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1. Introduction. If a function f(x) takes values which are approxi-
mately rational at integer points or at rational points, is f(x) approximately
a rational function? This is a badly posed question, best answered in the
contrary sense, and made quantitative. So we want to show that if f(x) can-
not be approximated over a long subinterval of [0,M ] by a rational function
u(x)/v(x), where u(x) and v(x) are polynomials of degree at most d, then

(1.1)
∣∣∣∣f(m)− r

q

∣∣∣∣ ≤ δ

does not have a solution r/q with 1 ≤ q ≤ Q for most integers m =
0, 1, . . . ,M , when δ is sufficiently small; and if F (x) cannot be approximated
over a long subinterval of [0, 1] by u(x)/v(x) as above, then

(1.2)
∣∣∣∣F
(
m

n

)
− r

q

∣∣∣∣ ≤ δ

does not have a solution r/q with 1 ≤ q ≤ Q for most rational numbers
m/n with n = 1, . . . ,M , m = 0, . . . , n, and (m,n) = 1. A good quantitative
bound would find some applications in classical number theory. For example,
if there are many gaps of length at least H between k-free numbers, then
the inequality

(1.3) mkq − nkr = h, 1 ≤ h ≤ H,
has many solutions with m and n large ([4]). We see that (1.3) implies an
inequality of the form (1.2).

The integers on or close to a smooth curve have been well studied (see
[8], [9], [7], [1], and the book [3] for further references). In [2] we considered

(1.4)
∣∣∣∣f
(
m

q

)
− n

q

∣∣∣∣ ≤ δ,
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regarding (m,n, q) as a point in the projective plane, and using duality
between the points of a curve and its tangent lines. In (1.1) or (1.2) we
approximate f(x) or F (x) by a ratio u(x)/v(x) of polynomials of degree
at most d. In [5] we took d = 1 and used a geometric invariant, the cross-
ratio. In this paper d is a fixed positive integer. The test for the trivial
case f(x) ≡ u(x)/v(x) is that a determinant of order 2d + 2 should vanish
identically. The rational numbers r/q are function values up to an accuracy δ,
but the determinant is unstable under perturbation, and our results (in
the case when f(x) is bounded) become non-trivial when δ = 1/Qα with
α ≥ 4 − η(d), where η(d) → 0 as d → ∞. Since the minimum gap between
the rational numbers r/q is 1/Q2, there is a trivial bound for the number of
solutions of (1.1):

(δQ2 + 1)(M + 1),

which gives the right order of magnitude for α ≤ 2. The potential applica-
tions have α in the range 2 < α < 4, which is still out of reach.

We allow f(x) in (1.1) or F (x) in (1.2) to have order of magnitude
λ ≥ 1. The number of possible rational numbers r/q has order of magnitude
T = λQ2; the parameters M and T in (1.1) are analogous to M and T in the
book [3]. For λ very large, we should allow u(x) and v(x) to have different
degrees. We use the determinants

Dk,n(f(x)) = det
(
f (k+i−j)(x)
(k + i− j)!

)

n×n
,

which are identically zero when f(x) = u(x)/v(x) with the polynomials
u(x), v(x) of degrees at most k − 1 and n− 1 respectively.

We consider a (2d+ 2)-tuplet of solutions of (1.1) or (1.2). If a determi-
nant of order 2d+ 2 vanishes, then there is a curve y = u(x)/v(x) through
the 2d+ 2 points; we call this the major arc case. Other (2d+ 2)-tuplets are
called minor arcs. Our approach is in two stages, firstly simple ideas which
require the evaluation of determinants, and secondly detailed study of the
major arcs. This paper treats the first stage only. We use trivial arguments
on the major arcs, and our results are non-trivial only when δ is zero or
close to zero. In a subsequent paper we discuss the major arcs, and extend
the range of δ a little, although not to all the ranges needed for applications.

Theorem 1. Let f(x) be a real function on [0,M ], 2d+ 2 times contin-
uously differentiable, with

∣∣∣∣
f (r)(x)
r!

∣∣∣∣ ≤
λCr+1

Mr
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for r = 0, . . . , 2d+ 2, and

|Dd+1,s(f(x))| ≥
(

λ

Cd+2Md+1

)s

for s = 1, . . . , d+ 1. Let S be a set of points (m, r/q) with m, r, q integers,
0 ≤ m ≤M , 1 ≤ q ≤ Q, (r, q) = 1, satisfying∣∣∣∣f(m)− r

q

∣∣∣∣ ≤
∆

Q2 ,

where ∆ < 1/2, C ≥ 1, M ≥ 2, Q ≥ 2 and λ are parameters with T =
λQ2 ≥ 4. Then the number of points in S is at most

A(Cd+2MdT )1/(2d+1) + A(C2d3+8d2+11d+4∆d+1T d)1/(2(d+1)2)M,

where A is a constant depending only on d.

Theorem 2. Let F (x) be a real function on [0, 1], 2d+ 2 times contin-
uously differentiable, with

∣∣∣∣
F (r)(x)
r!

∣∣∣∣ ≤ λCr+1

for r = 0, . . . , 2d+ 2, and

|Dd+1,s(F (x))| ≥
(

λ

Cd+2

)s

for s = 1, . . . , d + 1. Let S be a set of points (m/n, r/q) with m, n, r, q
integers, 0 ≤ m ≤ n, 1 ≤ n ≤ M , 1 ≤ q ≤ Q, (m,n) = 1, (r, q) = 1,
satisfying ∣∣∣∣F

(
m

n

)
− r

q

∣∣∣∣ ≤
∆

Q2 ,

where ∆ < 1/2, C ≥ 1, M ≥ 2, Q ≥ 2 and λ are parameters with T =
λQ2 ≥ 4. Then the number of points in S is at most

A(Cd+2M2dT )1/(2d+1) +A(C2d3+8d2+11d+4∆d+1T d)1/(2(d+1)2)M2,

where A is a constant depending only on d.

In the applications to gaps between k-free numbers we have f(x) =
λ(1 + x/M)−s in Theorem 1 or F (x) = λ(1 + x)−s in Theorem 2. For any
s 6= 0, ±1, . . . ,±d we can choose C depending on s so that the inequalities
required are valid for 0 ≤ x ≤ 1; we verify this in Section 4.

2. The approximation determinant. Let V (x1, . . . , xn) denote the
Vandermonde determinant

(2.1) V (x1, . . . , xn) = det(xj−1
i )n×n =

n−1∏

r=1

n∏

s=r+1

(xs − xr).
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In this section we express more complicated determinants in terms of Van-
dermondians.

Lemma 2.1. Let P = Pr,s(x1, . . . , xr+s, y1, . . . , yr+s) denote the deter-
minant of size r + s whose i-th row is

(1, xi, . . . , xr−1
i , yi, xiyi, . . . , x

s−1
i yi).

Then P is zero if and only if the r + s points (xi, yi) satisfy an equation

(2.2) y = u(x)/v(x),

where u(x), v(x) are polynomials of degree at most r−1 and s−1 respectively.

Proof. Writing the equation (2.2) as

ar−1x
r−1 + . . .+ a0 = (bs−1x

s−1 + . . .+ b0)y,

we see that P =0 is the eliminant of the coefficients ar−1, . . . , a0, bs−1, . . . , b0.

Lemma 2.2. Let F (x) be a real function, r + s − 1 times continuously
differentiable on an interval I of length L, whose derivatives satisfy

(2.3)
|F (k)(x)|

k!
≤ λCk+1

for x on I , k = 0, . . . , r + s− 1, where

(2.4) L ≤ 1/2C ≤ 1/2.

Let x1, . . . , xr+s be distinct points in I. Then we have the following bounds.
First

(2.5) |Pr,s(x1, . . . , xr+s, F (x1), . . . , F (xr+s))| ≤ E0.

If yi = F (xi) + δi with |δi| ≤ δ, then

(2.6) |Pr,s(x1, . . . , xr+s, y1, . . . , yr+s)

−Pr,s(x1, . . . , xr+s, F (x1), . . . , F (xr+s))| ≤
s∑

t=1

δtEt,

(2.7) |Pr,s(x1, . . . , xr+s, y1, . . . , yr+s)| ≤
s∑

t=0

δtEt,

where for t = 0, . . . , s

(2.8) Et = 2s+t−1s!(r + s− t)(r+s−t)/2C(r+1)(s−t)

×λs−t
(
L

2

)((r+s−1)2+(r+s−2t)2−1)/4

.

Proof. Let x0 be the midpoint of I. The determinant is unchanged by
linear shifts xi → xi − x0, so we may suppose that x0 = 0, and I is the
interval |x| ≤ L/2.
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We expand F (x) by its Taylor series
∑
cix

i about x = 0, so

xv−1
i F (xi) = c0x

v−1
i + . . .+ cr+s−v−1x

r+s−2
i + xr+s−1

i

F (r+s−v)(ξ)
(r + s− v)!

(2.9)

=
r+s−v∑

k=0

c(i, k, v)xk+v−1
i

for some ξ = ξiv. The coefficients c(i, k, v) are the Taylor coefficients ck
except when k takes its maximum value k = r + s− v. They satisfy

|c(i, k, v)| ≤ Ck+1λ.

We substitute (2.9) into column r+v of P for v = 1, . . . , s, and expand P
as a sum of further determinants P (k) indexed by an s-tuple k = (k1, . . . , ks)
of integers, meaning that for v = 1, . . . , s, the kvth term in the expansion
(2.9) is taken. If v+kv ≤ r+s−1, then the entry in row i, column j = r+v
is ckxv+k−1 for k = kv. If v+kv ≤ r for any v, or if any value of v+kv except
r+ s occurs twice, then two columns are proportional, and the determinant
indexed (k1, . . . , ks) is zero. For non-zero determinants, the values of v+ kv
for v = 1, . . . , s are the integers r to r + s− 1, each at most once, or r + s,
with repeats allowed. The number of vectors k for which P (k) 6= 0 is

(2.10) ≤ 2s−1s!.

In a non-zero determinant P (k), for each g = r, . . . , r+ s− 2 there is at
most one v = v(g) with v + kv = g + 1, and the entries in column v + r are
cg+1−vxg. The other v in v = 1, . . . , s have v + kv = r + s, and the entries
in columns v + r are c(i, r + s − v, v)xr+s−1. We assign these v arbitrarily
to be the values of v(g) for those g in r, . . . , r+ s− 1 for which v(g) has not
already been defined, in such a way that v(g) is a one-to-one function from
the set {r, . . . , r + s− 1} to the set {1, . . . , s}. Since CL ≤ 1, in both cases
the entries in column g are bounded in absolute value by

Cg+2−v(g)λ

(
L

2

)g
.

The absolute value of a determinant is bounded by the product of the lengths
of the column vectors, so

|P (k)| ≤ (r + s)(r+s)/2
( r∏

u=1

(
L

2

)u−1)( r+s−1∏

g=r

Cg+2−v(g)λ

(
L

2

)g)
(2.11)

= (r + s)(r+s)/2
(
L

2

)(r+s)(r+s−1)/2

λs
r+s−1∏

g+2=r+2

Cg+2
s∏

v=1

C−v

= (r + s)(r+s)/2C(r+1)sλs
(
L

2

)(r+s)(r+s−1)/2

.
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We obtain the first result (2.5) of the lemma on multiplying (2.11) by the
estimate (2.10) for the number of k for which P (k) is non-zero.

For the result (2.6) we expand Pr,s(x1, . . . , xr+s, y1, . . . , yr+s) as a sum
of 2r+s determinants in which each row is either

(1, xi, . . . , xr−1
i , F (xi), xiF (xi), . . . , xs−1

i F (xi))

or
(0, 0, . . . , 0, δi, δixi, . . . , δixs−1

i ).

Consider a determinant in which the second choice has been made in t rows.
If t > s, then the determinant is zero. For t ≤ s we expand by the t rows
involving values of δi. We must estimate s!/(s− t)! minor determinants with
rows of the form

(1, xi, . . . , xr−1
i , xv1−1

i F (xi), x
v2−1
i F (xi), . . . , x

vs−t−1
i F (xi))

with 1 ≤ v1 < . . . < vs−t ≤ s. We follow the previous argument with s
replaced by s− t, writing

xv−1
i F (xi) =

max(r+s−t−v,0)∑

k=0

c′(i, k, v)xk+v−1
i .

Again c′(i, k, v) = ck except when k takes its maximum value, and

|c′(i, k, v)| ≤ Ck+1λ.

We expand into determinants P (k) of order r+s−t indexed by (s−t)-tuplets
of integers (k1, . . . , ks−t), which are zero if vj + kj ≤ r for any j, or if any
value of vj + kj in the range r + 1, . . . , r + s − t − 1 occurs twice, with
vj ≥ r + s − t forcing kj = 0. The number of non-zero determinants is at
most 2s−t−1(s− t)! as in (2.10). As in (2.11) we have

(2.12) |P (k)| ≤ (r + s− t)(r+s−t)/2C(r+1)(s−t)λs−t
(
L

2

)(r+s−t)(r+s−t−1)/2

.

So the terms in powers of δ are estimated by
s∑

t=1

s!
(s− t)! δ

t

(
L

2

)t(t−1)/2

2s−t−1(s− t)!

× (r + s− t)(r+s−t)/2C(r+1)(s−t)λs−t
(
L

2

)(r+s−t)(r+s−t−1)/2

=
s∑

t=1

δtEt,

as required.
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Lemma 2.3. Let F (x) be a real function, r + s times continuously dif-
ferentiable on an interval I of length L, whose derivatives satisfy (2.3) for
k = 0, . . . , r + s with (2.4) holding. Let

Dr,s(F (x)) = det
(
F (r+i−j)(x)
(r + i− j)!

)

s×s
,

a determinant of the Taylor coefficients of F (x) about the point x; if s >
r + 1, then we replace the undefined entries with r + i− j < 0 by zero. Let
x1, . . . , xr+s be distinct points in I, and let

P = Pr,s(x1, . . . , xr+s, F (x1), . . . , F (xr+s)).

Then we have the estimate

(2.13) |P −Dr,s(F (x0))V (x1, . . . , xr+s)|

≤ 2r+2ss!(r + s− 1)(r+s−1)/2C(2rs+s2+2s+2)/2λs
(
L

2

)((r+s)2−r−s+2)/2

,

where x0 denotes the midpoint of I.

Proof. As in Lemma 2.2 we suppose that I is the interval [−L/2, L/2].
Let

gk(x) = c0x
k−1 + c1x

k + . . .+ cr+s−kx
r+s−1,

in the notation of (2.9). Then

xk−1
i F (xi) = gk(xi) + ηik,

where

ηik =
F (r+s+1−k)(ξik)xr+si

(r + s+ 1− k)!

for some ξik between 0 and xi. We have

(2.14) |ηik| ≤ ηk = Cr+s+2−kλ

(
L

2

)r+s
.

We expand the determinant Pr,s(x1, . . . , xr+s, F (x1), . . . , F (xr+s)) as a sum
of 2r+s determinants in which each row is either

(2.15) (1, xi, . . . , xr−1
i , g1(xi), g2(xi), . . . , gs(xi))

or

(2.16) (0, 0, . . . , 0, ηi1, ηi2, . . . , ηis).

The first choice (2.15) for each row gives the determinant

det
( r+s∑

l=1

cljx
l−1
i

)
(r+s)×(r+s)

= V detC,
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where V = V (x1, . . . , xr+s), and C is the matrix (cij) with

cij =





δij for j ≤ r,
cr+i−j for r + 1 ≤ j ≤ r + i,

0 for r + i+ 1 ≤ j ≤ r + s.

The first r columns of C are those of an identity matrix, so the determinant
of C is equal to the determinant of its last s rows and columns, which is
Dr,s(F (0)) in the statement of the lemma (recall that the interval was shifted
so that x0 = 0).

For every other choice of rows we estimate the determinant as in Lem-
ma 2.2. Consider a determinant where the choice (2.16) has been made in t
rows. If t > s, then the determinant is zero. If t ≤ s, then we expand by
these t rows. We have to consider s!/(s− t)! minor determinants with rows
of the form

(1, xi, . . . , xr−1
i , gv1(xi), gv2(xi), . . . , gvs−t(xi))

with 1 ≤ v1 < . . . < vs−t ≤ s. We write

gv(xi) =
r+s−t−v∑

k=0

c′′(i, k, v)xk+v−1
i ,

where c′′(i, k, v) = ck except when k takes its maximum value, when

c′′(i, r + s− t− v, v) =
1

(r + s− t− 1)!
g(r+s−t−1)
v (ξ)

=
r+s−v∑

k=r+s−t−v

(k + v − 1)!
(r + s− t− 1)!(k + v − r − s+ t)!

ckξ
k+v−r−s−t

for some ξ = ξiv between 0 and xi. Writing u = r + s− t− 1, we have

|c′′(i, u− v + 1, v)| ≤
t∑

j=0

(u+ j)!
j!u!

|cu−v+j−1|
(
L

2

)j

≤ λCu−v
t∑

j=0

(u+ j)!
j!u!

(
CL

2

)j
≤ λCu−v

(
1− CL

2

)−u

≤ 2uCu−vλ,

so that

|c′′(i, k, v)| ≤ 2r+s−t−1Ck+1λ.

We expand into determinants P (k) as in Lemma 2.2; the estimate for P (k)
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in (2.12) must be multiplied by 2r+s−t−1. We note that

max ηk1ηk2 . . . ηkt =
t∏

k=1

Cr+s−r−kλ

(
L

2

)r+s

= Ct(2r+2s−t+3)/2λt
(
L

2

)(r+s)t

,

where the maximum is over sets of t distinct integers taken from 1, . . . , s.
So the terms with at least one factor ηik are estimated as
s∑

t=1

s!
(s− t)! C

t(2r+2s−t+3)/2λt
(
L

2

)(r+s)t

2s−t(s− t)!

× 2r+s−t−1(r + s− t)(r+s−t)/2C(r+1)(s−t)λs−t
(
L

2

)(r+s−t)(r+s−t−1)/2

≤
s∑

t=1

2r+2s−2t−1s!(r + s− 1)(r+s−1)/2Crs+st+s−t(t−1)/2λs

×
(
L

2

)((2r+2s−1)2+(2t+1)2−2)/8

≤ 2r+2s−1s!(r + s− 1)(r+s−1)/2Crs+sλs
(
L

2

)((r+s)2−r−s)/2

×
s∑

t=1

Cst−t(t−1)/2
(
L

2

)t(t+1)/2

.

The sum over t is
s∑

t=1

Cst−t
2
(
CL

2

)t(t+1)/2

≤ 2
CL

2
Cs

2/2,

which gives the result of the lemma.

3. Major and minor arcs. We discuss the local structure of the set S
of rational points Pi(xiyi) in Theorems 1 and 2. For convenience we replace
(1.1) by

(3.1)
∣∣∣∣F
(
m

M

)
− r

q

∣∣∣∣ ≤ δ,

scaling the function f(x) in (1.1) to satisfy the same conditions as in The-
orem 2. After reducing m/M to its lowest terms, we have xi = mi/ni with
ni |M ; we call this Case 1. Case 2 will denote xi = mi/ni with 1 ≤ ni ≤M
as in Theorem 2. We number the points Pi in order of xi increasing.
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A set of 2d + 2 or more consecutive points of S is called a major arc
if the points satisfy an equation y = u(x)/v(x) as in (2.2) with u(x), v(x)
polynomials of degree at most d. The points P1, . . . , P2d+2 lie on a major arc
if and only if the determinant P (with r = s = d+1) vanishes in Lemma 2.1.
All other sets of 2d + 2 consecutive points of S are called minor arcs. For
these, the determinant P is a non-zero rational number, whose denominator
is a factor of

Md(d+1)q1q2 . . . q2d+2 ≤ (MdQ2)d+1

in Case 1, and a factor of

nd1n
d
2 . . . n

d
2d+2q1q2 . . . q2d+2 ≤ (MdQ)2d+2

in Case 2. On a minor arc the numerator is numerically at least one, and
we get a lower bound L ≥ L1 for the distance L = x2d+2 − x1.

Consider a block of k ≥ 2d+2 consecutive Pi such that every consecutive
(2d+2)-tuplet forms a minor arc. There are [(k−1)/(2d+1)] (2d+2)-tuplets
with only endpoints in common, so the k points occupy an interval of length

L ≥
[
k − 1
2d+ 1

]
L1,

and
k ≤ (2d+ 1)(L/L1 + 1) + 1 ≤ (4d+ 3)L/L1.

These intervals are disjoint for different blocks of minor arc points, so the
number of points of S for which no consecutive (2d + 2)-tuplet containing
them is a major arc is

(3.2) ≤ (4d+ 3)/L1 + 2(2d+ 1) ≤ (4d+ 3)(1/L1 + 1),

where we have allowed for at most 2d+ 1 points left over at each end of the
interval [0, 1].

We use Vinogradov’s order of magnitude notation E � F to mean that
the expression E satisfies |E| ≤ BF for some implied constant B when
the main parameters in E are large. For example in the lemma below, the
main parameters are M (range of input) and T (range of output), and the
inequality holds uniformly for M ≥ A1, T ≥ A2 for some constants A1, A2.

Lemma 3.1. Suppose that F (x) satisfies the conditions of Lemma 2.2
with r = s = d+1, and that the points P1, . . . , P2d+2 form a minor arc lying
in an interval of length L. Then L ≥ L1, where

(3.3)
1
L1
� max

0≤t≤d+1

((
δ

λ

)t
C(d+2)(d+1−t) T d+1

Kd(d+1)

)1/(d2+d+(d+1−t)2)

.

Here T = λQ2, K = 1/M in Case 1, K = 1/M2 in Case 2, and the implied
constants depend only on d.
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Proof. We use the lower bounds

|Pd+1,d+1| ≥
1

(MdQ2)d+1

in Case 1,

|Pd+1,d+1| ≥
1

(M2dQ2)d+1

in Case 2, and we rearrange (2.7) of Lemma 2.2.

Lemma 3.1 is weaker than we would like. For large δ, the degree d should
be close to (logQ)/(logM), unless λ is very large, when we should take u(x),
v(x) of different degrees r−1 (close to (log λQ)/(logM)) and s−1 (close to
(logQ)/(logM)). The bounds L ≥ (2d+ 1)/M 2 in Case 2, L ≥ (2d+ 1)/M
in Case 1 are trivial. When t is close to 2

√
d, then Lemma 3.1 gives bounds

worse than trivial unless (logλ/δ)/(log T ) is approximately 2 or more. Our
aim is bounds which are non-trivial as soon as δ < 1/Q2, log λ/δ > log T .

If we consider points on the curve (δ = 0), then there is a great simpli-
fication. We lose the terms in Lemma 3.1 with t ≥ 1, and we can control
the major arcs. In the case of δ small we can achieve this happy state by
perturbing F (x) with a function g(x) which takes the values δ1, . . . , δ2d+2

at the points x1, . . . , x2d+2:

g(x) =
2d+2∑

i=1

δi

2d+2∏

j=1
j 6=i

x− xj
xi − xj

,

a polynomial of degree 2d+ 1. Let

L = x2d+2 − x1, L0 = min
i6=j
|xj − xi|.

For h = 0, . . . , 2d + 1, the derivative g(h)(x) is a sum of 2d + 2 times the
binomial coefficient 2d+1Ch terms, each with a product of 2d+ 1−h factors
x− xi on top, so for x1 ≤ x ≤ x2d+2,

(3.4) |g(h)(x)| ≤ (2d+ 2)(2d+ 1)!
h!(2d+ 1− h)!

· δL
2d+1−h

L2d
0 (L/2)

,

where we have used the fact that for each i,

max
j 6=i
|xj − xi| ≥ L/2.

We do not want to change the order of magnitude estimates for the deter-
minants Pd+1,d+1(x1, . . . , x2d+2, F (x1), . . . , F (x2d+2)) and Dr,s(F (x)) with
r = d+ 1, 1 ≤ s ≤ d+ 1, so we need a condition of the type

(3.5)
|g(k)(x)|

k!
≤ ελCk+1
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for k = 0, . . . , 2d+1, with ε ≤ 1. For the minor arcs argument in Lemma 2.2,
we replace F (x) by F (x) +g(x) at the cost of replacing C by C+ ε ≤ C+ 1.
For the major arcs we write Dr,s(F (x)) as a sum of 2s determinants, of which
one is Dr,s(F (x)), and the other determinants have at least one row in which
F (x) is replaced by g(x), and the upper estimates are smaller by a factor ε.
The sum of the 2s − 1 determinants involving values of g(x) is in modulus

≤ ε2ss!C(r+1)sλs,

which is at most one half the lower bound for Dr,s(F (x)) in Theorem 2 if

ε ≤ 1
2s+1s!C2(r+1)s

.

The worst case is r = s = d+ 1, when we require

(3.6) ε ≤ 1
2d+2(d+ 1)!C2(d+1)(d+2)

.

This condition allows us to replace F (x) by F (x) + g(x) in Lemma 2.3 at
a cost of replacing C by 21/(d+1)C. The condition (3.6) is stronger than we
need in Lemma 2.2, where we only use ε ≤ 1 in (3.5). Since CL < 1, (3.4)
is true for all k ≤ 2d+ 1 if

(3.7) δ ≤ λLL2d
0

23d+5(d+ 2)!C2(d+1)2 .

Since a (2d+2)-tuplet has L ≥ (2d+1)L0, we have (3.7) for all (2d+2)-tuplets
of points of S, not necessarily consecutive, if

(3.8) δ ≤ (2d+ 1)λL2d+1
0

23d+5(d+ 2)!C2(d+1)2 .

This condition enables us to replace F (xi) by F (xi) + g(xi) = yi at the cost
of replacing C by 2C.

For our next lemma we quote Theorem 2 of [6]:

Lemma 3.2. Let f(x) be a real function, 2d+ 1 times continuously dif-
ferentiable on an interval I. For 1 ≤ r ≤ n, n+ r ≤ 2d+ 2, let

Br(n, x) = det
(
f (n+i−j)(x)
(n+ i− j)!

)

r×r
.

Suppose that for each r = 1, . . . , d + 1, the function Br(d + 1, x) does not
vanish on I. Then if u(x), v(x) are any polynomials of degrees at most d,
the equation f(x) = u(x)/v(x) has at most 2d + 1 distinct roots in I, and
for δ > 0, the points of I which satisfy∣∣∣∣f(x)− u(x)

v(x)

∣∣∣∣ ≤ δ

form at most 2d+ 2 disjoint subintervals of I.



Rational points close to a curve III 27

The determinants in Lemma 3.2 are

Br(d+ 1, x) = Dd+1,r(F (x))

in our present notation, and the conclusion is that no (2d+2)-tuplet of points
of S, whether consecutive or not, can lie on a rational curve y = u(x)/v(x).
Hence the determinant P (x1, . . . , x2d+2, F (x1), . . . , F (x2d+2)) is non-zero.

If δ is so small that (3.8) holds with L0 = 1/M in Case 1, 1/M2 in Case 2,
then for each (2d+ 2)-tuplet of consecutive points of S, we replace F (x) by
F (x) + g(x) in Lemmas 3.1 and 3.2. The conditions on the derivatives in
Lemmas 2.2, 2.3 and 3.2 hold with C replaced by 2C. Lemma 3.2 says that
the (2d + 2)-tuplet cannot be a major arc. Hence (3.2) gives a bound for
the number of points of S, with L1 given by the term t = 0 in (3.3) of
Lemma 3.1, as

(3.9) �
(
Cd+2T

Kd

)1/(2d+1)

.

If (3.8) does not hold, then we choose a prime p (in Case 2), and we divide S
into p+1 parts. The set S∞ contains all points with p |ni. For c = 0, . . . , p−1
the set Sc contains all points with mi ≡ cni (mod p). If (xi, yi) and (xj , yj)
lie in the same set Sk, then

xj − xi =
mj

nj
− mi

ni
=

h

ninj

with p |h. Hence
|xj − xi| ≥ L0 = p/M2.

We take the prime p so large that (3.8) holds with this value of L0. For
c = 0, . . . , p − 1 we shift the values of x in the points of Sc by c, replacing
mi/ni by ki/ni with ki = mi − cni; this shift does not affect the estimates
for the derivatives of f(x). The determinant P can be written as

Q

nd1 . . . n
d
2d+2q1 . . . q2d+2

,

where Q is the determinant whose ith row is

(ndi qi, kin
d−1
i qi, . . . , k

d
i qi, n

d
i ri, kin

d−1
i ri, . . . , k

d
i ri);

for S∞ we have mi in place of ki. We see that Q is an integer divisible by
pd(d+1).

In Case 1 we pick the prime p at the start of the argument, when the
points of S are written as (mi, ri/qi), and divide into classes according to
mi ≡ c (mod p), and in the class Sc, shift from mi to li = mi − c. In the
class Sc, when we replace li by ki/ni, the lowest terms form of li/M , we
have either ni |M/p for all i or p | li for all i. In both cases the spacing of
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points is at least L0 = p/M , and the determinant is

P =
Q

Md(d+1)q1 . . . q2d+2
,

where Q is again an integer divisible by pd(d+1).
The argument of Lemma 3.1 gives (3.9) with K = L0. The total number

of points of S is thus in Case 2

� (Cd+2pd+1M2dT )1/(2d+1),

which becomes

(3.10) � (C2d3+8d2+11d+4∆d+1T d)1/(2(d+1)2)M2

when we choose the prime p so that the two sides of (3.8) have the same
order of magnitude. In Case 1 we obtain the bound (3.10) with M in place
of M2. This completes the proof of Theorems 1 and 2.

4. Determinants formed with power functions. In many applica-
tions in number theory, the function F (x) or f(x) takes the form Nx−s on
1/2 ≤ x ≤ 1, or, after a change of variable, λ(1 + x)−s on 0 ≤ x ≤ 1. We
calculate the determinant Dk,n(λ(1 + x)−s) explicitly, and verify that it is
non-zero except when F (x) = u(x)/v(x) with u(x) of degree at most k − 1,
v(x) of degree at most n−1, that is, when s is an integer with 0 ≤ s ≤ n−1
or 1− k ≤ s ≤ 0. We have

Dk,n(λ(1 + x)−s) = det
(

(−1)k+i−js(s+ 1) . . . (s+ k + i− j − 1)λ
(k + i− j)!(1 + x)s+k+i−j

)

n×n

= (−1)nkλn
( n∏

i=1

s(s+ 1) . . . (s+ k + i− n− 1)
(k + i− n)!(1 + x)s+k+i

)

× det
(

(−1)j(s+ k + i− n) . . . (s+ k + i− j − 1)(1 + x)j

(k + i− n+ 1) . . . (k + i− j)

)

n×n

=
(−1)nk+n(n+1)/2sn(s+ 1)n . . . (s+ k − n)n

(k + 1− n)!(k + 2− n)! . . . k!

× (s+ k − n+ 1)n−1 . . . (s+ k − 1)λn(−(1 + x))n(n+1)/2K

(1 + x)n(k+s)+n(n+1)/2

=
(−1)nksn(s+1)n . . . (s+k−n)n(s+k−n+1)n−1 . . . (s+k−1)λnK

(k + 1− n)!(k + 2− n)! . . . k!(1 + x)n(k+s)
,

where K is the numerical determinant

K = det
(

(s+ k + i− n) . . . (s+ k + i− j − 1)
(1 + k + i− n) . . . (k + i− j)

)

n×n
= Kn(k + s, k + 1),



Rational points close to a curve III 29

where

Kn(s, t) = det
(

(s+ i− n) . . . (s+ i− j − 1)
(t+ i− n) . . . (t+ i− j − 1)

)

n×n
.

In the evaluation of Kn(s, t) we use the notation t!, appropriate when t
is an integer. The method works for t not an integer if we interpret the
factorials as ratios of gamma functions. We subtract each row i from the
following row i+ 1, noting that
(s+ i+ 1− n) . . . (s+ i− j)
(t+ i+ 1− n) . . . (t+ i− j) −

(s+ i− n) . . . (s+ i− j − 1)
(t+ i− n) . . . (t+ i− j − 1)

=
(n− j)(t− s)(s+ i+ 1− n) . . . (s+ i− j − 1)

(t+ i− n) . . . (t+ i− j) .

In particular, after this subtraction we have n−1 zeros in rows i = 2 to n of
column j = n. Expanding by the last column and renumbering rows 2 to n
as rows 1 to n− 1, we have

Kn(s, t)

= (−1)n−1det
(

(n− j)(t− s)(s+ i+ 1− n) . . . (s+ i− j − 1)
(t+ i− n) . . . (t+ i− j)

)

(n−1)×(n−1)

= (s− t)n−1(n− 1)!
( n−1∏

i=1

1
(t+ i− n)(t+ i− 1− n)

)
Kn−1(s, t+ 1)

= (s− t)n−1(n− 1)!
(t− n)!(t− n+ 1)!

(t− 1)!t!
Kn−1(s, t+ 1).

Iterating this process gives

Kn(s, t)

=
(s−t)n−1(s−t−1)n−2 . . . (s−t−n+2)2! . . . (n−1)!(t−n)! . . . (t+n−3)!

(t− 1)!t!2(t+ 1)!2 . . . (t+ n− 3)!2(t+ n− 2)!

=
(s−t)n−1(s−t−1)n−2 . . . (s−t−n+2)2! . . . (n−1)!(t−n)! . . . (t−2)!

t!(t+ 1)! . . . (t+ n− 2)!
.

Hence

Dk,n(λ(1 + x)−s) =
(−1)nk(s− n+ 1)(s− n+ 2)2 . . . (s− 1)n−1sn

k!(k − 1)! . . .

× (s+ 1)n . . . (s+ k − n)n(s+ k − n− 1)n−1 . . . (s+ k − 1)λn

(k − n+ 1)!(1 + x)n(k+s)
,

which is non-zero unless s = −k+1,−k+2, . . . , n−1, and in these cases the
determinant is identically zero. In all other cases the absolute value of the
determinant is bounded below on 1 ≤ x ≤ 2, and for C sufficiently large the
lower bounds required in Theorem 2 are valid for k = d+1, n = 1, . . . , d+1.
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