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Arithmetic of certain hypergeometric modular forms
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Karl Mahlburg and Ken Ono (Madison, WI)

1. Introduction and statement of results. If k ≥ 4 is even, then let
Mk denote the finite-dimensional C-vector space of weight k holomorphic
modular forms on SL2(Z). As usual, we identify a modular form f(z) with
its Fourier expansion

f(z) =
∞∑

n=0

a(n)qn,

where q := e2πiz . In a recent paper [K-Z], Kaneko and Zagier examined, for
even integers k ≡ 0, 4, 6, 10 (mod 12), the unique normalized modular form
Fk(z) ∈Mk that is a solution to the second order differential equation

(1.1) θk+2θkFk(z)− k(k + 2)
144

E4(z)Fk(z) = 0.

Here θk is the differential operator defined on f(z) ∈Mk by

θkf(z) := q
d

dq
(f(z))− kE2(z)f(z)/12.

For each 4 ≤ k ≡ 0, 4, 6, 10 (mod 12), define integers δk, εk ∈ {0, 1} by

(1.2) 4δk + 6εk = r,

where k ≡ r (mod 12). For such k, define the polynomial F̃k(j) ∈ Q[j] by
the identity

(1.3) Fk(z) = ∆(z)[k/12]E4(z)δkE6(z)εk F̃k(j(z)).

Here j(z) denotes the usual j-function

(1.4) j(z) = q−1 + 744 + 196884q + . . . .
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Kaneko and Zagier [K-Z] found beautiful congruences relating these “hy-
pergeometric” modular forms to the loci of supersingular j-invariants. More
precisely, if p ≥ 5 is prime, then they proved that

jδp−1(j − 1728)εp−1 F̃p−1(j) ≡
∏

E/ Fp
supersingular

(j − j(E)) (mod p).

The analogous property is enjoyed by the classical Eisenstein series Ep−1(z).
These modular forms have further properties in common with the Eisen-

stein series. A classical theorem of Rankin and Swinnerton-Dyer [R-S] asserts
that the zeros τ of Ek(z) are simple. Moreover, if τ is such a zero, then j(τ)
is real and in the interval [0, 1728]. In a recent paper [K], Kaneko observed
(Theorem 3 there), thanks to the theory of orthogonal polynomials, that the
Fk(z) also enjoy these properties.

Here we address analogs of some conjectured properties of the Eisenstein
series. If H/Γ denotes the usual fundamental domain of SL2(Z), then it is
widely believed that the polynomial

Ek(j) =
∏

τ∈H/Γ−{i,ω}
(j − j(τ))ordτ (Ek) ∈ Q[j]

is irreducible over Q. In fact, it is believed that the Galois group of the
splitting field of Ek(j) is the full symmetric group Sd(k), where d(k) is the
degree of Ek(j). Extensive numerical evidence suggests the following analog.

Conjecture. If 4 ≤ k ≡ 0, 4, 6, 10 (mod 12), then F̃k(j) is irreducible
over Q. Furthermore, if F̃k(j) has degree dk, then the Galois group of its
splitting field over Q is Sdk .

Little is presently known about such questions for Eisenstein series. In
particular, it is not known whether infinitely many of the Ek(j) are irre-
ducible over Q. In 1996, Kaneko and Niiho [K-N] studied these questions
for F̃12n(j) and provided an infinite subclass which are irreducible. Here
we provide further results on these questions. We identify several infinite
classes of F̃k(j) that are irreducible. In addition, we make the observation
that many of these F̃k(j) have Galois groups which are not subgroups of Adk ,
the alternating group of degree dk.

Theorem 1.1. Suppose that p ≥ 5 is prime, r ∈ {0, 4, 6, 10}, and s is
a non-negative integer. Furthermore, suppose that n is a positive integer of
the form

n =





p− 1
6
· ps if r = 0 and p ≡ 1 (mod 6),

p2 − 1
6
· p2s if r = 0 and p ≡ 5 (mod 6),
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n =





20 · 52s if r = 4 and p = 5,
p− 5

6
if r = 4, p ≡ 5 (mod 6) and p ≥ 11,

p3 − p
6
· p2s if r = 4, p ≡ 5 (mod 6) and p ≥ 11,

n =





7s if r = 6, p = 7 and s ≥ 1,
p− 7

6
if r = 6, p ≡ 1 (mod 6) and p ≥ 13,

p− 1
6
· ps if r = 6, p ≡ 1 (mod 6), p ≥ 13 and s ≥ 1,

p2 − 7
6

if r = 6 and p ≡ 5 (mod 6),

p2 − 1
6
· p2s if r = 6, p ≡ 5 (mod 6) and s ≥ 1,

n =





19 if r = 10 and p = 5,

20 · 52s if r = 10, p = 5 and s ≥ 1,

220 · 112s if r = 10 and p = 11,
p− 11

6
if r = 10, p ≡ 5 (mod 6) and p ≥ 17,

p3 − p
6
· p2s if r = 10, p ≡ 5 (mod 6) and p ≥ 17.

If k = 12n+ r, then the polynomial F̃k(j) is irreducible in Q[j].

Theorem 1.2. Suppose that p ≥ 5 is prime, r ∈ {0, 4, 6, 10}, and s is
a non-negative integer. Furthermore, suppose that n is a positive integer of
the form

n =





p− 1
6
· ps if r = 0 and p ≡ 1 (mod 12),

p2 − 1
6
· p2s if r = 0 and p ≡ 5 (mod 6),

n =





20 · 52s if r = 4 and p = 5,
p− 5

6
if r = 4, p ≡ 5 (mod 12) and p ≥ 17,

p3 − p
6
· p2s if r = 4, p ≡ 5 (mod 12) and p ≥ 17,

n =





7s if r = 6, p = 7 and s ≥ 1,
p− 7

6
if r = 6, p ≡ 7 (mod 12) and p ≥ 19,

p− 1
6
· ps if r = 6, p ≡ 7 (mod 12), p ≥ 19 and s ≥ 1,
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n =





220 · 112s if r = 10 and p = 11,
p− 11

6
if r = 10, p ≡ 11 (mod 12) and p ≥ 23,

p3 − p
6
· p2s if r = 10, p ≡ 11 (mod 12) and p ≥ 23.

If k = 12n+ r, then F̃k(j) ∈ Q[j] is irreducible and its Galois group is not
a subgroup of Adk .

2. Preliminaries. We begin by recalling some important notation. If n
is a positive integer, then the Pochhammer symbol (a)n is defined by

(2.1) (a)n := a(a+ 1)(a+ 2) . . . (a+ n− 1).

If n = 0, then let (a)n := 1. Gauss’ 2F1 hypergeometric functions are defined
by

(2.2) 2F1

(
a b

c

∣∣∣∣x
)

:=
∞∑

n=0

(a)n(b)n
(c)nn!

· xn.

If 4 ≤ k ≡ r (mod 12), where r ∈ {0, 4, 6, 10}, then Kaneko and Zagier
provided the following description of the F̃k(j):

F̃k(j) = 1728(k−r)/12
(

(k + 4(δk − 1)− 6εk)/12
(k − r)/12

)
(2.3)

× 2F1

(
−(k − r)/12 (k + r + 2)/12

(2δk + 2)/3

∣∣∣∣
j

1728

)
.

By (2.2), it follows that F̃k(j) is a polynomial of degree (k − r)/12 in j.
For our purposes, it suffices to consider, for r ∈ {0, 4, 6, 10} and positive

integers n, the polynomials given by

(2.4) 2F1

(
−n n+ βr

γr

∣∣∣∣x
)
∈ Q[x],

where βr and γr are defined by

(2.5) βr := (r + 1)/6,

and

(2.6) γr :=
{

2/3 if r = 0, 6,

4/3 if r = 4, 10.

Each 2F1
(−n n+βr

γr

∣∣x
)

is, up to scalar multiple and change of variable, the

polynomial F̃k(j) where k = 12n+ r.
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For convenience, we shall study the polynomials Br(n;x) which are de-
fined by

(2.7) Br(n;x) :=
n∑

m=0

cr(n,m)xm := xn · 2F1

(
−n n+ βr

γr

∣∣∣∣
2
x

)
.

We choose to work with these polynomials since they are monic. Clearly,
Br(n;x) is irreducible in Q[x] if and only if F̃12n+r(j) is irreducible in Q[j].
Moreover, they have the same Galois groups. We begin with an elementary
description of these polynomials.

Proposition 2.1. Let n be a non-negative integer.

(1) If r = 0 or 6, then

Br(n;x) =
n∑

m=0

(−1)n−m( nm ) · (6n+ r + 1)(6n+ r + 7) . . . (6n+ 6(n−m) + r − 5)xm

2 · 5 · 8 · . . . · (3(n−m)− 1)
.

(2) If r = 4 or 10, then

Br(n;x) =
n∑

m=0

(−1)n−m( nm ) · (6n+ r + 1)(6n+ r + 7) . . . (6n+ 6(n−m) + r − 5)xm

4 · 7 · 10 · . . . · (3(n−m) + 1)
.

(Note: Empty products are taken to be 1.)

Proof. These follow from a simple calculation using the fact that

(−n)m
m!

= (−1)m
(
n
m

)
.

We also require the functions fr(n), gr(n) and hr(n) defined by

fr(n) :=
(12n+ r + 1)(36n2 + 6rn+ 6n+ 3γrr − 15γr)

(3n+ 3γr)(6n+ r + 1)(12n+ r − 5)
,(2.8)

gr(n) := − (12n+ r − 5)(12n+ r + 1)(12n+ r + 7)
(3n+ 3γr)(6n+ r + 1)(12n+ r − 5)

,(2.9)

hr(n) := − 9n(2n+ (−1)r/2+1)(12n+ r + 7)
(3n+ 3γr)(6n+ r + 1)(12n+ r − 5)

.(2.10)

Proposition 2.2. If r ∈ {0, 4, 6, 10}, then the Br(n;x) satisfy the three
term recurrence relation

Br(n+ 1;x) = (fr(n)x+ gr(n)) ·Br(n;x) + hr(n)x2 ·Br(n− 1;x),

where Br(−1;x) = 0 and Br(0;x) = 1.

Proof. These recurrence relations follow from the definition of the
Br(n;x) and the classical contiguous relation [AAR, p. 100]
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2b(c− a)(b− a− 1) · 2F1

(
a− 1 b+ 1

c

∣∣∣∣x
)
− ((1− 2x)(b− a− 1)3

+ (b− a)(b+ a− 1)(2c− b− a− 1)) · 2F1

(
a b

c

∣∣∣∣x
)

− 2a(b− c)(b− a+ 1) · 2F1

(
a+ 1 b− 1

c

∣∣∣∣x
)

= 0.

One lets a = −n, b = n+ βr and c = γr.

3. The discriminants of the Br(n;x). Here we compute the discrim-
inants of many of the Br(n;x). For convenience, we let

(3.1) Dr(n) := discriminant of Br(n;x).

We express these discriminants in terms of n, r, the constant terms of
Br(s;x) for 1 ≤ s ≤ n, the value Br(n; 2), and the recurrence functions
hr(1), hr(2), . . . , hr(n− 1).

Theorem 3.1. If r ∈ {0, 4, 6, 10} and n ≥ 1 is an integer for which
Br(n; 1) 6= 0, then

Dr(n) = (−1)n(n−1)/2
(
n(n− γr + βr)

2n+ βr − 1

)n
· cr(n, 0)
Br(n; 2)

n−1∏

j=1

hr(j)jcr(j, 0)2.

To prove Theorem 3.1, we begin with a lemma on the derivatives of 2F1

hypergeometric functions at their zeros.

Lemma 3.2. Suppose that α 6∈ {0, 1} is a zero of 2F1
(
a b

c

∣∣x
)
. If a+1 6= b,

c 6= 0 and b 6= c, then

2F
′
1

(
a b

c

∣∣∣∣α
)

= − a(c− b)
α(α− 1)(a− b+ 1)

· 2F1

(
a+ 1 b− 1

c

∣∣∣∣α
)
.

Proof. To prove the lemma, we require the following two facts [AAR,
pp. 95–96]:

2F1

(
A B

C

∣∣∣∣x
)

= (1− x) · 2F1

(
A+ 1 B

C

∣∣∣∣x
)

(3.2)

+
(C −B)x

C
· 2F1

(
A+ 1 B

C + 1

∣∣∣∣x
)
,

x · 2F ′1
(
A B

C

∣∣∣∣x
)

= A · 2F1

(
A+ 1 B

C

∣∣∣∣x
)
− A · 2F1

(
A B

C

∣∣∣∣x
)
.(3.3)

By (3.3), where A = a, B = b and C = c, we find that

(3.4) 2F
′
1

(
a b

c

∣∣∣∣α
)

=
a

α
· 2F1

(
a+ 1 b

c

∣∣∣∣α
)
.
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Set A = b− 1, B = a+ 1 and C = c; then the symmetry of A and B in (3.2)
implies that

2F
′
1

(
a b

c

∣∣∣∣α
)

=
a

α(1− α)
· 2F1

(
a+ 1 b− 1

c

∣∣∣∣α
)

− a(c− a− 1)
c(1− α)

· 2F1

(
a+ 1 b

c+ 1

∣∣∣∣α
)
.

Replace the last summand by applying (3.2) once more, with A = a,B = b

and C = c. The fact that α is a zero of 2F1
(
a b

c

∣∣x
)

implies that

2F
′
1

(
a b

c

∣∣∣∣α
)

=
a

α(1− α)
· 2F1

(
a+ 1 b− 1

c

∣∣∣∣α
)

+
a(c− a− 1)
α(c− b) · 2F1

(
a+ 1 b

c

∣∣∣∣α
)
.

By (3.4), this last expression is equivalent to the claimed formula for

2F
′
1

(
a b

c

∣∣α
)
.

We obtain the following convenient fact using this lemma.

Proposition 3.3. If n ≥ 1 and α 6= 1 is a zero of Br(n;x), then

B′r(n;α) =
αn(n− γr + βr)

(2n+ βr − 1)(α− 2)
·Br(n− 1;α).

Proof. By definition, we have

Br(n;x) = xn · 2F1

(
−n n+ βr

γr

∣∣∣∣
2
x

)
.

Therefore, it follows that

B′r(n;x) =
n

x
·Br(n;x)− 2xn−2 · 2F ′1

(
−n n+ βr

γr

∣∣∣∣
2
x

)
.

Since α 6= 0 (i.e. Br(n; 0) 6= 0) is a root of Br(n;x), the claim follows from
Lemma 3.2 and the definition of Br(n− 1;x).

We require one final proposition for the proof of Theorem 3.1. Sup-
pose that f(x) (resp. g(x)) is a degree n (resp. m) polynomial with roots
x1, . . . , xn (resp. y1, . . . , ym). Furthermore, suppose that

f(x) =
n∑

j=0

a(j)xj and g(x) =
m∑

j=0

b(j)xj .

The resultant R(f, g) of these polynomials satisfies
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R(f, g) = a(n)mb(m)n
n∏

i=1

m∏

j=1

(xi − yj) = a(n)m
n∏

i=1

g(xi)(3.5)

= (−1)mnR(g, f).

In particular, notice that if D(f) is the discriminant of f(x), then

(3.6) R(f, f ′) = (−1)n(n−1)/2D(f).

Proposition 3.4. If n ≥ 0, then

R(Br(n;x), Br(n+ 1;x)) = R(Br(n+ 1;x), Br(n;x))

=
n∏

j=1

hr(j)jcr(j, 0)2.

Proof. Since n(n+ 1) is even, (3.5) implies that the first equality holds
for all n. If α is a root of Br(n;x), then Proposition 2.2 implies that

(3.7) Br(n+ 1;α) = α2hr(n)Br(n− 1;α).

Let α1, . . . , αn be the roots of Br(n;x) repeated with multiplicity. Since each
Br(j;x) is monic, (3.5) and (3.7) imply that

(3.8) R(Br(n;x), Br(n+ 1;x))

=
n∏

j=1

Br(n+ 1;αj)

= hr(n)ncr(n, 0)2
n∏

j=1

Br(n− 1;αj)

= hr(n)ncr(n, 0)2R(Br(n− 1;x), Br(n;x)).

Arguing inductively with (3.8), we find that

R(Br(n;x), Br(n+ 1;x))

= hr(n)ncr(n, 0)2R(Br(n− 1;x), Br(n;x))

= hr(n)nhr(n− 1)n−1cr(n, 0)2cr(n− 1, 0)2R(Br(n− 2;x), Br(n− 1;x))

...

=
n∏

j=1

hr(j)jcr(j, 0)2.

Proof of Theorem 3.1. Begin by noticing that x = 0 is not a zero of
Br(n;x). Now suppose that α1, . . . , αn are the roots of Br(n;x) repeated
with multiplicity. Since Br(n;x) is monic, Proposition 3.3 and (3.6) imply
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that

(−1)n(n−1)/2Dr(n) = R(Br(n;x), B′r(n;x)) =
n∏

j=1

B′r(n;αj)

=
n∏

j=1

αj(n− γr + βr)n
(αj − 2)(2n+ βr − 1)

·Br(n− 1;αj)

=
cr(n, 0)nn(n− γr + βr)n

Br(n; 2)(2n+ βr − 1)n
·
n∏

j=1

Br(n− 1;αj).

By (3.5), this implies that

Dr(n) = (−1)n(n−1)/2
(
n(n− γr + βr)

2n+ βr − 1

)n
· cr(n; 0)
Br(n; 2)

×R(Br(n;x), Br(n− 1;x)).

The formula now follows immediately from Proposition 3.4.

4. Proof of Theorem 1.1. In this section, we prove Theorem 1.1 by
showing that the Br(n;x) are p-Eisenstein for those n given in Theorem 1.1.
This clearly implies that F̃k(j) ∈ Q[j] is irreducible.

Proof of Theorem 1.1. We re-index Br(n;x) in this proof to simplify
certain calculations, otherwise, we assume the notation from earlier sections.
Setting c′r(n,m) = cr(n, n−m), we have

Br(n;x) =
n∑

m=0

c′r(n,m)xn−m(4.1)

=
n∑

m=0

(−1)m
(
n
m

)
(6n+ r + 1) . . . (6n+ 6m+ r − 5)xn−m

(3γr + 3) . . . (3m+ (3γr − 3))
.

It suffices to show that p divides all coefficients, apart from the leading term,
and that p2 does not divide the constant term. We present the proof for the
case where r = 0 and explain the additional observations needed for the
case r = 4 along the way. The final two cases, r = 6 and r = 10, are closely
related to these first two. Our task is simplified by the fact that both 3
and 6 are coprime to p, so the arithmetic sequences in the numerator and
denominator run through the full set of residue classes modulo p.

If r = 0, let p = 6d + 1 be a prime congruent to 1 modulo 6. If n =
(p− 1)/6 = d, then

c′0(d,m) =
(−1)m

(
d
m

)
p(p+ 6) . . . (6(n+m)− 5)

2 · 5 · . . . · (3m− 1)
(4.2)

=
(−1)m

(
d
m

)
p . . . (2p− 6(d−m)− 5)

2 · 5 · . . . · ((p− 1)/2− 3(d−m)− 1)
.
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The p in the numerator appears in every non-leading coefficient, and no other
multiples of p occur in the numerator or denominator. The constant term
c′0(d, d) is divisible by this single power of p, so the series is p-Eisenstein.
The argument is entirely the same if r = 4, p ≡ 5 (mod 6) and n = (p−5)/6.

Now suppose that n = (p − 1)ps/6 = dps, where s ≥ 1. Since pt ≡ 1
(mod 6) for any t, we can easily describe the multiples of p in the coefficients,

c′0(dps,m)

=
(−1)m

(
dps

m

)
(6dps + 1)(6dps + 7) . . . (6(dps +m)− 5)

2 · 5 · . . . · (3m− 1)

=
(−1)m

(
dps

m

)
(6dps + 1) . . . (6dps + pt) . . . ps+1 . . . (6(dps +m)− 5)

2 · 5 · . . . · 2pt · . . . · 2ps . . . (3m− 1)
.

The first multiple of pt occurs in the numerator when m = (pt − 1)/6, and
appears in the denominator when m = (2pt − 2)/3 = 4(pt − 1)/6. Every
multiple of p in the denominator is cancelled by an equal power in the
numerator, and thus c′0(n,m) is p-integral for all m. But ps+1 appears as a
factor in the numerator when m ≥ (ps − 1)/6, and since the denominator
factors are bounded above by ps+1/2, there is an extra power of p in the
numerator for such m. The binomial coefficient

(
dps

m

)
is divisible by p for 1 ≤

m ≤ ps− 1, so c′0(n,m) is divisible by p for all m. Finally, the numerator of
c′0(n, n) clearly contains exactly one more power of p than the denominator,
so the constant term is not divisible by p2.

Next, consider the case of r = 0 and p = 6d+ 5, and let c = (p2−1)/6 =
dp+ 5d− 4. If n = c, then

(4.3) c′0(c,m)

=
(−1)m

(
c
m

)
p2(p2 + 6) . . . (p2 + 6p) . . . (2p2 − 6(c−m)− 4)

2 · 5 · . . . · p · . . . · 4p . . . ((p2 − 1)/2− 3(c−m)− 1)
.

The first multiple of p in the denominator occurs when m = 2d+1, and thus
every coefficient is divisible by p. Furthermore, there is one extra power of
p in the numerator.

If n = (p2 − 1)p2s/6 = cp2s, then
(4.4) c′0(n,m)

=
(−1)m

(n
m

)
(6n+ 1)(6n+ 7) . . . (6(n+m)− 5)

2 · 5 · . . . · (3m− 1)

=
(−1)m

(n
m

)
(6n+ 1) . . . (6n+ p2t) . . . (6n+ 5p2t+1) . . . p2s+2 . . . (6(n+m)− 5)

2 · . . . · 2p2t . . . p2t+1 . . . p2s+1 . . . (3m− 1)
.

Since p2 ≡ 1 (mod 6), the even powers of p behave exactly like the previous
case: the first multiple of p2t appears as a factor in the numerator when
m = (p2t − 1)/6, and in the denominator when m = 4(p2t − 1)/6.
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However, the situation is more complicated for odd powers of p, and the
contribution from the binomial coefficients is essential. We use the fact that
if pk is the highest power of p that divides m, then

(
cp2s

m

)
is divisible by

p2s−k. The first power of p2t+1 appears in the numerator when

m = (5p2t+1 − 1)/6(4.5)

= 5(d+ 1)p(p+ 1)(p2t−2 + . . .+ p2 + 1) + 5d+ 4,

but it appears in the denominator when

m = (p2t+1 − 1)/3(4.6)

= 2(d+ 1)p(p+ 1)(p2t−2 + . . .+ p2 + 1) + 2d+ 1.

If t ≤ s − 1 and m is as in (4.5), then the arithmetic sequence in the
denominator of c′0(n,m) contains 2t+1 more powers of p than the numerator.
But

(
cp2s

m

)
is divisible by p2s, so the coefficient is divisible by p. If m increases

to the next multiple of pk for some k, the factor of pk that is lost in the
binomial coefficient appears in the arithmetic sequence of the numerator
instead. If t = s, and m is as in (4.6), then a factor of p2s+1 appears in the
denominator. But p2s+2 appears in the numerator when m ≥ (p2s−1)/6, and
the corresponding term on the denominator is p2s, contributing an overall
factor of p2. The numerator of c′0(n, n) contains exactly one extra power of p,
since every term on the denominator is strictly less than p2s+2, so the series
is p-Eisenstein.

The argument is similar if r = 4, p = 6d+ 5 and n = cp2s+1, with (4.4)
replaced by

(4.7) c′4(n,m)

=
(−1)m

(n
m

)
(6n+ 5)(6n+ 11) . . . (6(n+m)− 1)

4 · 7 · . . . · (3m+ 1)

=
(−1)m

(n
m

)
(6n+ 5) . . . (6n+ 5p2t) . . . (6n+ p2t+1) . . . p2s+3 . . . (6(n+m)− 1)

2 · . . . · p2t · . . . · 2p2t+1 . . . p2s+2 . . . (3m+ 1)
.

The key difference is that all of the exponents have been shifted by one
because the factors in the numerator of c′4(n,m) are all congruent to 5
modulo 6 instead of 1 modulo 6, and the factors in the denominator are
congruent to 1 modulo 3 instead of 2 modulo 3.

Equation (4.1) shows that if r = 6, then the coefficients are nearly the
same as in the case r = 0 through the relation

(4.8) c′6(n,m) =
c′0(n,m)(6(n+m) + 1)

6n+ 1
.

Thus, if B0(n;x) is p-Eisenstein for some n and p does not divide 6n+ 1 or
12n + 1, then B6(n;x) is p-Eisenstein for the same n. The only exceptions
occur when 6n + 1 = p if p ≡ 1 (mod 6) and when 6n + 1 = p2 if p ≡ 5
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(mod 6). In these cases, (4.2) and (4.3) show that the first factor in the
arithmetic sequence of the numerator of c′0(n,m) is p or p2. The analogous
case for r = 6 occurs if 6n + 7 = p or 6n + 7 = p̃2. When p = 7, this is
impossible (since n ≥ 1), so the family of allowable n values starts at a
higher power; n = (7− 1)7s/6 = 7s for s ≥ 1.

Similarly, if r = 10, then there is an analog to (4.8) that shows that
B10(n;x) is p-Eisenstein for nearly all of the same n as B4(n;x); the differ-
ences are described in the theorem.

Remark. Arguing as above, it can be shown that the Br(n;x) which
are p-Eisenstein for a prime p ≥ 5 are precisely those polynomials identified
by Theorem 1.1.

5. Proof of Theorem 1.2. The polynomials F̃k(j) in Theorem 1.2 are
irreducible over Q by Theorem 1.1. To prove Theorem 1.2, it suffices to
show that the discriminant Dr(n) of Br(n;x), for the associated n, is not a
square of a rational number. Through a careful analysis of the discriminant
formula found in Section 3, we prove that the power of p dividing Dr(n) is
odd. Before beginning the proof, we present a pair of technical lemmas.

Lemma 5.1. Given an integer k and −k < l < k, let p be an odd prime
such that p ≡ 1 (mod k). Define λ ≡ l (mod k) such that −k ≤ λ ≤ −1. If
n = dps, where dk < p and (kdps−1 + λ)p ≤ (dps− 1)k+ l, then the product

P =
n−1∏

j=1

(kj + l)j

satisfies

(5.1) ordp(P ) =
dps

2

(
s+ d

(
ps − 1
p− 1

))
− ld

k

(
ps − 1
p− 1

)
+
λsdps

k
.

Proof. The formula is found by directly counting the powers of p in P .
Since pt ≡ 1 (mod k) for any t, the multiples of pt that appear as factors
in P have the form (mpt)(mpt−l)/k, where m ≡ l (mod k) and 0 ≤ m ≤
(kdps−t + λ)pt. Define ζ such that 0 ≤ ζ ≤ k − 1 and ζ ≡ l (mod k) (note
that if l ≥ 0, then ζ = l and λ = l − k; if l < 0, then ζ = l + k and λ = l).
Then the product can be written

P = (k + l)1 . . . (ζp)(ζp−l)/k . . . (ζpt)(ζpt−l)/k . . .

× ((kdps−t + λ)pt)((kdps−t+λ)pt−l)/k . . . ((dps − 1)k + l)dp
s−1.

To find the total exponent of p in P , add the exponents appearing on
each multiple of p, then add the exponents on multiples of p2, and continue
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up to multiples of ps. This is given by the sum

ζp− l
k

+
(k + ζ)p− l

k
+ . . .+

ζp2 − l
k

+ . . .+
ζps − l
k

+ . . .+
(kdps−1 + λ)p− l

k

+
ζp2 − l
k

+ . . .+
ζps − l
k

+ . . .+
(kdps−2 + λ)p2 − l

k

...

+
ζps − l
k

+ . . .+
(kd+ λ)ps − l

k
.

The final condition in the statement of the theorem ensures that all of these
multiples of p actually appear in P .

Each line is an arithmetic sequence that has been uniformly shifted; the
tth line contains dps−t terms. The sum is thus

(ζ − λ)p
k

+
(k + ζ − λ)p

k
+ . . .+

ζps − λp
k

+ . . .+
(kdps−1 + λ− λ)p

k
− l

k
dps−1+

λp

k
dps−1

...

+
(ζ − λ)ps

k
+ . . .+

(kd+ λ− λ)ps

k
− l

k
d+

λps

k
d.

This is simplified by the fact that ζ − λ = k, giving

p+ 2p+ . . .+ dps − l

k
dps−1 +

λp

k
dps−1

...

+ ps + . . .+ dps − l

k
d+

λps

k
d.

Summing the arithmetic and geometric progressions and collecting like terms
gives the formulas.

Lemma 5.2. Given k, and −k < l < k, let p be an odd prime such that
p = dk + r with 0 ≤ r ≤ k − 1 and r2 ≡ 1 (mod k). Let λ ≡ l (mod k) be
defined such that −k ≤ λ ≤ −1, and let κ = λ+ k. Also, let λ ≡ rκ (mod k)
such that λ lies in the same range as λ, and define κ = λ + k. If n = cp2s,
where ck < p2 and (kcp2s−1 + λ)p ≤ kc(p2s − 1) + l, let d be the largest
integer such that (kd+ κ)p2s+1 < k(cp2s − 1) + l. Then the product

P =
n−1∏

j=1

(kj + l)j

satisfies
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(5.2) ordp(P )

=
cp2s

2

(
2s+ c

(
p2s − 1
p− 1

))
− lc

k

(
p2s − 1
p− 1

)
+

2scp2s(λ+ λ)/2
k

− ld

k
+
λdp2s+1

k
+
p2s+1d(d+ 1)

2
.

The proof of Lemma 5.2 follows as in the proof of Lemma 5.1, and it is
omitted for brevity.

Proof of Theorem 1.2. Suppose that p ≥ 5 is a prime, and that n and r
satisfy the conditions of Theorem 1.2. Recall from Theorem 3.1 the formula
for the discriminant:

Dr(n) = (−1)n(n−1)/2
(
n(n− γr + βr)

2n+ βr − 1

)n
· cr(n, 0)
Br(n; 2)

(5.3)

×
n−1∏

j=1

hr(j)jcr(j, 0)2.

We will show that p occurs as a factor of Dr(n) with odd multiplicity by
presenting careful arguments in the case where r = 0 and noting the slight
differences in proving the other cases.

Suppose that r = 0, p = 12d′ + 1 and n = dps, where d = 2d′. The first
term in (5.3) is

(
n(n− γ0 + β0)

2n+ β0 − 1

)n
=
(
n(n− 2/3 + 1/6)

2n+ 16− 1

)n
=
(
n(6n− 3)
12n− 5

)n
.

Since p ≥ 13, the only multiples of p appear in n itself, and the total product
of factors of p is (ps)dp

s

. If r = 6, p = 12d′ + 7, s ≥ 1, and n = dps, where
d = 2d′ + 1, then the analogous term in (5.3) is (n(6n + 3)/(12n + 1))n,
which also has the factors (ps)dp

s

. When s = 0, there are no powers of p in
the r = 0 case, corresponding to the case where n = (p− 7)/6 if r = 6.

We showed in Section 4 that the monic polynomial Br(n;x) is p-Eisen-
stein for any value of r, so that p divides every non-leading coefficient, and
p2 does not divide the constant term cr(n, 0). Thus cr(n, 0) is divisible by
exactly one multiple of p, and Br(n; 2) contains no power of p, for Br(n; 2)
≡ 2n (mod p).

Now we turn to the product factors in (5.3). Since we wish to show that
it is not a perfect square, we can ignore the factors of the form c0(j, 0)2.
We could also remove all of the square powers from the remaining terms
and just consider the exponents modulo 2, but our lemmas count the prime
factors when all of the factors are present. Since p is prime to 9, we ignore
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the factor of 9 in hr(j) throughout the rest of the proof. We have

(5.4)
n−1∏

j=1

h0(j)j =
n−1∏

j=1

( −9j(2j − 1)(12j + 7)
(3j + 2)(6j + 1)(12j − 5)

)j
.

Since n = dps,

(5.5)
n−1∏

j=1

(
12j + 7
12j − 5

)j
= (12dps − 5)dp

s−1
dps−1∏

j=1

1
12j − 5

,

and the factors of p multiply to p−d(ps−1)/(p−1). In the case where r = 6,
p = 12d′ + 7 and n = dps, the analog of (5.4) is easily found, and the
corresponding formula for (5.5) now depends on the parity of s.

Lemma 5.1 counts the factors of p in the remainder of (5.4), since
p = 12d′ + 1 ≡ 1 (mod 2, 3, 6, 12). For example, this lemma states that
the product

∏dps−1
j=1 (3j + 2)j contains

2d′ps

2

(
s+ 2d′

ps − 1
p− 1

)
− 2(2d′)

3
· p

s − 1
p− 1

− s(2d′)ps

3

total factors of p. Thus the parity of the total power of p in D0(n) is found
by adding 1 + sdps to the factors in (5.4), giving

1 + sdps + d
ps − 1
p− 1

(
0 +

1
2

+
2
3

+
1
6
− 1
)

+ sdps
(
−1− 1

2
+

1
3

+
5
6

)

=
d

3
ps − 1
p− 1

− sdps

3
+ 1 + sdps = 1 +

d

3

(
2sps +

ps − 1
p− 1

)
.

Since d = 2d′ is even, this power is clearly odd. The argument is similar if
r = 6 and p = 12d′ + 7, although it must be argued that Lemma 5.1 can be
applied to

∏n−1
j=1 (6j+ 7)j , since the final factor is not divisible by p and can

be removed.
Now suppose that r = 0, p = 6d+ 5, and n = cp2s. The case p = 5 must

be treated separately, since the first factors in (5.3) are
(
n(6n− 3)
12n− 5

)n
=
(
c · 52s(6c · 52s − 3)
5(12c · 52s−1 − 1)

)c·52s

.

The product of all of the factors of 5 is 5(2s−1)c·52s
, and there is one multiple

of 5 in c0(n, 0). Otherwise, if p 6= 5, the factors give p2scp2s
. If r = 4 or

r = 10 and n = cp2s+1 then the product is p(2s+1)cp2s+1
.

We now use Lemma 5.2 to count the multiples of p in (5.4), for p2

≡ 1 (mod 2, 3, 6). First, consider the case where d is even. There is a po-
tential concern when p = 5, for the initial terms in (5.3) only contain
1 + (2s − 1)cp2s powers of p. However, the formula that we find will still
be valid, for one of the conditions of Lemma 5.2 is not met by the product
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∏n−1
j=1 (12j − 5)j when p = 5. In fact, the final multiple of p that is counted

by the lemma occurs when j = n = cp2s, and hence it is not actually con-
tained in the product. This term appears on the denominator of (5.4), so
the factors of p cancel exactly. If we write c = (p2 − 1)/6 = dp + 5d+ 4, it
is clear that d = d + 1 exactly when k(5d + 4) ≥ κp, and otherwise d = d.
After simplification and eliminating terms which are clearly even, the total
power of p is thus

2 + s(d+ 1)(p− 1)p2s + 2(d+ 1)
p2s − 1

3
+
d(p2s+1 + 1)

3
+
p2s+1 + 1

6
.

Since d is even, every term except the final one is even. The final term is
odd, since

p2s+1 + 1
6

= (d+ 1)(p2s − p2s−1 + . . .− p+ 1)

≡ 1− 1 + . . .+ 1− 1 + 1 ≡ 1 (mod 2).

If d is odd, then Lemma 5.2 gives the same formulas, and the congruence
properties of p again show that the total exponent is odd.

Finally, if r = 4 or r = 10 and n = cp2s+1, the argument is similar,
although the formulas become more complicated. Lemma 5.2 nearly applies,
with 2s replaced by 2s + 1 throughout, but the odd exponent changes the
relative weighting of κ and λ in (5.2). There are s+ 1 different odd powers
of p so λ appears in the proportion (s + 1)/(2s + 1), but there are only s
even powers, so λ makes up the remaining s/(2s + 1) fraction. Also, since
the highest power is p2s+2, the λ in (5.2) is replaced by λ. For example, if
r = 4, p = 6d+ 5 with d even, and n = cp2s+1, then

∏n−1
j=1 (6j+ 5)j contains

cp2s+1

2

(
2s+1+c

p2s+1 − 1
p− 1

)
− 5c

6
· p

2s+1 − 1
p− 1

− 5(s+ 1)cp2s+1

6
− scp2s+1

3

− 5d
6
− dp2s+2

6
+
p2s+2d(d+ 1)

2
powers of p.

In all of the cases given in Theorem 1.2, the total exponent of p is odd,
and so Br(n;x) is an irreducible polynomial whose Galois group is not a
subgroup of Adk .
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