On Fourier coefficients of modular forms of different weights

by
Winfried Kohnen (Heidelberg)

1. Introduction. Let f and g be modular forms on a congruence subgroup Γ of $\Gamma(1):=\mathrm{SL}_{2}(\mathbb{Z})$ of weights k_{1} and k_{2}, respectively. We shall suppose that $k_{1}, k_{2}>1$ and that either both k_{1} and k_{2} are integral or both are half-integral, with the usual assumption that $\Gamma \subset \Gamma_{0}(4)$ in the latter case. For basic facts on half-integral weight modular forms we refer the reader to [9]. We denote by $a(n)$ resp. $b(n)(n \geq 0)$ the Fourier coefficients of f resp. g.

A rather intrinsic question then is to ask for the least index n such that $a(n) \neq b(n)$ provided that $f \neq g$. More generally, if $a(n)$ and $b(n)$ for all n are contained in the ring of integers \mathcal{O}_{K} of a number field K and \wp is a prime ideal of \mathcal{O}_{K}, then if $f \not \equiv g(\bmod \wp)$ (meaning that there exists at least one n with $a(n) \not \equiv b(n)(\bmod \wp))$, one may ask for the least n with $a(n) \not \equiv b(n)(\bmod \wp)$.

If $k_{1}=k_{2}$, then as is well known the valence formula for modular forms implies that there exists $n \leq\left(k_{1} / 12\right)[\Gamma(1): \Gamma]$ such that $a(n)$ $\neq b(n)$ if $f \neq g$. Under the additional hypothesis of integrality of $a(n)$ and $b(n)$ as above, by a fundamental result of Sturm [10] the same result is true modulo \wp. Note that in the above discussion the half-integral weight case can be deduced from the integral weight case by taking squares.

In the following we will suppose that $k_{1} \neq k_{2}$. In this case, if k_{1} and k_{2} are integral and in addition one assumes that f and g are normalized cuspidal Hecke eigenforms on $\Gamma_{0}(N)$, very good bounds on the least n with $a(n) \neq b(n)$ are known $[1,6]$. Note that the paper [6] also contains some statements in the case of unequal integral weights for arbitrary f and g whose proof unfortunately is not correct, as was first pointed out by the author of [6] and by J. Sengupta.

2000 Mathematics Subject Classification: Primary 11F33.

The main purpose of this paper is to give some generalizations of Sturm's result when the weights are different, with bounds however depending on \wp, and also to give some consequences in characteristic zero.

We shall start by showing that if p is the rational prime with $\wp \mid p$ and $a(n), b(n) \in \mathcal{O}_{K}$ for all n, then if p is odd there exists $n \leq\left(\max \left\{k_{1}, k_{2}\right\}\right.$. $\left.\left(p^{2}-1\right) / 12\right)[\Gamma(1): \Gamma]$ such that $a(n) \not \equiv b(n)(\bmod \wp)$ provided that $f \not \equiv g$ $(\bmod \wp)($ Thm. 1, Sect. 2). The proof easily follows from the existence of a certain Eisenstein series of weight 1 on $\Gamma_{1}(p)$ with certain congruence properties modulo p. The usefulness of this Eisenstein series in the study of congruences of modular forms was first pointed out by Shimura (cf. e.g. [5, Chap. XV, Sect. 1]). A similar result is also (trivially) true if $p=2$.

From Theorem 1, using results of Serre [7] and Katz [4] on modular forms modulo p, one can also obtain some results in characteristic zero for $k_{1} \neq k_{2}$. For example, suppose that $\Gamma=\Gamma_{0}(N)$, that k_{1} and k_{2} are even integral and that $a(n) \in K$ for all n. Then using a theorem of Heath-Brown [3] on the least prime in an arithmetic progression, we shall show that there exists $n<_{N} \max \left\{k_{1}, k_{2}\right\} \log ^{11}\left|k_{1}-k_{2}\right|$ such that $a(n) \neq b(n)$ where the implied constant in $<_{N}$ depends on N. In fact, we shall prove a slightly more general result, allowing f and g to have Dirichlet characters modulo N (Thm. 2, Sect. 3). Theorem 2 has an obvious application to quadratic forms (Corollary, Sect. 3).

One can obtain bounds that are sometimes slightly better than those of Theorem 1 if e.g. $\Gamma=\Gamma_{0}(N)$ and if in addition one assumes that k_{1}, k_{2} are integral and f and g are eigenforms of the usual Hecke operator $T(p)$, with eigenvalues non-zero modulo \wp (Thm. 3, Sect. 4). The proof uses the first Rankin-Cohen bracket on modular forms.

Ideally, one would hope that similar assertions to those of Theorem 1 would hold with bounds independent of \wp. However, it seems to be unclear how to prove this. On the other hand, in the case of $\Gamma=\Gamma_{0}(N)$ and integral weights, and if f and g are normalized cuspidal Hecke eigenforms, under certain simple conditions on N we shall show that in fact there are infinitely many prime ideals \wp of $\mathcal{O}_{K_{f, g}}$ for which such a result is true (Thm. 4, Sect. 5). Here $K_{f, g}$ is the number field generated over \mathbb{Q} by all the Fourier coefficients $a(n), b(n)(n \geq 1)$. The proof is an easy modification of a beautiful and simple argument due to M. Ram Murty [6] in characteristic zero.

Acknowledgements. The author would like to thank M. Ram Murty and J. Sengupta for a useful discussion.

Notation. The letter Γ always denotes a congruence subgroup of $\Gamma(1)$. For $N \in \mathbb{N}$ we let as usual $\Gamma_{0}(N)$, resp. $\Gamma_{1}(N)$, be the congruence subgroups of $\Gamma(1)$ consisting of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $c \equiv 0(\bmod N)$, resp. $c \equiv 0$ $(\bmod N)$ and $a \equiv d \equiv 1(\bmod N)$.

For $z \in \mathcal{H}$, the complex upper half-plane, we put $q=e^{2 \pi i z}$. If f is a modular form on $\Gamma \subset \Gamma(1)$ and $M \in \mathbb{N}$ is minimal such that $\left(\begin{array}{cc}1 & M \\ 0 & 1\end{array}\right) \in \Gamma$, then f has a Fourier expansion $f=\sum_{n \geq 0} a(n) q_{M}^{n}$ where $q_{M}=e^{2 \pi i z / M}$ $(z \in \mathcal{H})$.

The letter K always denotes a number field and \wp is a prime ideal of the ring of integers \mathcal{O}_{K} of K. If $f=\sum_{n \geq 0} a(n) q_{M}^{n}$ and $g=\sum_{n \geq 0} b(n) q_{M}^{n}$ are power series in q_{M} with \wp-integral coefficients and $a(n) \equiv b(n)(\bmod \wp)$ for all n, then we shall write $f \equiv g(\bmod \wp)$.

2. A generalization of Sturm's result to the case of different

 weights. We shall proveTheorem 1. Let f and g be modular forms on Γ of weights k_{1} and k_{2} respectively, where $k_{1}, k_{2}>1, k_{1} \neq k_{2}$ and either both k_{1}, k_{2} are integral or both are half-integral. Suppose that f resp. g have Fourier coefficients $a(n)$ resp. $b(n)$ in \mathcal{O}_{K}. Let p be the rational prime with $\wp \mid p$. Then if $f \not \equiv g$ $(\bmod \wp)$, there exists

$$
n \leq \frac{\max \left\{k_{1}, k_{2}\right\}}{12} \cdot \begin{cases}{\left[\Gamma(1): \Gamma \cap \Gamma_{1}(p)\right]} & \text { if } p>2, \\ {\left[\Gamma(1): \Gamma \cap \Gamma_{1}(4)\right]} & \text { if } p=2\end{cases}
$$

such that $a(n) \not \equiv b(n)(\bmod \wp)$. In particular there exists

$$
n \leq \begin{cases}\frac{\max \left\{k_{1}, k_{2}\right\}}{12}\left(p^{2}-1\right) \cdot[\Gamma(1): \Gamma] & \text { if } p>2, \\ \max \left\{k_{1}, k_{2}\right\} \cdot[\Gamma(1): \Gamma] & \text { if } p=2\end{cases}
$$

with $a(n) \not \equiv b(n)(\bmod \wp)$.
Proof. First suppose that p is odd. Let ζ be a primitive $(p-1)$ th root of unity. Then p splits completely in $\mathbb{Q}(\zeta)$. Choose a prime ideal \wp_{1} of $\mathbb{Q}(\zeta)$ lying above p. Since the numbers $1, \zeta, \ldots, \zeta^{p-2}$ are different modulo \wp_{1} and reduction modulo \wp_{1} induces an isomorphism $\left(\mathcal{O}_{\mathbb{Q}(\varsigma)} / \wp_{1}\right)^{*} \cong(\mathbb{Z} / p \mathbb{Z})^{*}$, we can define a Dirichlet character χ modulo p by requiring that

$$
\chi(m) m \equiv 1(\bmod p)
$$

for all m prime to p.
Let

$$
G_{1, \chi}:=B_{1, \chi}-2 \sum_{n \geq 1}\left(\sum_{d \mid n} \chi(d)\right) q^{n}
$$

be the Eisenstein series of weight 1 and character χ on $\Gamma_{0}(p)$, where

$$
B_{1, \chi}=\frac{1}{p} \sum_{m=1}^{p-1} \chi(m) m
$$

is the usual modified 1st Bernoulli number. In particular $G_{1, \chi}$ is on $\Gamma_{1}(p)$. Note that

$$
\sum_{m=1}^{p-1} \chi(m) m \not \equiv 0\left(\bmod \wp_{1}\right) .
$$

Put

$$
E_{1, \chi}:=\frac{1}{B_{1, \chi}} G_{1, \chi}
$$

Then $E_{1, \chi}$ is a modular form of weight 1 on $\Gamma_{1}(p)$ with \wp_{1}-integral Fourier coefficients and

$$
\begin{equation*}
E_{1, \chi} \equiv 1(\bmod p) \tag{1}
\end{equation*}
$$

This construction is of course well known.
Let \mathcal{P} be a prime ideal of the composite field $K \mathbb{Q}(\zeta)$ lying above \wp, hence above p. Then $\mathcal{Q}:=\mathcal{P} \cap \mathcal{O}_{\mathbb{Q}(\zeta)} \supset \mathcal{P} \cap \mathbb{Z}=p \mathbb{Z}$, i.e. \mathcal{Q} is an ideal of $\mathbb{Q}(\zeta)$ dividing p. By (1) we therefore find that $E_{1, \chi} \equiv 1(\bmod \mathcal{Q})$, hence $E_{1, \chi} \equiv 1$ $(\bmod \mathcal{P})$.

Suppose without loss of generality that $k_{1}>k_{2}$. From our assumption $f \not \equiv g(\bmod \wp)$ it then follows that $f \not \equiv g E_{1, \chi}^{k_{1}-k_{2}}(\bmod \mathcal{P})$. Hence by Sturm's result (cf. Introduction) there exists $n \leq\left(k_{1} / 12\right)\left[\Gamma(1): \Gamma \cap \Gamma_{1}(p)\right]$ such that $a(n) \not \equiv b(n)(\bmod \mathcal{P})$. Since

$$
\left[\Gamma(1): \Gamma \cap \Gamma_{1}(p)\right] \leq\left[\Gamma(1): \Gamma_{1}(p)\right][\Gamma(1): \Gamma]=\left(p^{2}-1\right)[\Gamma(1): \Gamma]
$$

this proves our assertion for p odd.
Now assume that $p=2$. Let $\theta=1+\sum_{n \geq 1} q^{n^{2}}$ be the basic theta function of weight $1 / 2$ on $\Gamma_{0}(4)$. Then θ^{2} has weight 1 and is on $\Gamma_{1}(4)$. Multiplying g with θ^{2} and proceeding as above, taking into account that $\left[\Gamma(1): \Gamma_{1}(4)\right]=12$, this proves our assertion if $p=2$.
3. A result in characteristic zero. As indicated in the Introduction, from Theorem 1 one can obtain some conditional results also in characteristic zero. For this, one has to use the fact that if f resp. g are modular forms of integral weights k_{1} resp. k_{2} on the principal congruence subgroup $\Gamma(N)$ of level N with Fourier coefficients in \mathcal{O}_{K} and $f \equiv g(\bmod \wp), f \not \equiv 0(\bmod \wp)$ where \wp is a prime ideal of \mathcal{O}_{K} with $(\wp, 2 N)=1$, then $k_{1} \equiv k_{2}(\bmod (p-1))$ where $\wp \mid p$ (see $[4,5,7]$). As an example we will prove

TheOrem 2. Let f resp. g be modular forms of integral weights k_{1} resp. k_{2} on $\Gamma_{0}(N)$ with Dirichlet characters χ_{1} resp. χ_{2} modulo N, and with Fourier coefficients $a(n)$ resp. $b(n)(n \geq 0)$. Suppose that $k_{1}, k_{2} \geq 2$ and $k_{1} \neq k_{2}$. Suppose furthermore that f has Fourier coefficients in a number field K and $f \neq 0$. Let M be the product of the different prime divisors of N.

Then there exists
$n \ll\left\{\begin{array}{c}\max \left\{k_{1}, k_{2}\right\} \cdot \log ^{11}\left|k_{1}-k_{2}\right| \cdot M^{11} \frac{\phi(N)}{\#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)}\left[\Gamma(1): \Gamma_{0}(N)\right] \\ \max \left\{k_{1}, k_{2}\right\} \cdot \log ^{2}(2 N) \cdot \frac{\phi(N)}{\#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)}\left[\Gamma(1): k_{1} \mid>1,\right. \\ \left.\Gamma_{0}(N)\right] \\ \text { if }\left|k_{1}-k_{2}\right|=1,\end{array}\right.$
such that $a(n) \neq b(n)$, where the constant implied in \ll is absolute.
Proof. Assume that there exist f and g satisfying the given conditions (for appropriate $k_{1}, k_{2}, N, \chi_{1}, \chi_{2}$) and that

$$
\begin{equation*}
a(n)=b(n) \quad(\forall n \leq C) \tag{2}
\end{equation*}
$$

where C is a positive (absolute) multiple of

$$
\max \left\{k_{1}, k_{2}\right\} \cdot \log ^{11}\left|k_{1}-k_{2}\right| \cdot M^{11} \frac{\phi(N)}{\#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)}\left[\Gamma(1): \Gamma_{0}(N)\right]
$$

or of

$$
\max \left\{k_{1}, k_{2}\right\} \cdot \log ^{2}(2 N) \cdot \frac{\phi(N)}{\#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)}\left[\Gamma(1): \Gamma_{0}(N)\right]
$$

according as $\left|k_{1}-k_{2}\right|$ is >1 or 1 , and that this multiple can be chosen arbitrarily large.

Observe that f and g can be viewed as modular forms of weights k_{1} resp. k_{2} on the subgroup $\Gamma_{0}\left(N, \chi_{1}, \chi_{2}\right)$ of $\Gamma_{0}(N)$ consisting of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\Gamma_{0}(N)$ with $a \in \operatorname{ker} \chi_{1} \cap$ ker χ_{2}. The index of this subgroup in $\Gamma_{0}(N)$ is $\phi(N) / \#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)$.

Since $k_{2} \geq 2$, the space of cusp forms of weight k_{2} on $\Gamma_{0}\left(N, \chi_{1}, \chi_{2}\right)$ has a basis consisting of functions with rational Fourier expansions [8, Thm. 3.5.2]. By the theory of Eisenstein series, the space of modular forms of weight k_{2} on $\Gamma_{0}\left(N, \chi_{1}, \chi_{2}\right)$ has therefore a basis of functions $\left\{g_{1}, \ldots, g_{r}\right\}$ with Fourier coefficients in $\mathbb{Q}\left(\zeta_{N}\right)$ where ζ_{N} is a primitive N th root of unity. If $b_{m}(n)(n \geq 0)$ is the nth Fourier coefficients of $g_{m}(1 \leq m \leq r)$, then by the valence formula (cf. Introduction), since

$$
\begin{equation*}
C \geq \frac{k_{2}}{12} \frac{\phi(N)}{\#\left(\operatorname{ker} \chi_{1} \cap \operatorname{ker} \chi_{2}\right)}\left[\Gamma(1): \Gamma_{0}(N)\right] \tag{*}
\end{equation*}
$$

by our assumption, the $(M+1, r)$-matrix $\left(b_{m}(n)\right)_{0 \leq n \leq M, 1 \leq n \leq r}$ has rank r. Writing g in terms of our basis and taking into account (2) and the fact that $a(n) \in K$ for all n, we conclude that $b(n) \in K \mathbb{Q}\left(\zeta_{N}\right)$ for all n.

Again by the valence formula, since $f \neq 0$ and by $(*)$ with k_{2} replaced by k_{1}, at least one of the coefficients $a(n)=b(n)$ for $n \leq C$ must be non-zero. Dividing out by that and then taking the trace (sum of Galois conjugates)
of f and g from $K \mathbb{Q}\left(\zeta_{N}\right)$ down to \mathbb{Q}, we see that without loss of generality we can assume that $a(n), b(n) \in \mathbb{Q}$ for all n (note that the traces are not zero).

Since the weights are at least $2, f$ and g have bounded denominators, hence multiplying with appropriate non-zero integers we can assume that f and g have integral coefficients.

Let p be a prime. If $f \equiv 0(\bmod p)$, then by (2) and Sturm's result also $g \equiv 0(\bmod p)$. Dividing out by p and continuing in this way, since $f \neq 0$ we can assume that $f \not \equiv 0(\bmod p)$.

We will now dispose of the prime p appropriately and then apply Theorem 1.

Put

$$
a:=\left|k_{1}-k_{2}\right| .
$$

Let us first suppose that $a>1$. We then claim that there exists a prime $\ell \leq c_{1} \log a$ with $(\ell, a)=1$, where $c_{1}>1$ is an absolute constant (compare the reasoning in [6, proof of Thm. 4]). Indeed, for $x \geq 2$ in the usual notation let

$$
\vartheta(x)=\sum_{\ell \leq x} \log \ell
$$

with the sum extending over all primes $\ell \leq x$. Then by the classical result of Chebyshev there exists $c_{2}>0$ such that

$$
\vartheta(x)>c_{2} x \quad(\forall x \geq 2)
$$

Hence we can find $c_{1} \geq 2 / \log a$ such that

$$
\vartheta\left(c_{1} x\right)>x \quad(\forall x \geq 2)
$$

Therefore

$$
\prod_{\ell \leq c_{1} \log a} \ell=\exp \left(\vartheta\left(c_{1} \log a\right)\right)>a
$$

which implies our claim.
By [3], there exists an absolute constant $c_{3}>0$ and a prime p satisfying

$$
p \equiv 1(\bmod \ell M), \quad p<c_{3}(\ell M)^{11 / 2}
$$

Since $\ell \mid(p-1)$ and $(\ell, a)=1$, it follows that $p-1$ does not divide a. Also $(p, N)=1$ and $p>2$. Finally

$$
p^{2}-1<c_{3}^{2}(\ell M)^{11} \leq c_{3}^{2} c_{1}^{11} \cdot M^{11} \log ^{11} a
$$

Next if $a=1$, then from what we saw above there exists a prime p with $p \leq c_{1} \log (2 N)$ and $(p, 2 N)=1$. Hence

$$
p^{2}-1<c_{1}^{2} \log ^{2}(2 N)
$$

We now apply Theorem 1 with $K=\mathbb{Q}$ and $\wp=p$. Then (2) implies that $f \equiv g(\bmod p)$. However, $f \not \equiv 0(\bmod p)$, hence by $[4,7]$ since $(p, N)=1$
we infer that $k_{1} \equiv k_{2}(\bmod (p-1))$, which is a contradiction. This proves Theorem 2.

Remarks. (i) Note that

$$
\left[\Gamma(1): \Gamma_{0}(N)\right]=N \prod_{p \mid N}(1+1 / p) \ll N \log \log N
$$

where the latter bound follows by elementary reasoning.
(ii) Note that in special situations the arguments in the proof of Theorem 2 can be much shortened and sharper results may be derived. For example, assuming that $k_{1} \equiv k_{2}+2(\bmod 4),(N, 5)=1$ and $\chi_{1}=\chi_{2}=1$, we deduce taking $p=5$ that $a(n) \neq b(n)$ for some n satisfying the sharper bound $n \leq 2 \max \left\{k_{1}, k_{2}\right\} \cdot\left[\Gamma_{1}: \Gamma_{0}(N)\right]$.
(iii) It seems very desirable to replace M^{11} in the bound of Theorem 2 for $\left|k_{1}-k_{2}\right|>1$ by a smaller constant depending on N. Note that the Generalized Riemann Hypothesis (GRH) implies the existence of a prime p with

$$
p \equiv 1(\bmod \ell M), \quad p \ll(\ell M)^{2} \log ^{2}(\ell M)
$$

[3, Sect. 1]. Hence in Theorem 2 for $\left|k_{1}-k_{2}\right|>1$ under GRH one can replace $\log ^{11}\left|k_{1}-k_{2}\right| \cdot M^{11}$ by $\log ^{4}\left|k_{1}-k_{2}\right| \cdot \log ^{4}\left(\log \left(\left|k_{1}-k_{2}\right| M\right)\right) M^{4}$.

If Q is a positive-definite integral quadratic form in an even number of variables $2 k$ and $n \in \mathbb{N}_{0}$, we denote by $r_{Q}(n)$ the number of representations of n by Q. Recall that the theta series

$$
\theta_{Q}(z)=\sum_{n \geq 0} r_{Q}(n) q^{n} \quad(z \in \mathcal{H})
$$

is a modular form of weight k on $\Gamma_{0}(N)$ with a real quadratic character modulo N where N is the level of Q. In particular, ker $\chi \supset(\mathbb{Z} / N \mathbb{Z})^{* 2}$. Elementary considerations show that

$$
\left[(\mathbb{Z} / N \mathbb{Z})^{*}:(\mathbb{Z} / N \mathbb{Z})^{* 2}\right]=2^{t+\max \{e-3,0\}}
$$

where t is the number of odd prime divisors of N and 2^{e} is the exact 2-power dividing N. Hence we obtain from Theorem 2 (keeping in mind Remarks (i) and (iii)), for example, the following

Corollary. Let Q_{1} and Q_{2} be two positive-definite integral quadratic forms of level N in an even number of variables $2 k_{1}$ and $2 k_{2}$ respectively, with $k_{1}>k_{2}+1$ and $k_{2} \geq 2$. Then with the above notation there exists $n \in \mathbb{N}$ with

$$
n \ll \max \left\{k_{1}, k_{2}\right\} \cdot \log ^{11}\left|k_{1}-k_{2}\right| \cdot 2^{t+\max \{e-3,0\}} M^{11} N \log \log N
$$

such that $r_{Q_{1}}(n) \neq r_{Q_{2}}(n)$, where the constant implied in \ll is absolute.

Under GRH the above bound can be improved to

$$
\begin{aligned}
n \ll & \max \left\{k_{1}, k_{2}\right\} \cdot \log ^{4}\left|k_{1}-k_{2}\right| \\
& \times \log ^{4}\left(\log \left(\left|k_{1}-k_{2}\right| M\right)\right) \cdot 2^{t+\max \{e-3,0\}} M^{4} N \log \log N
\end{aligned}
$$

Remarks. (i) It is clear that by imposing more special conditions on Q_{1} and Q_{2}, the above bounds can be much improved; compare Remark (ii) after Theorem 2.
(ii) We do not know if a result of the above type can be proved using only the arithmetic theory of quadratic forms and no modular forms theory.
4. The case of eigenforms of $T(p)$. Here we want to give a slight improvement of the assertions of Theorem 1 e.g. in the case $\Gamma=\Gamma_{0}(N)$ if f and g are eigenforms of integral weights of the usual Hecke operator $T(p)$.

THEOREM 3. Let f resp. g be modular forms on $\Gamma_{0}(N)$ of integral weights k_{1} resp. k_{2} with $k_{1}, k_{2} \geq 2, k_{1} \neq k_{2}$, and suppose that f and g have Fourier coefficients $a(n)$ resp. $b(n)(n \geq 0)$ in \mathcal{O}_{K}. Let p be the rational prime with $\wp \mid p$ and suppose that $p \geq 5$. Furthermore suppose that $f \mid T(p) \equiv \alpha_{p} f$ $(\bmod \wp), g \mid T(p) \equiv \beta_{p} g(\bmod \wp)$ with $\alpha_{p}, \beta_{p} \in\left(\mathcal{O}_{K} / \wp\right)^{*}$ where the slash denotes the usual action of $T(p)$ (in weights k_{1} and k_{2} respectively). Then if $f \not \equiv g(\bmod \wp)$, there exists

$$
n \leq \frac{k_{1}+k_{2}+2+p(p-1)}{12}\left[\Gamma(1): \Gamma_{0}(N)\right]
$$

with $a(n) \not \equiv b(n)(\bmod \wp)$.
Remark. Note that in Theorem 3 we do not require that f or g are eigenforms of all Hecke operators nor that $(\wp, N)=1$.

Proof of Theorem 3. First note that because of our assumption k_{1}, k_{2} ≥ 2, the operator $T(p)$ acts on the Fourier coefficients of modular forms reduced modulo \wp as the operator usually denoted by $U(p)$, i.e. replaces the nth Fourier coefficient modulo \wp by the $p n$th coefficient modulo \wp.

We let

$$
E_{p-1}=1-\frac{2(p-1)}{B_{p-1}} \sum_{n \geq 1} \sigma_{p-2}(n) q^{n}
$$

the normalized Eisenstein series of weight $p-1$ on $\Gamma(1)$, where B_{p-1} is the $(p-1)$ th Bernoulli number and $\sigma_{p-2}(n)=\sum_{d \mid n} d^{p-2}$. Then E_{p-1} has p-integral Fourier coefficients and $E_{p-1} \equiv 1(\bmod p)$.

Determine non-negative integers a and b such that

$$
k_{1}+a(p-1) \equiv k_{2}+b(p-1) \not \equiv 0(\bmod p)
$$

Clearly we can do this in such a way that $a+b \leq p$.

Put

$$
\kappa_{1}:=k_{1}+a(p-1), \quad \kappa_{2}:=k_{2}+b(p-1)
$$

Then

$$
F:=f E_{p-1}^{a}, \quad G:=g E_{p-1}^{b}
$$

are modular forms of weights κ_{1} resp. κ_{2} on $\Gamma_{0}(N)$ with \wp-integral Fourier coefficients and $F \equiv f(\bmod \wp), G \equiv g(\bmod \wp)$.

Write

$$
\theta=q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d z}
$$

Denote by

$$
H:=\kappa_{2} \theta F \cdot G-\kappa_{1} F \cdot \theta G
$$

the first Rankin-Cohen bracket of F and G. Then as is well known and easy to see, H is a modular form (in fact a cusp form) of weight $\kappa_{1}+\kappa_{2}+2$ on $\Gamma_{0}(N)$. Observe that H has \wp-integral Fourier coefficients.

Now assume that

$$
\begin{equation*}
a(n) \equiv b(n)(\bmod \wp) \quad(\forall n \leq C) \tag{3}
\end{equation*}
$$

where

$$
C:=\frac{k_{1}+k_{2}+2+p(p-1)}{12}\left[\Gamma(1): \Gamma_{0}(N)\right] .
$$

Since $\kappa_{1} \equiv \kappa_{2}(\bmod \wp)$, we see that H has order of vanishing modulo \wp greater than C. Since by construction

$$
C \geq \frac{\kappa_{1}+\kappa_{2}+2}{12}\left[\Gamma_{1}: \Gamma_{0}(N)\right]
$$

it follows from Sturm's result that

$$
\begin{equation*}
H \equiv 0(\bmod \wp) \tag{4}
\end{equation*}
$$

If $g \equiv 0(\bmod \wp)$, then also $f \equiv 0(\bmod \wp)$, by (3) and again by Sturm's result since

$$
C \geq \frac{k_{1}}{12}\left[\Gamma_{1}: \Gamma_{0}(N)\right]
$$

hence $f \equiv g \equiv 0(\bmod \wp)$, and we have a contradiction.
Therefore $g \not \equiv 0(\bmod \wp)$, and we find from (4) that

$$
\theta\left(\frac{f}{g}\right) \equiv 0(\bmod \wp)
$$

By (3) again and the fact that

$$
C \geq \frac{k_{2}}{12}\left[\Gamma_{1}: \Gamma_{0}(N)\right]
$$

it follows that

$$
\begin{equation*}
f \equiv g \cdot A \mid V(p)(\bmod \wp) \tag{5}
\end{equation*}
$$

where A is a power series in q with \wp-integral coefficients and $V(p)$ is the operator on $\left(\mathcal{O}_{K} / \wp\right)[[q]]$ given by

$$
\sum_{n \geq 0} c(n) q^{n} \mid V(p)=\sum_{n \geq 0} c(n) q^{p n}
$$

Applying $U(p)$ on both sides of (5) we conclude that

$$
f|U(p) \equiv g| U(p) \cdot A(\bmod \wp)
$$

hence our hypothesis implies that

$$
\begin{equation*}
A \equiv \frac{\alpha_{p}}{\beta_{p}} \frac{f}{g}(\bmod \wp) \tag{6}
\end{equation*}
$$

Therefore, combining (5) and (6) we obtain

$$
\left.\frac{f}{g} \equiv \frac{\alpha_{p}}{\beta_{p}} \cdot\left(\frac{f}{g}\right) \right\rvert\, V(p)(\bmod \wp)
$$

Hence f / g is constant modulo \wp and so $f \equiv g(\bmod \wp)$, because there must exist $n \leq C$ with $a(n) \equiv b(n) \not \equiv 0(\bmod \wp)$ since otherwise $g \equiv 0(\bmod \wp)$. This is a contradiction and proves Theorem 3.
5. An example in the case of Hecke eigenforms. The purpose of this section is to prove

Theorem 4. Let f resp. g be normalized Hecke eigenforms on $\Gamma_{0}(N)$ of even integral weights k_{1} resp. k_{2} with $k_{1}, k_{2} \geq 2, k_{1} \neq k_{2}$, and with Fourier coefficients $a(n)$ resp. $b(n)(n \geq 1)$. Suppose that $(N, 30)=1$. Let $K_{f, g}$ be the number field generated over \mathbb{Q} by the $a(n)$ and $b(n)$ for all $n \geq 1$. Then there are infinitely many prime ideals \wp of $K_{f, g}$ such that $f \not \equiv g(\bmod \wp)$ implies the existence of

$$
\begin{equation*}
n \leq \max \left\{900, \frac{\max \left\{k_{1}, k_{2}\right\}}{12}\left[\Gamma_{1}: \Gamma_{0}(N)\right]\right\} \tag{**}
\end{equation*}
$$

with $a(n) \not \equiv b(n)(\bmod \wp)$.
Proof. As stated in the Introduction, the proof is a modification of an argument due to M. Ram Murty in characteristic zero.

If ℓ is a prime with $(N, \ell)=1$, then we have

$$
\begin{equation*}
a\left(\ell^{2}\right)=a(\ell)^{2}-\ell^{k_{1}-1}, \quad b\left(\ell^{2}\right)=b(\ell)^{2}-\ell^{k_{2}-1} \tag{7}
\end{equation*}
$$

By [2] there exist infinitely many prime numbers p such that 2,3 or 5 is a primitive root modulo p. Take a prime ideal \wp of $\mathcal{O}_{K_{f, g}}$ lying above such a p and assume that $a(n) \equiv b(n)(\bmod \wp)$ for all n satisfying $(* *)$. Then for $\ell \in\{2,3,5\}$ it follows from (7) and the multiplicativity of the coefficients $a(n)$ and $b(n)$ that

$$
\ell^{k_{1}-1} \equiv \ell^{k_{2}-1}(\bmod \wp)
$$

hence

$$
\ell^{k_{1}-k_{2}} \equiv 1(\bmod p)
$$

Since ℓ is a primitive root modulo p, we conclude that $k_{1} \equiv k_{2}(\bmod p-1)$.
For $p \geq 5$, let E_{p-1} be the normalized Eisenstein series of weight $p-1$ on Γ_{1} as in Section 4. Assuming $k_{1}>k_{2}$, we then infer from (7) that

$$
f \equiv g E_{p-1}^{\left(k_{1}-k_{2}\right) /(p-1)}(\bmod \wp)
$$

and from Sturm's result obtain the contradiction $f \equiv g(\bmod \wp)$.

References

[1] D. Goldfeld and J. Hoffstein, On the number of Fourier coefficients that determine a modular form, in: A Tribute to Emil Grosswald: Number Theory and Related Analysis, M. Knopp and M. Sheingorn (eds.), Contemp. Math. 143, Amer. Math. Soc., 1993, 385-393.
[2] D. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford Ser. (2) 37 (1986), 27-38.
[3] -, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338.
[4] N. Katz, p-adic properties of modular schemes and modular forms, in: Modular Functions of One Variable III, W. Kuyk and J.-P. Serre (eds.), Lecture Notes in Math. 350, Springer, 1973, 69-190.
[5] S. Lang, Introduction to Modular Forms, Grundlehren Math. Wiss. 222, Springer, 1976.
[6] M. Ram Murty, Congruences between modular forms, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997.
[7] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in: Modular Functions of One Variable III, W. Kuyk and J.-P. Serre (eds.), Lecture Notes in Math. 350, Springer, 1973, 191-268.
[8] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Publ. Math. Soc. Japan 11, Iwanami Shoten and Princeton Univ. Press, 1971.
[9] -, On modular forms of half-integral weight, Ann. of Math. (2) 97 (1973), 440-481.
[10] J. Sturm, On the congruence of modular forms, in: Number Theory (New York, 1984-1985), D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson (eds.), Lecture Notes in Math. 1240, Springer, 1987.

Mathematisches Institut, INF 288
Universität Heidelberg
D-69120 Heidelberg, Germany
E-mail: winfried@mathi.uni-heidelberg.de

