On power residues

by

A. SCHINZEL and M. SKAŁBA (Warszawa)

Let n be a positive integer, K a number field, $\alpha_i \in K$ $(1 \leq i \leq k), \beta \in K$. A simple necessary and sufficient condition was given in [7] in order that, for almost all prime ideals \mathfrak{p} of K, solubility of the k congruences $x^{n_i} \equiv \alpha_i$ $(\text{mod }\mathfrak{p})$ should imply solubility of the congruence $x^n \equiv \beta \pmod{\mathfrak{p}}$, where $n_i \mid n$. The aim of this paper is to extend that result to the case where the congruence $x^n \equiv \beta \pmod{\mathfrak{p}}$ is replaced by the alternative of l congruences $x^n \equiv \beta_j \pmod{\mathfrak{p}}$. The general result is quite complicated, but it simplifies if n or K satisfy some restrictions. Here are precise statements, in which ζ_n denotes a primitive nth root of unity, |A| is the cardinality of a set A, $K^n = \{x^n : x \in K\}$ and \mathcal{F} is the family of all subsets of $\{1, \ldots, l\}$.

THEOREM 1. Let n and n_i be positive integers with $n_i | n \ (1 \le i \le k)$, K be a number field and $\alpha_i, \beta_j \in K^* \ (1 \le i \le k, 1 \le j \le l)$. Consider the implication

(i) solubility in K of the k congruences $x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}}$ implies solubility in K of at least one of the l congruences $x^n \equiv \beta_j \pmod{\mathfrak{p}}$.

Then (i) holds for almost all prime ideals \mathfrak{p} of K if and only if

(ii) for every unitary divisor m > 1 of n and, if $n \equiv 0 \pmod{4}$, for every $m = 2m^*$, where m^* is a unitary divisor of the odd part of n, there exists an involution σ_m of \mathcal{F} such that for all $A \subset \{1, \ldots, l\}$,

(1)
$$|\sigma_m(A)| \equiv |A| + 1 \pmod{2},$$

(2)
$$\prod_{j \in \sigma_m(A)} \beta_j = \prod_{j \in A} \beta_j \prod_{i=1}^k \alpha_i^{a_i m / (m, n_i)} \Gamma^m,$$

where $a_i \in \mathbb{Z}, \ \Gamma \in K(\zeta_m)^*$.

COROLLARY 1. Let $w_n(K)$ be the number of nth roots of unity contained in K and assume that

(3)
$$(w_n(K), \operatorname{lcm}[K(\zeta_q):K]) = 1,$$

2000 Mathematics Subject Classification: 11R20, 11A15.

where the least common multiple is over all prime divisors q of n and additionally q = 4 if 4 | n. The implication (i) holds for almost all prime ideals \mathfrak{p} of K if and only if there exists an involution σ of \mathcal{F} such that for all $A \subset \{1, \ldots, l\},$

(4)
$$|\sigma(A)| \equiv |A| + 1 \pmod{2}$$

and

(5)
$$\prod_{j \in \sigma(A)} \beta_j = \prod_{j \in A} \beta_j \prod_{i=1}^k \alpha_i^{a_i n/n_i} \gamma^n,$$

where $a_i \in \mathbb{Z}, \gamma \in K^*$.

The condition (3) holds for every K if n = 2 or $n = l^e$, where l is an odd prime, and for $K = \mathbb{Q}$ if n is odd.

COROLLARY 2. For $n = n_i = 2$ $(1 \le i \le k)$, (i) holds for almost all prime ideals \mathfrak{p} of K if and only if

(iii) there exists a subset A_0 of $\{1, \ldots, l\}$ such that

$$(6) |A_0| \equiv 1 \pmod{2}$$

and

(7)
$$\prod_{j \in A_0} \beta_j = \prod_{i=1}^{\kappa} \alpha_i^{a_i} \gamma_0^2,$$

where $a_i \in \mathbb{Z}, \gamma_0 \in K^*$.

Corollary 2 contains as a special case $(K = \mathbb{Q}, k = 0)$ a theorem of Fried [3], rediscovered by Filaseta and Richman [2].

The case $n = 2^e$ $(e \ge 2)$ is covered by the following corollary, in which τ denotes the greatest integer such that $\zeta_{2\tau} + \zeta_{2\tau}^{-1} \in K$. This corollary is of interest only if $\zeta_4 \notin K$, otherwise (3) holds.

COROLLARY 3. For $n = 2^e$ $(e \ge 2)$ and $n_i > 1$ $(1 \le i \le k)$, (i) holds for almost all prime ideals \mathfrak{p} of K if and only if simultaneously (iii) holds and

(iv) there exists an involution σ of \mathcal{F} such that for all $A \subset \{1, \ldots, l\}$ we have (4) and

(8)
$$\prod_{j\in\sigma(A)}\beta_j = \varepsilon \prod_{j\in A}\beta_j \prod_{i=1}^k \alpha_i^{a_i n/n_i} \gamma^n,$$

where $a_i \in \mathbb{Z}, \ \gamma \in K^*$ and

(9)
$$\varepsilon \in \begin{cases} \{1, -1\} & \text{if } e < \tau, \\ \{1, (-1)^{n/2^{\tau}} (\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} + 2)^{n/2} \} & \text{if } e \ge \tau. \end{cases}$$

The case $K = \mathbb{Q}$, n odd is covered by Corollary 1. The case $K = \mathbb{Q}$, n even is covered by the following

THEOREM 2. Let $n = 2^{\nu}n^*$, $\nu > 0$, n^* odd, $n_i | n \ (1 \le i \le k)$, $K = \mathbb{Q}$. The implication (i) holds for almost all prime ideals \mathfrak{p} of K if and only if

(v) for every $m = 2^{\nu}m^*$ and, if $\nu = 2$, for every $m = 2m^*$, where m^* is a unitary divisor of n^* , there exists an involution σ_m of \mathcal{F} such that for all $A \subset \{1, \ldots, l\}$ we have (1) and

$$\prod_{j\in\sigma_m(A)}\beta_j = \varepsilon \prod_{j\in A}\beta_j \prod_{i=1}^k \alpha_i^{a_im/(m,n_i)} \delta^{m/2} \gamma^m,$$

where $a_i \in \mathbb{Z}, \gamma \in \mathbb{Q}^*, \delta$ is a fundamental discriminant dividing m and

$$\varepsilon \in \begin{cases} \{1, -2^{m/2}\} & if \ m \equiv 4 \pmod{8}, \\ \{1\} & otherwise. \end{cases}$$

COROLLARY 4. Let $n = 2^{\nu}n^*$, $\nu \ge 0$, n^* odd, $\beta_1, \beta_2 \in \mathbb{Q}^*$. The alternative of congruences

$$x^n \equiv \beta_j \pmod{p}$$
 $(1 \le j \le 2)$

is soluble for almost all primes p, if and only if either

(10)
$$\beta_i \in \mathbb{Q}^n$$

for some $i \leq 2$, or there is a $j \leq 2$, a prime $q \mid n^*$ with $q^e \mid n^*$ and some $\gamma_1, \gamma_2 \in \mathbb{Q}$ such that one of the following holds:

•
$$\nu = 1$$
 and

(11)
$$\beta_j = ((-1)^{(q-1)/2}q)^{n/2}\gamma_1^n, \quad \beta_{3-j} = \gamma_2^{n/q^e},$$

•
$$\nu = 2$$
 and either

(12)
$$\beta_j = -2^{n/2} \gamma_1^n, \quad \beta_{3-j} = \gamma_2^{n/2}$$

or

(13)
$$\beta_j = q^{n/2} \gamma_1^n, \quad \beta_{3-j} \in \{\gamma_2^{n/q^e}, -2^{n/2q^e} \gamma_2^{n/q^e}\},$$

•
$$\nu \geq 3$$
 and either

(14)
$$\beta_j = 2^{n/2} \gamma_1^n$$

or

(15)
$$\beta_j \in \{q^{n/2}\gamma_1^n, 2^{n/2}q^{n/2}\gamma_1^n\}, \quad \beta_{3-j} \in \{\gamma_2^{n/q^e}, 2^{n/2q^e}\gamma_2^{n/q^e}\}.$$

The proofs are based on eight lemmas and use the *nth power residue* symbol, which is defined as follows. If a number field K contains ζ_n , then for every prime ideal \mathfrak{p} of K prime to n and every \mathfrak{p} -adic unit α of K, $(\alpha|\mathfrak{p})_n$ is the unique number ζ_n^j that satisfies the congruence

$$\alpha^{(N\mathfrak{p}-1)/n} \equiv \zeta_n^j \; (\mathrm{mod}\,\mathfrak{p}),$$

where $N\mathfrak{p}$ is the absolute norm of \mathfrak{p} . Moreover, ind α is the index of α with respect to a fixed primitive root modulo the relevant prime ideal.

We give two proofs of Corollary 2, one short using Theorem 1 and the other longer, but using neither Theorem 1 nor the lemmas below, except the classical Lemma 3.

At the end of the paper we give a deduction of the more difficult necessity part of Theorem 1 of [7] from Theorem 1 above.

We thank Professor J. Browkin for some helpful suggestions.

LEMMA 1. Let G be a finite abelian group, \widehat{G} its group of characters and $g_j \in G \ (1 \leq j \leq l)$. If

(16)
$$\prod_{j=1}^{l} (\chi(g_j) - 1) = 0$$

for every $\chi \in \widehat{G}$ then there exists an involution σ of \mathcal{F} such that for all $A \subset \{1, \ldots, l\}$ we have (4) and

$$\prod_{j\in\sigma(A)}g_j=\prod_{j\in A}g_j.$$

Proof. For $g \in G$ let

$$c(g) = \sum_{\substack{A \subset \{1, \dots, l\} \\ \prod_{j \in A} g_j = g}} (-1)^{|A|}.$$

The equality (16) can be written in the form

$$\sum_{g\in G} c(g)\chi(g) = 0$$

or, if h is any fixed element of G,

$$\sum_{g\in G} c(g)\chi(gh^{-1}) = 0.$$

Summing over all characters χ gives |G|c(h) = 0, hence c(h) = 0, and h being arbitrary, c(g) = 0 for all $g \in G$. It follows that for all $g \in G$ the number of subsets A of $\{1, \ldots, l\}$ with $\prod_{j \in A} g_j = g$ and |A| odd equals the corresponding number with |A| even, hence there is an involution σ_g of the family of subsets A of $\{1, \ldots, l\}$ with $\prod_{i \in A} g_j = g$ such that

$$|\sigma_g(A)| \equiv |A| + 1 \pmod{2}$$

The involution σ is obtained by combining all involutions σ_q .

LEMMA 2. Let n be a positive integer, K and L be number fields, $K(\zeta_n) \subset L, \beta_j \in K^*$ $(1 \leq j \leq l)$. Let H be the multiplicative group generated by β_1, \ldots, β_l , and H_1 the intersection of H with L^n . For every $\chi \in \widehat{H/H_1}$ there exists a set \mathcal{P} , with positive Dirichlet density, of prime ideals \mathfrak{P} of L such

that

(17)
$$\chi([x]) = (x|\mathfrak{P})_n,$$

where [x] is the coset of H_1 in H containing x.

Proof. By a theorem of Skolem [9] the field L has a multiplicative basis $\zeta_w, \pi_1, \pi_2, \ldots$, where ζ_w is a root of unity and π_1, π_2, \ldots are generators of infinite order. Let π_s be the last generator that occurs in the representation of $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_l$. We have

$$H/H_1 < J/J^n,$$

where J is the group generated by $\zeta_w, \pi_1, \ldots, \pi_s$. Indeed, H < J and the relations $h_1 \in H$, $h_2 \in H$ and $h_1 h_2^{-1} \in J^n$ together imply $h_1 h_2^{-1} \in H_1$. Hence for every $\chi \in \widehat{H/H_1}$ there exists $\chi_1 \in \widehat{J/J^n}$ such that

(18)
$$\chi(y) = \chi_1(y) \quad \text{for } y \in H/H_1.$$

Clearly $\chi_1(y)^n = 1$ for all $y \in J/J^n$. On the other hand, by Theorem 4 of [8] with $\sigma = 1$, for any integers c_0, \ldots, c_s there exist infinitely many prime ideals \mathfrak{P} of L such that

$$(\zeta_w|\mathfrak{P})_n = \zeta_n^{c_0}, \quad (\pi_r|\mathfrak{P})_n = \zeta_n^{c_r} \quad (1 \le r \le s).$$

Since the proof is via the Chebotarev density theorem (see [8, p. 263]), the infinite set of prime ideals in question has a positive Dirichlet density. Hence for every $\chi_1 \in \widehat{J/J^n}$ there exists a set \mathcal{P} of positive Dirichlet density such that for $\mathfrak{P} \in \mathcal{P}$,

(19)
$$\chi_1(\overline{x}) = (x|\mathfrak{P})_n \quad \text{for } x \in J,$$

where \overline{x} is the coset of J^n in J containing x. Since by (18),

 $\chi([x]) = \chi_1(\overline{x}) \quad \text{for } x \in H,$

(17) follows from (19).

LEMMA 3. Let $n \in \mathbb{N}$, K be a number field, $\zeta_n \in K$, and $\alpha_1, \ldots, \alpha_k, \beta$ elements of K^* . If

$$\sqrt[n]{\beta} \in K(\sqrt[n]{\alpha_1}, \ldots, \sqrt[n]{\alpha_k}),$$

then

$$\beta = \prod_{i=1}^k \alpha_i^{a_i} \gamma^n,$$

where $a_i \in \mathbb{Z}, \gamma \in K^*$.

Proof. See [5, p. 222, formula (2)].

LEMMA 4. The condition (i) for almost all prime ideals \mathfrak{p} of K implies the existence of an involution σ of \mathcal{F} such that, for all $A \subset \{1, \ldots, l\}$, (4) holds and

(20)
$$\prod_{j\in\sigma(A)}\beta_j = \prod_{j\in A}\beta_j \prod_{i=1}^k \alpha_i^{a_in/n_i}\Gamma^n \quad \text{for some } a_i \in \mathbb{Z}, \ \Gamma \in K(\zeta_n)^*$$

Proof. Let χ be a character of the group H/H_1 described in Lemma 2 with $L = K(\zeta_n, \xi_1, \ldots, \xi_k)$, where $\xi_i^{n_i} = \alpha_i$ $(1 \le i \le k)$. By Lemma 2 there exists a set \mathcal{P} , with positive Dirichlet density, of prime ideals \mathfrak{P} of L such that

(21)
$$(x|\mathfrak{P})_n = \chi([x]) \quad \text{for } x \in H,$$

where [x] is the coset of H_1 in H containing x. Since the prime ideals of degree greater than 1 have Dirichlet density 0 and the relative norms of prime ideals from \mathcal{P} have positive Dirichlet density, there is $\mathfrak{P} \in \mathcal{P}$ such that $\mathfrak{p} = N_{L/K}\mathfrak{P}$ has the property that solubility in K of the k congruences $x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}}$ implies solubility of at least one of the l congruences $x^n \equiv \beta_j \pmod{\mathfrak{p}}$. Moreover, the congruence $x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}}$ has the solution $x = \xi_i$ in L, hence, \mathfrak{P} being of relative degree 1, the congruence $x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}}$ has a solution in K and, by (i),

$$\prod_{j=1}^{l} ((\beta_j | \mathfrak{P})_n - 1) = 0.$$

By (21) we have

$$\prod_{j=1}^{l} (\chi([\beta_j]) - 1) = 0$$

and, χ being arbitrary, it follows by Lemma 1 that there exists an involution σ of \mathcal{F} such that (4) holds and

$$\prod_{j \in \sigma(A)} [\beta_j] = \prod_{j \in A} [\beta_j]$$

The last formula means that

(22)
$$\prod_{j \in \sigma(A)} \beta_j \prod_{j \in A} \beta_j^{-1} = \Gamma_1^n \quad \text{for some } \Gamma_1 \in L.$$

Since $\Gamma_1^n \in K(\zeta_n)$, by Lemma 3 we have

$$\Gamma_1^n = \prod_{i=1}^k \alpha_i^{a_i n/n_i} \Gamma^n \quad \text{for some } a_i \in \mathbb{Z}, \Gamma \in K(\zeta_n),$$

which together with (22) gives (20).

LEMMA 5. If there exists an involution σ of \mathcal{F} such that, for all $A \subset \{1, \ldots, l\}$, (4) holds and

(23)
$$\prod_{j \in \sigma(A)} \beta_j = \prod_{j \in A} \beta_j \prod_{i=1}^k \alpha_i^{a_i m / (m, n_i)} \Gamma^m$$

for some $a_i \in \mathbb{Z}$ and $\Gamma \in K(\zeta_m)$, then the implication (i) holds for all prime ideals \mathfrak{p} of K such that all α_i, β_j are \mathfrak{p} -adic units and $(N\mathfrak{p} - 1, n) = m$.

Proof. Let \mathfrak{p} satisfy the assumptions of the lemma and assume that the k congruences $x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}}$, hence also $x^{(m,n_i)} \equiv \alpha_i \pmod{\mathfrak{p}}$, are soluble in K. Let g be a primitive root mod \mathfrak{p} and Φ_m the mth cyclotomic polynomial. We have

$$\Phi_m(x) \equiv \prod_{(k,m)=1} (x - g^{\frac{N\mathfrak{p}-1}{m}k}) \; (\mathrm{mod}\,\mathfrak{p}),$$

hence, by Dedekind's theorem, \mathfrak{p} has a prime ideal factor \mathfrak{P} in $K(\zeta_m)$ of relative degree 1. Solubility in K of the congruences in question implies

$$(\alpha_i^{a_i m/(m,n_i)} | \mathfrak{P})_m = 1 \quad (1 \le i \le k)$$

and, since $(\Gamma^m | \mathfrak{P})_m = 1$, by (23) we have

$$\left(\prod_{j\in\sigma(A)}\beta_j\Big|\mathfrak{P}\right)_m = \left(\prod_{j\in A}\beta_j\Big|\mathfrak{P}\right)_m,$$

hence

$$2\prod_{j=1}^{i} (1 - (\beta_j | \mathfrak{P})_m)$$

= $\sum_{A \subset \{1, \dots, l\}} \left((-1)^{|A|} \left(\prod_{j \in A} \beta_j | \mathfrak{P} \right)_m + (-1)^{|\sigma(A)|} \left(\prod_{j \in \sigma(A)} \beta_j | \mathfrak{P} \right)_m \right)$
= $\sum_{A \subset \{1, \dots, l\}} ((-1)^{|A|} + (-1)^{|\sigma(A)|}) \left(\prod_{j \in A} \beta_j | \mathfrak{P} \right)_m = 0.$

Thus $(\beta_j|\mathfrak{P})_m = 1$ for at least one $j \leq l$. Since \mathfrak{P} is of relative degree 1, this means that the congruence

$$x^m \equiv \beta_j \pmod{\mathfrak{p}}$$

is soluble in K. Choosing an integer t such that $(N\mathfrak{p}-1)t \equiv m \pmod{n}$ we have, for every \mathfrak{p} -adic unit x of K,

$$x^{(N\mathfrak{p}-1)t} \equiv 1 \pmod{\mathfrak{p}},$$

hence the congruence $x^n \equiv \beta_j \pmod{\mathfrak{p}}$ is soluble in K.

LEMMA 6. Let $m, n_i \in \mathbb{N}$ $(1 \leq i \leq k)$ and $n_i = n'_i n''_i$, where $(n''_i, m) = 1$. Let $\alpha_i, \beta_j \in K^*$ $(1 \leq i \leq k, 1 \leq j \leq l)$. If there exists a prime ideal \mathfrak{p}_0 of K such that $m, n_i, \alpha_i, \beta_j$ are \mathfrak{p}_0 -adic units, the congruences

(24)
$$x^{n'_i} \equiv \alpha_i \pmod{\mathfrak{p}_0} \quad (1 \le i \le k)$$

are soluble in K and the congruences

(25)
$$x^m \equiv \beta_j \pmod{\mathfrak{p}_0} \quad (1 \le j \le l)$$

are insoluble in K, then there exists a set \mathcal{P} , with positive Dirichlet density, of prime ideals of K such that for $\mathfrak{p} \in \mathcal{P}$ the congruences

(26)
$$x^{n_i} \equiv \alpha_i \pmod{\mathfrak{p}} \quad (1 \le i \le k)$$

are soluble in K and the congruences

(27)
$$x^m \equiv \beta_j \pmod{\mathfrak{p}} \quad (1 \le j \le l)$$

are insoluble in K.

Proof. Assume first that all n_i are prime powers, $n_i = l_i^{\nu_i}$, where l_i are primes, and let

$$I_{0} = \{ 1 \le i \le k : l_{i} \mid m \},\$$

$$I_{1} = \{ 1 \le i \le k : l_{i} \mid N\mathfrak{p}_{0} - 1 \} \setminus I_{0},\$$

$$I_{2} = \{ 1 \le i \le k \} \setminus I_{0} \setminus I_{1}.$$

Let further $(N\mathfrak{p}_0 - 1, m) = m'$. We set

$$L = K(\zeta_{n_i}, \sqrt[n_i]{\alpha_i} \ (1 \le i \le k), \zeta_{m'}, \sqrt[m']{\beta_j} \ (1 \le j \le l)),$$

take \mathfrak{P}_0 to be a prime ideal factor of \mathfrak{p}_0 in L, and let S be the element of the Galois group of L/K such that

$$\vartheta^S \equiv \vartheta^{N\mathfrak{p}_0} \pmod{\mathfrak{P}_0}$$

for all \mathfrak{P}_0 -adic units ϑ of L.

By the assumption about the congruences (24) the congruence

$$x^{n_i} \equiv \alpha_i \; (\mathrm{mod}\,\mathfrak{p}_0)$$

has a solution $x_i \in K$ for $i \in I_0$, hence there exists a zero A_i of $x^{n_i} - \alpha_i$ such that $A_i \equiv x_i \pmod{\mathfrak{P}_0}$ and then

(28)
$$A_i^S = A_i.$$

For $i \in I_1 \cup I_2$ and $1 \leq j \leq l$, we choose A_i and B_j to be arbitrary zeros of $x^{n_i} - \alpha_i$ and $x^{m'} - \beta_j$, respectively.

By the assumption about the congruences (25) also the congruences

(29)
$$x^{m'} \equiv \beta_j \pmod{\mathfrak{p}_0} \quad (1 \le j \le l)$$

are insoluble in K. We have

(30)
$$\zeta_{m'}^{S} = \zeta_{m'}^{N\mathfrak{p}_{0}} = \zeta_{m'}, \quad \zeta_{n_{i}}^{S} = \zeta_{n_{i}}^{N\mathfrak{p}_{0}} \quad (1 \le i \le k), A_{i}^{S} = \zeta_{n_{i}}^{a_{i}}A_{i} \quad (i \in I_{1} \cup I_{2}), \quad B_{j}^{S} = \zeta_{m'}^{b_{j}}B_{j} \quad (1 \le j \le l),$$

where
$$a_i, b_i \in \mathbb{Z}$$
. Since the congruences (25) are insoluble in K we have

(31)
$$b_j \not\equiv 0 \pmod{m'} \quad (1 \le j \le l)$$

Put now

$$n_0 = \operatorname{lcm}\{n_i : i \in I_1\}.$$

We have

$$1 + N\mathfrak{p}_0 + \ldots + N\mathfrak{p}_0^{n_0 - 1} = (N\mathfrak{p}_0^{n_0} - 1)/(N\mathfrak{p}_0 - 1) \equiv 0 \pmod{n_i} \quad (i \in I_1), 1 + N\mathfrak{p}_0 + \ldots + N\mathfrak{p}_0^{n_0 - 1} \equiv n_0 \pmod{m'}.$$

It follows from (28) that

and from (30) and (31) that

(33)
$$A_i^{S^{n_0}} = \zeta_{n_i}^{a_i(1+N\mathfrak{p}_0+\ldots+N\mathfrak{p}_0^{n_0-1})} A_i = A_i \quad (i \in I_1 \cup I_2),$$

(34)
$$B_j^{S^{n_0}} = \zeta_{m'}^{b_j(1+N\mathfrak{p}_0+\ldots+N\mathfrak{p}_0^{\circ})} B_j = \zeta_{m'}^{b_j n_0} B_j \neq B_j \quad (1 \le j \le l).$$

(35)
$$\zeta_{m'}^{S^{n_0}} = \zeta_{m'}.$$

If now \mathfrak{P} is a prime ideal of L such that the Frobenius symbol

$$\left[\frac{L/K}{\mathfrak{P}}\right] = S^{n_0}$$

and \mathfrak{p} is the prime ideal of K divisible by \mathfrak{P} we infer from (32)–(35) that the congruences (26) are soluble in K and the congruences

$$x^{m'} \equiv \beta_j \pmod{\mathfrak{p}} \quad (1 \le j \le l),$$

hence also the congruences (27), are insoluble in K. However, by Chebotarev's density theorem the set of relevant prime ideals \mathfrak{p} has a positive Dirichlet density.

Consider now the general case. Let

$$(36) n_i = \prod_{j=1}^{h_i} q_{ij}$$

where for each i, q_{ij} $(1 \le j \le h_i)$ are powers of distinct primes. Since the congruences (24) are soluble in K, for each $i \le k$ and each j such that $(q_{ij}, m) \ne 1$ the congruence

$$x^{q_{ij}} \equiv \alpha_i \; (\mathrm{mod}\,\mathfrak{p}_0)$$

is soluble in K. Now, by the already proved case of the lemma, there exists a set \mathcal{P} , with positive Dirichlet density, of prime ideals of K such that for each $\mathfrak{p} \in \mathcal{P}$ the congruences

$$x^{q_{ij}} \equiv \alpha_i \pmod{\mathfrak{p}} \quad (1 \le i \le k, \ 1 \le j \le h_i)$$

are soluble, but the congruences (27) are insoluble. Thus for all i, j we have

ind
$$\alpha_i \equiv 0 \pmod{(N\mathfrak{p} - 1, q_{ij})}$$

It now follows from (36) that for all i,

ind
$$\alpha_i \equiv 0 \pmod{(N\mathfrak{p} - 1, n_i)},$$

hence the congruences (26) are soluble.

LEMMA 7. Suppose that (i) holds for almost all prime ideals \mathfrak{p} of K.

(vi) If m is a unitary divisor of n, then for almost all prime ideals \mathfrak{p} of K, solubility in K of the k congruences

(37)
$$x^{(m,n_i)} \equiv \alpha_i \pmod{\mathfrak{p}}$$

implies solubility in K of at least one congruence

(38)
$$x^m \equiv \beta_j \pmod{\mathfrak{p}} \quad (1 \le j \le l).$$

(vii) If $n \equiv 0 \pmod{4}$ and $m = 2m^*$, where m^* is a unitary divisor of the odd part of n, then for almost all prime ideals \mathfrak{p} of K, solubility in K of the k congruences

$$x^{(m,n_i)} \equiv \alpha_i \pmod{\mathfrak{p}}$$

implies solubility in K of at least one congruence

 $x^m \equiv -1 \pmod{\mathfrak{p}}, \quad x^m \equiv \beta_j \pmod{\mathfrak{p}} \quad (1 \le j \le l).$

Proof. In order to prove statement (vi) assume to the contrary that there exists a prime ideal \mathfrak{p}_0 of K such that m, n_i, α_i and β_j are \mathfrak{p}_0 -adic units, the congruences (37) are soluble and the congruences (38) are insoluble. We apply Lemma 6 with

$$n'_i = (m, n_i), \quad n''_i = \frac{n_i}{(m, n_i)}.$$

The assumptions of the lemma are satisfied, since with our choice of m

$$(m, n_i'') = \frac{(m^2, n_i)}{(m, n_i)} = 1$$

and the assertion of the lemma contradicts the assumption of Lemma 7.

A similar argument shows that if statement (vii) were false, there would exist a set \mathcal{P} , with positive Dirichlet density, of prime ideals of K such that for $\mathfrak{p} \in \mathcal{P}$ the congruences

(39)
$$x^{n_i^*} \equiv \alpha_i \pmod{\mathfrak{p}} \quad (1 \le i \le k)$$

would be soluble and the congruences

(40)
$$x^m \equiv -1 \pmod{\mathfrak{p}}, \quad x^m \equiv \beta_j \pmod{\mathfrak{p}} \quad (1 \le j \le l)$$

insoluble, where n_i^* is the greatest divisor of n_i not divisible by 4. However, insolubility of $x^m \equiv -1 \pmod{\mathfrak{p}}$ implies

$$\frac{N\mathfrak{p}-1}{2} = \operatorname{ind}(-1) \not\equiv 0 \ (\operatorname{mod}(N\mathfrak{p}-1,m)),$$

hence for $m \equiv 2 \pmod{4}$, $N\mathfrak{p} \equiv 3 \pmod{4}$ and then solubility of (39) implies solubility of (26), while (40) is insoluble, contrary to the assumption of the lemma.

Proof of Theorem 1. Necessity. The existence of an involution σ_m satisfying (1) and (2) for m being a unitary divisor of n follows at once from Lemma 4 and (vi). In order to prove the same for m of the form $2m^*$, where m^* is a unitary divisor of the odd part of n, denote by \overline{m} the least unitary divisor of n divisible by m. Let G_m , resp. $G_{\overline{m}}$, be the multiplicative subgroup of K^* generated by $\alpha_i^{m/(m,n_i)}$ $(1 \le i \le k)$ and $K(\zeta_m)^{*m}$, resp. by $\alpha_i^{\overline{m}/(\overline{m},n_i)}$ $(1 \le i \le k)$ and $K(\zeta_{\overline{m}})^{*\overline{m}}$.

If $G_{\overline{m}} \subset G_m$, then it suffices to take $\sigma_m = \sigma_{\overline{m}}$. If $G_{\overline{m}} \not\subset G_m$, let $\delta \in G_{\overline{m}} \setminus G_m$. We have

(41)
$$\delta = \prod_{i=1}^{k} \alpha_i^{a_i \overline{m}/(\overline{m}, n_i)} \Gamma^{\overline{m}},$$

where $a_i \in \mathbb{Z}$, $\Gamma \in K(\zeta_{\overline{m}})^*$. By Theorem 3 of [8] we have $\Gamma^{\overline{m}} = \Gamma_0^{\overline{m}}$ for some $\Gamma_0 \in K(\zeta_{4m^*})$. Taking norms of both sides of (41) with respect to $K(\zeta_m)$ and denoting the norm of Γ_0 by Γ_1 we obtain

$$\delta^2 = \prod_{i=1}^k \alpha_i^{2a_i \overline{m}/(\overline{m}, n_i)} \Gamma_1^{\overline{m}},$$

hence

$$\delta = \pm \prod_{i=1}^{k} \alpha_i^{a_i \overline{m}/(\overline{m}, n_i)} \Gamma_1^{\overline{m}/2},$$

and, since

$$\frac{m}{(m,n_i)} \left| \frac{\overline{m}}{(\overline{m},n_i)}, \quad m \right| \frac{\overline{m}}{2}, \quad \Gamma_1 \in K(\zeta_m), \quad \delta \notin G_m,$$

the plus sign is excluded and we have

$$-1 \notin G_m$$
 and $\delta \equiv -1 \pmod{\times G_m}$.

Since $\delta \equiv 1 \pmod{\times G_{\overline{m}}}$ it follows that

$$[G_{\overline{m}}:G_m\cap G_{\overline{m}}]=2, \quad G_{\overline{m}}=(G_m\cap G_{\overline{m}})\cup \delta(G_m\cap G_{\overline{m}}).$$

From the existence of $\sigma_{\overline{m}}$ satisfying (1) and (2) it follows that for each

A. Schinzel and M. Skałba

 $B \in K^*,$ (42) $\sum_{A \in V(B)} (-1)^{|A|} + \sum_{A \in V(\delta B)} (-1)^{|A|} = 0,$

where

$$V(B) = \Big\{ A \in \mathcal{F} : \prod_{j \in A} \beta_j \equiv B \pmod{\times G_m \cap G_{\overline{m}}} \Big\}.$$

Let $S = \{\prod_{j \in A} \beta_j : A \in \mathcal{F}\}$ and let $\{B_1, \ldots, B_r\}$ be a subset of S maximal with respect to the property that

$$B_i \equiv B \pmod{\times} G_m$$
, $B_j \not\equiv B_i \pmod{\times} G_m \cap G_{\overline{m}}$ for $j \neq i$.

Set

$$U(B) = \Big\{ A \in \mathcal{F} : \prod_{j \in A} \beta_j \equiv B \pmod{\times} G_m \Big\}.$$

Replacing B by B_i in (42) and summing with respect to i we obtain

$$\sum_{A \in U(B)} (-1)^{|A|} + \sum_{A \in U(-B)} (-1)^{|A|} = 0.$$

However, from (vii) and Lemma 4 it follows that

$$\sum_{A \in U(B)} (-1)^{|A|} + \sum_{A \in U(-B)} (-1)^{|A|+1} = 0.$$

Adding the last two equalities we obtain

$$2\sum_{A\in U(B)} (-1)^{|A|} = 0,$$

hence there exists an involution ρ_B of the family of all subsets A of $\{1, \ldots, l\}$ with $\prod_{j \in A} \beta_j = B$, such that

$$|\varrho_B(A)| \equiv |A| + 1 \pmod{2}.$$

The involution σ_m is obtained by combining all involutions ϱ_B .

Sufficiency. Consider a prime ideal \mathfrak{p} of K such that α_i, β_j are all \mathfrak{p} -adic units and let

$$(43) \qquad (N\mathfrak{p}-1,n)=m_1.$$

If $m_1 = 1$ the implication (i) is obvious.

If $m_1 > 1$, $m_1 \neq 0 \pmod{2}$ or $m_1 \equiv 0 \pmod{4}$, let *m* be the least unitary divisor of *n* divisible by m_1 . By condition (ii) we have (1) and (2) where $\Gamma \in K(\zeta_m)$. However, $\Gamma^m \in K$, hence also

$$\Gamma^m \in K(\zeta_q : q \mid m, q \text{ prime or } q = 4) =: K_0.$$

88

It now follows from Theorem 3 of [8] that $\Gamma^m = \Gamma_0^m$, where $\Gamma_0 \in K_0$. However, by the definition of m, we have $K_0 \subset K(\zeta_{m_1})$ and also

$$\frac{m_1}{(m_1, n_i)} \left| \frac{m}{(m, n_i)} \right|$$

The implication (i) now follows from Lemma 5.

If $m_1 \equiv 2 \pmod{4}$, we take $m = 2m^*$, where m^* is the least unitary divisor of n divisible by $m_1/2$, and argue as before.

Proof of Corollary 1. Under the assumption (3) the conditions $\Gamma^n \in K$, $\Gamma \in K(\zeta_n)$ imply, by Theorem 3 of [8], that $\Gamma^n = \gamma^n, \gamma \in K$, hence for $\sigma = \sigma_n$, (1) implies (4) and (2) implies (5).

First proof of Corollary 2. The necessity of condition (iii) follows from Corollary 1 on taking $A_0 = \sigma(\emptyset)$. Conversely, if (iii) holds, then we define the involution σ in Corollary 1 by $\sigma(A) = A \div A_0$ (\div denotes the symmetric difference) and notice that

$$\prod_{j\in\sigma(A)}\beta_j = \prod_{j\in A}\beta_j \prod_{i=1}^k \alpha_i^{a_i} \Big(\gamma_0 \prod_{j\in A\cap A_0}\beta_j\Big)^2,$$

hence (4) and (5) are satisfied and, by Corollary 1, (i) holds for almost all prime ideals \mathfrak{p} of K.

Second (direct) proof of Corollary 2. In order to prove the necessity of the condition, choose a maximal subset $\{i_1, \ldots, i_s\}$ of $\{1, \ldots, l\}$ such that

$$\prod_{r=1}^{s} \beta_{i_r}^{e_r} \in L^2, \quad \text{where} \quad L = K(\sqrt{\alpha_1}, \dots, \sqrt{\alpha_k}),$$

implies $e_r \equiv 0 \pmod{2} \ (1 \le r \le s)$.

By the theorem of Chebotarev [1] there exists a set \mathcal{P} , with positive Dirichlet density, of prime ideals \mathfrak{P} of L of degree 1 such that

(44)
$$(\beta_{i_r}|\mathfrak{P})_2 = -1 \quad (1 \le r \le s).$$

Let \mathfrak{p} be the prime ideal of K divisible by \mathfrak{P} . Since \mathfrak{P} is of degree 1 and the k congruences $x^2 \equiv \alpha_i \pmod{\mathfrak{P}}$ are soluble in L, they are soluble in K and, by the implication,

(45)
$$(\beta_j|\mathfrak{p})_2 = 1$$
 for at least one $j \le k$.

On the other hand, for each $j \leq l$, by the maximality of $\{i_1, \ldots, i_s\}$ we have

(46)
$$\beta_j = \prod_{r=1}^s \beta_{i_r}^{e_{j_r}} \gamma_j^2, \quad e_{j_r} \in \{0, 1\}, \ \gamma_j \in L.$$

If for each j we have

$$\sum_{r=1}^{s} e_{jr} \equiv 1 \pmod{2},$$

then the formulae (44) and (46) imply $(\beta_j | \mathfrak{P})_2 = -1$, contrary to (45). If for a certain j_0 we have

$$\sum_{r=1}^{s} e_{j_0 r} \equiv 0 \pmod{2},$$

then taking $A_0 = \{i_r : e_{j_0r} = 1\} \div \{j_0\}$ we get (6) and

(47)
$$\prod_{j \in A_0} \beta_j = \begin{cases} \beta_{j_0}^2 \gamma_{j_0}^{-2} & \text{if } j_0 \in A_0, \\ \gamma_{j_0}^{-2} & \text{if } j_0 \notin A_0. \end{cases}$$

However, since $\gamma_{i_0}^{-2} \in K$, it follows by Lemma 3 that

$$\gamma_{j_0}^{-2} = \prod_{i=1}^k \alpha_i^{a_i} \gamma^2 \quad \text{for some } a_i \in \mathbb{Z}, \ \gamma \in K,$$

which together with (47) implies (7).

In order to prove the sufficiency of the condition, let \mathfrak{p} be a prime ideal of K such that α_i and β_j are \mathfrak{p} -adic units and the k congruences $x^2 \equiv \alpha_i$ (mod \mathfrak{p}) are soluble in K. Then (7) gives

$$\prod_{j \in A_0} (\beta_j | \mathfrak{p})_2 = 1 \neq (-1)^{|A_0|},$$

hence $(\beta_j | \mathbf{p})_2 = 1$ for at least one $j \in A_0$.

Proof of Corollary 3. Necessity. For $n = 2^e$, by a theorem of Hasse [4] (see also Lemma 6 in [8]), $\Gamma^n \in K$ with $\Gamma \in K(\zeta_n)$ implies $\Gamma^n = \varepsilon \gamma^n$, where ε is given by (9) and $\gamma \in K$, hence (iv) follows from (ii) for $\sigma = \sigma_n$. Also (iii) follows from (ii), on taking m = 2 and $A_0 = \sigma_2(\emptyset)$.

Sufficiency. There is only one unitary divisor m > 1 of $n = 2^e$, namely m = n, and for this m, (ii) follows from (iv) by the theorem of Hasse quoted above, used in the opposite direction. For m = 2, (ii) follows from (iii) on taking $\sigma_2(A) = A \div A_0$.

LEMMA 8. Let m be even and $\alpha \in \mathbb{Q}^*$. Then $\alpha \in \mathbb{Q}(\zeta_m)^m$ if and only if $\alpha = \varepsilon \delta^{m/2} \gamma^m$,

where $\gamma \in \mathbb{Q}^*$, δ is a fundamental discriminant dividing m and

$$\varepsilon \in \begin{cases} \{1, -2^{m/2}\} & if \ m \equiv 4 \pmod{8} \\ \{1\} & otherwise. \end{cases}$$

Proof. This is a reformulation of a lemma of Mills [6].

90

Power residues

Proof of Theorem 2. The necessity of the conditions follows at once from Theorem 1 and Lemma 8. In order to prove the sufficiency we consider the cases $\nu \leq 2$ and $\nu \geq 3$ separately. If $\nu \leq 2$, then (ii) follows from (v) and Lemma 8 for every even unitary divisor m of n. For an odd unitary divisor m of n it suffices to take $\sigma_m = \sigma_{2m}$.

For $\nu \geq 3$ and $m \not\equiv 2 \pmod{4}$, (ii) follows as before, while for $m \equiv 2 \pmod{4}$ it suffices to take $\sigma_m = \sigma_n$. Indeed, for $\nu \geq 3$ we have $\varepsilon = 1$ and every number of the form $\varepsilon \delta^{n/2} \gamma^n$ with $\delta, \gamma \in \mathbb{Q}$ belongs to \mathbb{Q}^m .

Proof of Corollary 4. Necessity. In the case $\nu = 0$ the assertion follows at once from Corollary 1. We shall consider in detail only the case $\nu = 1$; the proof in the other cases is similar and will be only indicated briefly.

Applying Theorem 2 for $\nu = 1$ and m = n we infer that for $\{j\} = \sigma_n(\emptyset)$,

(48)
$$\beta_j = \delta_n^{n/2} \gamma_n^n \quad \text{for some } \gamma_n \in \mathbb{Q}$$

where δ_n is a fundamental discriminant dividing n. If $\delta_n = 1$ we have $\beta_j \in \mathbb{Q}^n$, hence (10) with i = j.

If $\delta_n = (-1)^{(q-1)/2}q$, where q is an odd prime, we have β_j as in (11). Now we apply Theorem 2 for $m_0 = 2$ and $m_1 = n/q^e$. If $\sigma_{m_i}(\emptyset) = \{j\}$ then

(49)
$$\beta_j = \delta_{m_i}^{m_i/2} \gamma_i^{m_i} \quad \text{for some } \gamma_i \in \mathbb{Q} \quad (i = 0, 1),$$

where δ_{m_i} is a fundamental discriminant dividing m_i . Now the equations (48) and (49) are incompatible, since denoting by k(x) the squarefree kernel of an integer x, we have

$$k(\delta_{m_i}^{m_i/2}\gamma_i^{m_i}) = \delta_{m_i} \neq \delta_n = k(\delta_n^{n/2}\gamma_n^n).$$

Therefore, $\sigma_{m_i}(\emptyset) = \{3 - j\} \ (i = 0, 1)$ and we obtain

$$\beta_{3-j} = \delta_{m_i}^{m_i/2} \gamma_i^{m_i} \quad (i = 0, 1).$$

We have $\delta_{m_0} = 1$, hence $\beta_{3-j} \in \mathbb{Q}^{[2,n/2q^e]} = \mathbb{Q}^{n/q^e}$, which proves (11).

Suppose now that δ_n has at least two distinct prime factors q_1 and q_2 and $q_i^{e_i} \parallel n$. Applying Theorem 2 for $m_0 = 2$, $m_i = n/q_i^{e_i}$ (i = 1, 2) we obtain, as before, $\sigma_{m_i}(\emptyset) = \{3 - j\}$ (i = 0, 1, 2). Then

$$\beta_{3-j} \in \mathbb{Q}^2 \cap \bigcap_{i=1}^2 \mathbb{Q}^{n/2q_i^{e_i}},$$

hence $\beta_{3-j} \in \mathbb{Q}^n$, which gives (10) with i = 3 - j.

For $\nu = 2$, let $\sigma_n(\emptyset) = \{j\}$.

If $\varepsilon = 1$ and $\delta_n = 1$ or -4 we obtain (10) with i = j.

If $\varepsilon = -2^{n/2}$ and $\delta_n = 1$ or -4 we consider $m_0 = 2$, $m_1 = n/2$ and obtain (12).

If $\varepsilon = -2^{n/2}$ and $\delta_n \neq 1, -4$ we consider $m_0 = 4, m_1 = n/2$ and obtain (10) with i = 3 - j.

If $\varepsilon = 1$ and δ_n has one odd prime factor q we consider $m_0 = 4$, $m_1 = n/q^e$ and obtain (13).

If $\varepsilon = 1$ and δ_n has at least two odd prime factors q_1, q_2 we consider $m_0 = 4, m_i = n/q_i^{e_i}$ (i = 1, 2) and obtain (12) with j and 3-j interchanged. For $\nu \geq 3$ let $\sigma_n(\emptyset) = \{j\}$ and

$$\beta_j = \delta_n^{n/2} \gamma_n^n.$$

If $\delta_n = 1$ or -4 we obtain the case (10) with i = j.

If $\delta_n = \pm 8$ we obtain the case (14). If δ_n has one odd prime factor q we consider $m_0 = 2^{\nu}$, $m_1 = n/q^e$ and obtain (15). If δ_n has at least two odd prime factors q_1 and q_2 we consider $m_0 = 2^{\nu}$, $m_i = n/q_i^{e_i}$ (i = 1, 2) and obtain (10) with i = 3 - j or (14) with 3 - j in place of j.

Sufficiency. If (10) holds then for each relevant divisor m of n we take $\sigma_m = c_i d_i$, where c_i, d_i are the cycles $(\emptyset \to \{i\})$ and $(\{3 - i\} \to \{1, 2\})$, respectively.

If (11) holds, we take

$$\sigma_m = \begin{cases} c_j d_j & \text{if } q \mid m, \\ c_{3-j} d_{3-j} & \text{if } q \nmid m. \end{cases}$$

If (12) holds, we take

$$\sigma_m = \begin{cases} c_j d_j & \text{if } 4 \mid m, \\ c_{3-j} d_{3-j} & \text{if } 4 \nmid m. \end{cases}$$

If (13) holds, we take

$$\sigma_m = \begin{cases} c_j d_j & \text{if } q \mid m, \text{ or } 4 \nmid m, \\ c_{3-j} d_{3-j} & \text{if } q \nmid m \text{ and } 4 \mid m. \end{cases}$$

If (14) holds, we take

$$\sigma_m = c_j d_j.$$

If (15) holds, we take

$$\sigma_m = \begin{cases} c_j d_j & \text{if } q \mid m, \\ c_{3-j} d_{3-j} & \text{if } q \nmid m. \end{cases}$$

Deduction of Theorem 1 of [7] (necessity part) from Theorem 1 (above). Let $n = \prod_{j=0}^{l} p_j^{e_j}$, where $p_0 = 2$, p_j are distinct odd primes and $e_j > 0$ for j > 0. Applying Theorem 1 above with $m = p_j^{e_j}$ we infer that

(50)
$$\beta = \prod_{i=1}^{k} \alpha_{i}^{a_{ij}p_{j}^{e_{j}}/(n_{i},p_{j}^{e_{j}})} \Gamma_{j}^{p_{j}^{e_{j}}}$$

for some $a_{ij} \in \mathbb{Z}$ and $\Gamma_j \in K(\zeta_{p_j}^{e_j})$ (for m = 1 the conclusion is trivial). By

the theorem of Hasse [4] (see [8, Lemma 6])

(51)
$$\Gamma_j^{p_j^{e_j}} = \varepsilon_j \gamma_j^{p_j^{e_j}}$$
 for some $\gamma_j \in K$, $\varepsilon_j = 1$ for $j > 0$
and

(52)
$$\begin{aligned} \varepsilon_0 \in \{1\} & \text{if } e_0 \leq 1, \\ \varepsilon_0 \in \{1, -1\} & \text{if } 1 < e_0 < \tau, \\ \varepsilon_0 \in \{1, (-1)^{2^{e_0 - \tau}} (\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} + 2)^{2^{e_0 - 1}}\} & \text{if } e_0 \geq \tau. \end{aligned}$$

We take integers u_0, \ldots, u_l satisfying the linear equation

$$\sum_{j=0}^{l} \frac{n}{p_j^{e_j}} u_j = 1$$

and set

$$\gamma = \prod_{j=0}^{l} \gamma_j^{u_j}.$$

By (50) and (51) we have

$$\gamma^{n} = \prod_{j=0}^{n} (\gamma_{j}^{p_{j}^{e_{j}}})^{\frac{n}{p_{j}}})^{\frac{n}{p_{j}}} = \beta \varepsilon_{0}^{-\frac{n}{2^{e_{0}}}u_{0}} \prod_{j=0}^{l} \prod_{i=1}^{k} \alpha_{i}^{-a_{ij}\frac{nu_{j}}{(n_{i}, p_{j}^{e_{j}})}},$$

hence

(53)
$$\beta \prod_{i=1}^{k} \alpha_{i}^{m_{i}n/n_{i}} = \varepsilon^{\frac{n}{2^{e_{0}}}u_{0}} \gamma^{n}$$

for some $m_i \in \mathbb{Z}, \gamma \in K^*$.

If $e_0 \leq 1$, or $e_0 > \tau$, or $\varepsilon_0 = 1$, or u_0 is even, we obtain, by (51), condition (i) or (iv) of Theorem 1 of [7]. If $1 < e_0 \leq \tau$, $\varepsilon \neq 1$ and u_0 is odd we apply Theorem 1 above with m = 2. We obtain

$$\beta = \prod_{2|n_i} \alpha_i^{a_i} \gamma^2,$$

which combined with (53) gives, by (52),

$$\prod_{2|n_i} \alpha_i^{l_i} = -\delta^2$$

and

$$\beta \prod_{i=1}^{k} \alpha_i^{m_i n/n_i} = \begin{cases} -\gamma^n & \text{if } 1 < e_0 < \tau, \\ -(\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} + 2)^{n/2} \gamma_1^n & \text{if } e_0 = \tau, \end{cases}$$

for some $\delta, \gamma_1 \in K^*$. These are just conditions (ii) and (iii) of Theorem 1 of [7]. The proof that conditions (i)–(iv) are sufficient is easy.

References

- N. G. Chebotarev, Der Hilbertsche Satz, Visti VUAN 1923, 3–7; Russian translation: Collected Works, Vol. 1, Moscow-Leningrad, 1949, 14–17.
- [2] M. Filaseta and D. R. Richman, Sets which contain a quadratic residue mod p for almost all p, Math. J. Okayama Univ. 31 (1989), 1–8.
- M. Fried, Arithmetical properties of value sets of polynomials, Acta Arith. 15 (1969), 91–115.
- H. Hasse, Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math. 188 (1950), 40–64.
- [5] —, Vorlesungen über Klassenkörpertheorie, Physica-Verlag, Würzburg, 1967.
- [6] W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963), 179–181.
- [7] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397–420.
- [8] —, Abelian binomials, power residues and exponential congruences, ibid. 32 (1977), 245–274; Addendum and corrigendum 36 (1980), 101–104.
- T. Skolem, On the existence of a multiplicative basis for an arbitrary algebraic field, Norske Vid. Selsk. Forh. (Trondheim) 20 (1947), no. 3.

Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland E-mail: schinzel@impan.gov.pl Department of Mathematics Computer Science and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland E-mail: skalba@mimuw.edu.pl

Received on 9.7.2002

(4329)