A| odd equals the

corresponding number with |A| even, hence there is an involution σg of the
family of subsets A of {1, . . . , l} with

∏
j∈A gj = g such that

|σg(A)| ≡ |A|+ 1 (mod 2).

The involution σ is obtained by combining all involutions σg.

Lemma 2. Let n be a positive integer , K and L be number fields, K(ζn)
⊂ L, βj ∈ K∗ (1 ≤ j ≤ l). Let H be the multiplicative group generated by
β1, . . . , βl, and H1 the intersection of H with Ln. For every χ ∈ Ĥ/H1 there
exists a set P, with positive Dirichlet density , of prime ideals P of L such
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that
χ([x]) = (x|P)n,(17)

where [x] is the coset of H1 in H containing x.

Proof. By a theorem of Skolem [9] the field L has a multiplicative basis
ζw, π1, π2, . . . , where ζw is a root of unity and π1, π2, . . . are generators of
infinite order. Let πs be the last generator that occurs in the representation
of α1, . . . , αk, β1, . . . , βl. We have

H/H1 < J/Jn,

where J is the group generated by ζw, π1, . . . , πs. Indeed, H < J and the
relations h1 ∈ H, h2 ∈ H and h1h

−1
2 ∈ Jn together imply h1h

−1
2 ∈ H1.

Hence for every χ ∈ Ĥ/H1 there exists χ1 ∈ Ĵ/Jn such that

χ(y) = χ1(y) for y ∈ H/H1.(18)

Clearly χ1(y)n = 1 for all y ∈ J/Jn. On the other hand, by Theorem 4 of
[8] with σ = 1, for any integers c0, . . . , cs there exist infinitely many prime
ideals P of L such that

(ζw|P)n = ζc0n , (πr|P)n = ζcrn (1 ≤ r ≤ s).
Since the proof is via the Chebotarev density theorem (see [8, p. 263]), the
infinite set of prime ideals in question has a positive Dirichlet density. Hence
for every χ1 ∈ Ĵ/Jn there exists a set P of positive Dirichlet density such
that for P ∈ P,

χ1(x) = (x|P)n for x ∈ J,(19)

where x is the coset of Jn in J containing x. Since by (18),

χ([x]) = χ1(x) for x ∈ H,
(17) follows from (19).

Lemma 3. Let n ∈ N, K be a number field , ζn ∈ K, and α1, . . . , αk, β
elements of K∗. If

n
√
β ∈ K( n

√
α1, . . . , n

√
αk),

then

β =
k∏

i=1

αaii γ
n,

where ai ∈ Z, γ ∈ K∗.
Proof. See [5, p. 222, formula (2)].

Lemma 4. The condition (i) for almost all prime ideals p of K implies
the existence of an involution σ of F such that , for all A ⊂ {1, . . . , l}, (4)
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holds and

∏

j∈σ(A)

βj =
∏

j∈A
βj

k∏

i=1

α
ain/ni
i Γn for some ai ∈ Z, Γ ∈ K(ζn)∗.(20)

Proof. Let χ be a character of the group H/H1 described in Lemma 2
with L = K(ζn, ξ1, . . . , ξk), where ξnii = αi (1 ≤ i ≤ k). By Lemma 2 there
exists a set P, with positive Dirichlet density, of prime ideals P of L such
that

(x|P)n = χ([x]) for x ∈ H,(21)

where [x] is the coset of H1 in H containing x. Since the prime ideals of
degree greater than 1 have Dirichlet density 0 and the relative norms of
prime ideals from P have positive Dirichlet density, there is P ∈ P such
that p = NL/KP has the property that solubility in K of the k congruences
xni ≡ αi (mod p) implies solubility of at least one of the l congruences
xn ≡ βj (mod p). Moreover, the congruence xni ≡ αi (modP) has the
solution x = ξi in L, hence, P being of relative degree 1, the congruence
xni ≡ αi (mod p) has a solution in K and, by (i),

l∏

j=1

((βj|P)n − 1) = 0.

By (21) we have
l∏

j=1

(χ([βj])− 1) = 0

and, χ being arbitrary, it follows by Lemma 1 that there exists an involution
σ of F such that (4) holds and

∏

j∈σ(A)

[βj ] =
∏

j∈A
[βj].

The last formula means that
∏

j∈σ(A)

βj
∏

j∈A
β−1
j = Γn1 for some Γ1 ∈ L.(22)

Since Γn1 ∈ K(ζn), by Lemma 3 we have

Γn1 =
k∏

i=1

α
ain/ni
i Γn for some ai ∈ Z, Γ ∈ K(ζn),

which together with (22) gives (20).
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Lemma 5. If there exists an involution σ of F such that , for all A ⊂
{1, . . . , l}, (4) holds and

∏

j∈σ(A)

βj =
∏

j∈A
βj

k∏

i=1

α
aim/(m,ni)
i Γm(23)

for some ai ∈ Z and Γ ∈ K(ζm), then the implication (i) holds for all prime
ideals p of K such that all αi, βj are p-adic units and (Np− 1, n) = m.

Proof. Let p satisfy the assumptions of the lemma and assume that the
k congruences xni ≡ αi (modp), hence also x(m,ni) ≡ αi (modp), are sol-
uble in K. Let g be a primitive root mod p and Φm the mth cyclotomic
polynomial. We have

Φm(x) ≡
∏

(k,m)=1

(x− gNp−1
m

k) (modp),

hence, by Dedekind’s theorem, p has a prime ideal factor P in K(ζm) of
relative degree 1. Solubility in K of the congruences in question implies

(αaim/(m,ni)i |P)m = 1 (1 ≤ i ≤ k)

and, since (Γm|P)m = 1, by (23) we have( ∏

j∈σ(A)

βj

∣∣∣P
)
m

=
(∏

j∈A
βj

∣∣∣P
)
m
,

hence

2
l∏

j=1

(1− (βj |P)m)

=
∑

A⊂{1,...,l}

(
(−1)|A|

(∏

j∈A
βj

∣∣∣P
)
m

+ (−1)|σ(A)|
( ∏

j∈σ(A)

βj

∣∣∣P
)
m

)

=
∑

A⊂{1,...,l}
((−1)|A| + (−1)|σ(A)|)

(∏

j∈A
βj

∣∣∣P
)
m

= 0.

Thus (βj |P)m = 1 for at least one j ≤ l. Since P is of relative degree 1, this
means that the congruence

xm ≡ βj (mod p)

is soluble in K. Choosing an integer t such that (Np− 1)t ≡ m (modn) we
have, for every p-adic unit x of K,

x(Np−1)t ≡ 1 (modp),

hence the congruence xn ≡ βj (modp) is soluble in K.

Lemma 6. Let m,ni ∈ N (1 ≤ i ≤ k) and ni = n′in
′′
i , where (n′′i ,m) = 1.

Let αi, βj ∈ K∗ (1 ≤ i ≤ k, 1 ≤ j ≤ l). If there exists a prime ideal p0 of K
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such that m,ni, αi, βj are p0-adic units, the congruences

xn
′
i ≡ αi (modp0) (1 ≤ i ≤ k)(24)

are soluble in K and the congruences

xm ≡ βj (mod p0) (1 ≤ j ≤ l)(25)

are insoluble in K, then there exists a set P, with positive Dirichlet density ,
of prime ideals of K such that for p ∈ P the congruences

xni ≡ αi (mod p) (1 ≤ i ≤ k)(26)

are soluble in K and the congruences

xm ≡ βj (modp) (1 ≤ j ≤ l)(27)

are insoluble in K.

Proof. Assume first that all ni are prime powers, ni = lνii , where li are
primes, and let

I0 = {1 ≤ i ≤ k : li |m},
I1 = {1 ≤ i ≤ k : li |Np0 − 1} \ I0,

I2 = {1 ≤ i ≤ k} \ I0 \ I1.

Let further (Np0 − 1,m) = m′. We set

L = K(ζni , ni
√
αi (1 ≤ i ≤ k), ζm′, m

′√
βj (1 ≤ j ≤ l)),

take P0 to be a prime ideal factor of p0 in L, and let S be the element of
the Galois group of L/K such that

ϑS ≡ ϑNp0 (modP0)

for all P0-adic units ϑ of L.
By the assumption about the congruences (24) the congruence

xni ≡ αi (modp0)

has a solution xi ∈ K for i ∈ I0, hence there exists a zero Ai of xni − αi
such that Ai ≡ xi (mod P0) and then

ASi = Ai.(28)

For i ∈ I1 ∪ I2 and 1 ≤ j ≤ l, we choose Ai and Bj to be arbitrary zeros of
xni − αi and xm

′ − βj , respectively.
By the assumption about the congruences (25) also the congruences

xm
′ ≡ βj (modp0) (1 ≤ j ≤ l)(29)

are insoluble in K. We have

ζSm′ = ζNp0
m′ = ζm′ , ζSni = ζNp0

ni (1 ≤ i ≤ k),

ASi = ζainiAi (i ∈ I1 ∪ I2), BS
j = ζ

bj
m′Bj (1 ≤ j ≤ l),

(30)
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where ai, bj ∈ Z. Since the congruences (25) are insoluble in K we have

bj 6≡ 0 (modm′) (1 ≤ j ≤ l).(31)

Put now
n0 = lcm{ni : i ∈ I1}.

We have
1 +Np0 + . . .+Npn0−1

0 = (Npn0
0 − 1)/(Np0 − 1) ≡ 0 (modni) (i ∈ I1),

1 +Np0 + . . .+Npn0−1
0 ≡ n0 (modm′).

It follows from (28) that

AS
n0

i = Ai (i ∈ I0)(32)

and from (30) and (31) that

AS
n0

i = ζ
ai(1+Np0+...+Np

n0−1
0 )

ni Ai = Ai (i ∈ I1 ∪ I2),(33)

BSn0
j = ζ

bj(1+Np0+...+Np
n0−1
0 )

m′ Bj = ζ
bjn0
m′ Bj 6= Bj (1 ≤ j ≤ l),(34)

ζS
n0

m′ = ζm′ .(35)

If now P is a prime ideal of L such that the Frobenius symbol[
L/K

P

]
= Sn0

and p is the prime ideal of K divisible by P we infer from (32)–(35) that
the congruences (26) are soluble in K and the congruences

xm
′ ≡ βj (modp) (1 ≤ j ≤ l),

hence also the congruences (27), are insoluble in K. However, by Chebo-
tarev’s density theorem the set of relevant prime ideals p has a positive
Dirichlet density.

Consider now the general case. Let

ni =
hi∏

j=1

qij(36)

where for each i, qij (1 ≤ j ≤ hi) are powers of distinct primes. Since the
congruences (24) are soluble in K, for each i ≤ k and each j such that
(qij ,m) 6= 1 the congruence

xqij ≡ αi (modp0)

is soluble in K. Now, by the already proved case of the lemma, there exists
a set P, with positive Dirichlet density, of prime ideals of K such that for
each p ∈ P the congruences

xqij ≡ αi (modp) (1 ≤ i ≤ k, 1 ≤ j ≤ hi)
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are soluble, but the congruences (27) are insoluble. Thus for all i, j we have

indαi ≡ 0 (mod (Np− 1, qij)).

It now follows from (36) that for all i,

indαi ≡ 0 (mod (Np− 1, ni)),

hence the congruences (26) are soluble.

Lemma 7. Suppose that (i) holds for almost all prime ideals p of K.

(vi) If m is a unitary divisor of n, then for almost all prime ideals p of
K, solubility in K of the k congruences

x(m,ni) ≡ αi (modp)(37)

implies solubility in K of at least one congruence

xm ≡ βj (modp) (1 ≤ j ≤ l).(38)

(vii) If n ≡ 0 (mod 4) and m = 2m∗, where m∗ is a unitary divisor of
the odd part of n, then for almost all prime ideals p of K, solubility in K of
the k congruences

x(m,ni) ≡ αi (modp)

implies solubility in K of at least one congruence

xm ≡ −1 (mod p), xm ≡ βj (modp) (1 ≤ j ≤ l).
Proof. In order to prove statement (vi) assume to the contrary that there

exists a prime ideal p0 of K such that m,ni, αi and βj are p0-adic units, the
congruences (37) are soluble and the congruences (38) are insoluble. We
apply Lemma 6 with

n′i = (m,ni), n′′i =
ni

(m,ni)
.

The assumptions of the lemma are satisfied, since with our choice of m

(m,n′′i ) =
(m2, ni)
(m,ni)

= 1

and the assertion of the lemma contradicts the assumption of Lemma 7.
A similar argument shows that if statement (vii) were false, there would

exist a set P, with positive Dirichlet density, of prime ideals of K such that
for p ∈ P the congruences

xn
∗
i ≡ αi (modp) (1 ≤ i ≤ k)(39)

would be soluble and the congruences

xm ≡ −1 (modp), xm ≡ βj (mod p) (1 ≤ j ≤ l)(40)
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insoluble, where n∗i is the greatest divisor of ni not divisible by 4. However,
insolubility of xm ≡ −1 (modp) implies

Np− 1
2

= ind(−1) 6≡ 0 (mod (Np− 1,m)),

hence for m ≡ 2 (mod 4), Np ≡ 3 (mod 4) and then solubility of (39) implies
solubility of (26), while (40) is insoluble, contrary to the assumption of the
lemma.

Proof of Theorem 1. Necessity. The existence of an involution σm sat-
isfying (1) and (2) for m being a unitary divisor of n follows at once from
Lemma 4 and (vi). In order to prove the same for m of the form 2m∗, where
m∗ is a unitary divisor of the odd part of n, denote by m the least unitary
divisor of n divisible by m. Let Gm, resp. Gm, be the multiplicative subgroup
of K∗ generated by αm/(m,ni)i (1 ≤ i ≤ k) and K(ζm)∗m, resp. by αm/(m,ni)i
(1 ≤ i ≤ k) and K(ζm)∗m.

If Gm ⊂ Gm, then it suffices to take σm = σm.
If Gm 6⊂ Gm, let δ ∈ Gm \Gm. We have

δ =
k∏

i=1

α
aim/(m,ni)
i Γm,(41)

where ai ∈ Z, Γ ∈ K(ζm)∗. By Theorem 3 of [8] we have Γm = Γm0 for some
Γ0 ∈ K(ζ4m∗). Taking norms of both sides of (41) with respect to K(ζm)
and denoting the norm of Γ0 by Γ1 we obtain

δ2 =
k∏

i=1

α
2aim/(m,ni)
i Γm1 ,

hence

δ = ±
k∏

i=1

α
aim/(m,ni)
i Γ

m/2
1 ,

and, since

m

(m,ni)

∣∣∣∣
m

(m,ni)
, m

∣∣∣∣
m

2
, Γ1 ∈ K(ζm), δ 6∈ Gm,

the plus sign is excluded and we have

−1 6∈ Gm and δ ≡ −1 (mod×Gm).

Since δ ≡ 1 (mod×Gm) it follows that

[Gm : Gm ∩Gm] = 2, Gm = (Gm ∩Gm) ∪ δ(Gm ∩Gm).

From the existence of σm satisfying (1) and (2) it follows that for each
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B ∈ K∗, ∑

A∈V (B)

(−1)|A| +
∑

A∈V (δB)

(−1)|A| = 0,(42)

where
V (B) =

{
A ∈ F :

∏

j∈A
βj ≡ B (mod×Gm ∩Gm)

}
.

Let S = {∏j∈A βj : A ∈ F} and let {B1, . . . , Br} be a subset of S maximal
with respect to the property that

Bi ≡ B (mod×Gm), Bj 6≡ Bi (mod×Gm ∩Gm) for j 6= i.

Set
U(B) =

{
A ∈ F :

∏

j∈A
βj ≡ B (mod×Gm)

}
.

Replacing B by Bi in (42) and summing with respect to i we obtain
∑

A∈U(B)

(−1)|A| +
∑

A∈U(−B)

(−1)|A| = 0.

However, from (vii) and Lemma 4 it follows that
∑

A∈U(B)

(−1)|A| +
∑

A∈U(−B)

(−1)|A|+1 = 0.

Adding the last two equalities we obtain

2
∑

A∈U(B)

(−1)|A| = 0,

hence there exists an involution %B of the family of all subsets A of {1, . . . , l}
with

∏
j∈A βj = B, such that

|%B(A)| ≡ |A|+ 1 (mod 2).

The involution σm is obtained by combining all involutions %B .

Sufficiency. Consider a prime ideal p of K such that αi, βj are all p-adic
units and let

(Np− 1, n) = m1.(43)

If m1 = 1 the implication (i) is obvious.
If m1 > 1, m1 6≡ 0 (mod 2) or m1 ≡ 0 (mod 4), let m be the least unitary

divisor of n divisible by m1. By condition (ii) we have (1) and (2) where
Γ ∈ K(ζm). However, Γm ∈ K, hence also

Γm ∈ K(ζq : q |m, q prime or q = 4) =: K0.
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It now follows from Theorem 3 of [8] that Γm = Γm0 , where Γ0 ∈ K0.
However, by the definition of m, we have K0 ⊂ K(ζm1) and also

m1

(m1, ni)

∣∣∣∣
m

(m,ni)
.

The implication (i) now follows from Lemma 5.
If m1 ≡ 2 (mod 4), we take m = 2m∗, where m∗ is the least unitary

divisor of n divisible by m1/2, and argue as before.

Proof of Corollary 1. Under the assumption (3) the conditions Γ n ∈ K,
Γ ∈ K(ζn) imply, by Theorem 3 of [8], that Γ n = γn, γ ∈ K, hence for
σ = σn, (1) implies (4) and (2) implies (5).

First proof of Corollary 2. The necessity of condition (iii) follows from
Corollary 1 on taking A0 = σ(∅). Conversely, if (iii) holds, then we define
the involution σ in Corollary 1 by σ(A) = A÷A0 (÷ denotes the symmetric
difference) and notice that

∏

j∈σ(A)

βj =
∏

j∈A
βj

k∏

i=1

αaii

(
γ0

∏

j∈A∩A0

βj

)2
,

hence (4) and (5) are satisfied and, by Corollary 1, (i) holds for almost all
prime ideals p of K.

Second (direct) proof of Corollary 2. In order to prove the necessity of
the condition, choose a maximal subset {i1, . . . , is} of {1, . . . , l} such that

s∏

r=1

βerir ∈ L
2, where L = K(

√
α1, . . . ,

√
αk),

implies er ≡ 0 (mod 2) (1 ≤ r ≤ s).
By the theorem of Chebotarev [1] there exists a set P, with positive

Dirichlet density, of prime ideals P of L of degree 1 such that

(βir |P)2 = −1 (1 ≤ r ≤ s).(44)

Let p be the prime ideal of K divisible by P. Since P is of degree 1 and the
k congruences x2 ≡ αi (mod P) are soluble in L, they are soluble in K and,
by the implication,

(βj |p)2 = 1 for at least one j ≤ k.(45)

On the other hand, for each j ≤ l, by the maximality of {i1, . . . , is} we have

βj =
s∏

r=1

β
ejr
ir
γ2
j , ejr ∈ {0, 1}, γj ∈ L.(46)
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If for each j we have
s∑

r=1

ejr ≡ 1 (mod 2),

then the formulae (44) and (46) imply (βj|P)2 = −1, contrary to (45). If
for a certain j0 we have

s∑

r=1

ej0r ≡ 0 (mod 2),

then taking A0 = {ir : ej0r = 1} ÷ {j0} we get (6) and

∏

j∈A0

βj =

{
β2
j0
γ−2
j0

if j0 ∈ A0,

γ−2
j0

if j0 6∈ A0.
(47)

However, since γ−2
j0
∈ K, it follows by Lemma 3 that

γ−2
j0

=
k∏

i=1

αaii γ
2 for some ai ∈ Z, γ ∈ K,

which together with (47) implies (7).
In order to prove the sufficiency of the condition, let p be a prime ideal

of K such that αi and βj are p-adic units and the k congruences x2 ≡ αi
(modp) are soluble in K. Then (7) gives

∏

j∈A0

(βj |p)2 = 1 6= (−1)|A0|,

hence (βj |p)2 = 1 for at least one j ∈ A0.

Proof of Corollary 3. Necessity. For n = 2e, by a theorem of Hasse [4]
(see also Lemma 6 in [8]), Γ n ∈ K with Γ ∈ K(ζn) implies Γn = εγn, where
ε is given by (9) and γ ∈ K, hence (iv) follows from (ii) for σ = σn. Also
(iii) follows from (ii), on taking m = 2 and A0 = σ2(∅).

Sufficiency. There is only one unitary divisor m > 1 of n = 2e, namely
m = n, and for this m, (ii) follows from (iv) by the theorem of Hasse quoted
above, used in the opposite direction. For m = 2, (ii) follows from (iii) on
taking σ2(A) = A÷ A0.

Lemma 8. Let m be even and α ∈ Q∗. Then α ∈ Q(ζm)m if and only if

α = εδm/2γm,

where γ ∈ Q∗, δ is a fundamental discriminant dividing m and

ε ∈
{ {1,−2m/2} if m ≡ 4 (mod 8),

{1} otherwise.

Proof. This is a reformulation of a lemma of Mills [6].
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Proof of Theorem 2. The necessity of the conditions follows at once from
Theorem 1 and Lemma 8. In order to prove the sufficiency we consider the
cases ν ≤ 2 and ν ≥ 3 separately. If ν ≤ 2, then (ii) follows from (v) and
Lemma 8 for every even unitary divisor m of n. For an odd unitary divisor
m of n it suffices to take σm = σ2m.

For ν ≥ 3 and m 6≡ 2 (mod 4), (ii) follows as before, while for m ≡ 2
(mod 4) it suffices to take σm = σn. Indeed, for ν ≥ 3 we have ε = 1 and
every number of the form εδn/2γn with δ, γ ∈ Q belongs to Qm.

Proof of Corollary 4. Necessity. In the case ν = 0 the assertion follows
at once from Corollary 1. We shall consider in detail only the case ν = 1;
the proof in the other cases is similar and will be only indicated briefly.

Applying Theorem 2 for ν = 1 and m = n we infer that for {j} = σn(∅),
βj = δn/2n γnn for some γn ∈ Q,(48)

where δn is a fundamental discriminant dividing n. If δn = 1 we have βj ∈
Qn, hence (10) with i = j.

If δn = (−1)(q−1)/2q, where q is an odd prime, we have βj as in (11).
Now we apply Theorem 2 for m0 = 2 and m1 = n/qe. If σmi(∅) = {j} then

βj = δmi/2mi γmii for some γi ∈ Q (i = 0, 1),(49)

where δmi is a fundamental discriminant dividing mi. Now the equations
(48) and (49) are incompatible, since denoting by k(x) the squarefree kernel
of an integer x, we have

k(δmi/2mi γmii ) = δmi 6= δn = k(δn/2n γnn).

Therefore, σmi(∅) = {3− j} (i = 0, 1) and we obtain

β3−j = δmi/2mi γmii (i = 0, 1).

We have δm0 = 1, hence β3−j ∈ Q[2,n/2qe] = Qn/qe , which proves (11).
Suppose now that δn has at least two distinct prime factors q1 and q2 and

qeii ‖n. Applying Theorem 2 for m0 = 2, mi = n/qeii (i = 1, 2) we obtain,
as before, σmi(∅) = {3− j} (i = 0, 1, 2). Then

β3−j ∈ Q2 ∩
2⋂

i=1

Qn/2q
ei
i ,

hence β3−j ∈ Qn, which gives (10) with i = 3− j.
For ν = 2, let σn(∅) = {j}.
If ε = 1 and δn = 1 or −4 we obtain (10) with i = j.
If ε = −2n/2 and δn = 1 or −4 we consider m0 = 2, m1 = n/2 and obtain

(12).
If ε = −2n/2 and δn 6= 1,−4 we consider m0 = 4, m1 = n/2 and obtain

(10) with i = 3− j.
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If ε = 1 and δn has one odd prime factor q we considerm0 = 4,m1 = n/qe

and obtain (13).
If ε = 1 and δn has at least two odd prime factors q1, q2 we consider

m0 = 4, mi = n/qeii (i = 1, 2) and obtain (12) with j and 3−j interchanged.
For ν ≥ 3 let σn(∅) = {j} and

βj = δn/2n γnn .

If δn = 1 or −4 we obtain the case (10) with i = j.
If δn = ±8 we obtain the case (14). If δn has one odd prime factor q we

consider m0 = 2ν , m1 = n/qe and obtain (15). If δn has at least two odd
prime factors q1 and q2 we consider m0 = 2ν , mi = n/qeii (i = 1, 2) and
obtain (10) with i = 3− j or (14) with 3− j in place of j.

Sufficiency. If (10) holds then for each relevant divisor m of n we take
σm = cidi, where ci, di are the cycles (∅ → {i}) and ({3 − i} → {1, 2}),
respectively.

If (11) holds, we take

σm =
{
cjdj if q |m,
c3−jd3−j if q -m.

If (12) holds, we take

σm =
{
cjdj if 4 |m,
c3−jd3−j if 4 -m.

If (13) holds, we take

σm =
{
cjdj if q |m, or 4 -m,
c3−jd3−j if q -m and 4 |m.

If (14) holds, we take
σm = cjdj .

If (15) holds, we take

σm =
{
cjdj if q |m,
c3−jd3−j if q -m.

Deduction of Theorem 1 of [7] (necessity part) from Theorem 1 (above).
Let n =

∏l
j=0 p

ej
j , where p0 = 2, pj are distinct odd primes and ej > 0 for

j > 0. Applying Theorem 1 above with m = p
ej
j we infer that

β =
k∏

i=1

α
aijp

ej
j /(ni,p

ej
j )

i Γ
p
ej
j

j(50)

for some aij ∈ Z and Γj ∈ K(ζ
p
ej
j

) (for m = 1 the conclusion is trivial). By
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the theorem of Hasse [4] (see [8, Lemma 6])

Γ
p
ej
j

j = εjγ
p
ej
j

j for some γj ∈ K, εj = 1 for j > 0(51)

and

ε0 ∈ {1} if e0 ≤ 1,

ε0 ∈ {1,−1} if 1 < e0 < τ,(52)

ε0 ∈ {1, (−1)2e0−τ (ζ2τ + ζ−1
2τ + 2)2e0−1} if e0 ≥ τ.

We take integers u0, . . . , ul satisfying the linear equation
l∑

j=0

n

p
ej
j

uj = 1

and set

γ =
l∏

j=0

γ
uj
j .

By (50) and (51) we have

γn =
n∏

j=0

(γ
p
ej
j

j )
n

p
ej
j

uj

= βε
− n

2e0 u0

0

l∏

j=0

k∏

i=1

α

−aij
nuj

(ni,p
ej
j )

i ,

hence

β

k∏

i=1

α
min/ni
i = ε

n
2e0 u0γn(53)

for some mi ∈ Z, γ ∈ K∗.
If e0 ≤ 1, or e0 > τ , or ε0 = 1, or u0 is even, we obtain, by (51), condition

(i) or (iv) of Theorem 1 of [7]. If 1 < e0 ≤ τ , ε 6= 1 and u0 is odd we apply
Theorem 1 above with m = 2. We obtain

β =
∏

2|ni
αaii γ

2,

which combined with (53) gives, by (52),
∏

2|ni
αlii = −δ2

and

β

k∏

i=1

α
min/ni
i =

{−γn if 1 < e0 < τ,

−(ζ2τ + ζ−1
2τ + 2)n/2γn1 if e0 = τ,

for some δ, γ1 ∈ K∗. These are just conditions (ii) and (iii) of Theorem 1 of
[7]. The proof that conditions (i)–(iv) are sufficient is easy.
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