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On Fourier coefficients of
modular forms of different weights
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Winfried Kohnen (Heidelberg)

1. Introduction. Let f and g be modular forms on a congruence sub-
group Γ of Γ (1) := SL2(Z) of weights k1 and k2, respectively. We shall
suppose that k1, k2 > 1 and that either both k1 and k2 are integral or both
are half-integral, with the usual assumption that Γ ⊂ Γ0(4) in the latter
case. For basic facts on half-integral weight modular forms we refer the
reader to [9]. We denote by a(n) resp. b(n) (n ≥ 0) the Fourier coefficients
of f resp. g.

A rather intrinsic question then is to ask for the least index n such that
a(n) 6= b(n) provided that f 6= g. More generally, if a(n) and b(n) for all
n are contained in the ring of integers OK of a number field K and ℘ is
a prime ideal of OK , then if f 6≡ g (mod℘) (meaning that there exists at
least one n with a(n) 6≡ b(n) (mod℘)), one may ask for the least n with
a(n) 6≡ b(n) (mod℘).

If k1 = k2, then as is well known the valence formula for modular
forms implies that there exists n ≤ (k1/12)[Γ (1) : Γ ] such that a(n)
6= b(n) if f 6= g. Under the additional hypothesis of integrality of a(n)
and b(n) as above, by a fundamental result of Sturm [10] the same result
is true modulo ℘. Note that in the above discussion the half-integral
weight case can be deduced from the integral weight case by taking
squares.

In the following we will suppose that k1 6= k2. In this case, if k1 and
k2 are integral and in addition one assumes that f and g are normalized
cuspidal Hecke eigenforms on Γ0(N), very good bounds on the least n with
a(n) 6= b(n) are known [1, 6]. Note that the paper [6] also contains some
statements in the case of unequal integral weights for arbitrary f and g
whose proof unfortunately is not correct, as was first pointed out by the
author of [6] and by J. Sengupta.
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The main purpose of this paper is to give some generalizations of Sturm’s
result when the weights are different, with bounds however depending on ℘,
and also to give some consequences in characteristic zero.

We shall start by showing that if p is the rational prime with ℘ | p and
a(n), b(n) ∈ OK for all n, then if p is odd there exists n ≤ (max{k1, k2} ·
(p2 − 1)/12)[Γ (1) : Γ ] such that a(n) 6≡ b(n) (mod℘) provided that f 6≡ g
(mod℘) (Thm. 1, Sect. 2). The proof easily follows from the existence of
a certain Eisenstein series of weight 1 on Γ1(p) with certain congruence
properties modulo p. The usefulness of this Eisenstein series in the study of
congruences of modular forms was first pointed out by Shimura (cf. e.g. [5,
Chap. XV, Sect. 1]). A similar result is also (trivially) true if p = 2.

From Theorem 1, using results of Serre [7] and Katz [4] on modular
forms modulo p, one can also obtain some results in characteristic zero for
k1 6= k2. For example, suppose that Γ = Γ0(N), that k1 and k2 are even
integral and that a(n) ∈ K for all n. Then using a theorem of Heath-Brown
[3] on the least prime in an arithmetic progression, we shall show that there
exists n �N max{k1, k2} log11 |k1 − k2| such that a(n) 6= b(n) where the
implied constant in �N depends on N . In fact, we shall prove a slightly
more general result, allowing f and g to have Dirichlet characters modulo
N (Thm. 2, Sect. 3). Theorem 2 has an obvious application to quadratic
forms (Corollary, Sect. 3).

One can obtain bounds that are sometimes slightly better than those of
Theorem 1 if e.g. Γ = Γ0(N) and if in addition one assumes that k1, k2 are
integral and f and g are eigenforms of the usual Hecke operator T (p), with
eigenvalues non-zero modulo ℘ (Thm. 3, Sect. 4). The proof uses the first
Rankin–Cohen bracket on modular forms.

Ideally, one would hope that similar assertions to those of Theorem 1
would hold with bounds independent of ℘. However, it seems to be unclear
how to prove this. On the other hand, in the case of Γ = Γ0(N) and integral
weights, and if f and g are normalized cuspidal Hecke eigenforms, under
certain simple conditions on N we shall show that in fact there are infinitely
many prime ideals ℘ ofOKf,g for which such a result is true (Thm. 4, Sect. 5).
Here Kf,g is the number field generated over Q by all the Fourier coefficients
a(n), b(n) (n ≥ 1). The proof is an easy modification of a beautiful and
simple argument due to M. Ram Murty [6] in characteristic zero.

Acknowledgements. The author would like to thank M. Ram Murty
and J. Sengupta for a useful discussion.

Notation. The letter Γ always denotes a congruence subgroup of Γ (1).
For N ∈ N we let as usual Γ0(N), resp. Γ1(N), be the congruence subgroups
of Γ (1) consisting of matrices

(
a b
c d

)
such that c ≡ 0 (modN), resp. c ≡ 0

(modN) and a ≡ d ≡ 1 (modN).
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For z ∈ H, the complex upper half-plane, we put q = e2πiz . If f is a
modular form on Γ ⊂ Γ (1) and M ∈ N is minimal such that

( 1
0
M
1

)
∈ Γ ,

then f has a Fourier expansion f =
∑
n≥0 a(n)qnM where qM = e2πiz/M

(z ∈ H).
The letter K always denotes a number field and ℘ is a prime ideal of the

ring of integers OK of K. If f =
∑
n≥0 a(n)qnM and g =

∑
n≥0 b(n)qnM are

power series in qM with ℘-integral coefficients and a(n) ≡ b(n) (mod℘) for
all n, then we shall write f ≡ g (mod℘).

2. A generalization of Sturm’s result to the case of different
weights. We shall prove

Theorem 1. Let f and g be modular forms on Γ of weights k1 and k2

respectively , where k1, k2 > 1, k1 6= k2 and either both k1, k2 are integral
or both are half-integral. Suppose that f resp. g have Fourier coefficients
a(n) resp. b(n) in OK . Let p be the rational prime with ℘ | p. Then if f 6≡ g
(mod℘), there exists

n ≤ max{k1, k2}
12

·
{

[Γ (1) : Γ ∩ Γ1(p)] if p > 2,

[Γ (1) : Γ ∩ Γ1(4)] if p = 2

such that a(n) 6≡ b(n) (mod℘). In particular there exists

n ≤





max{k1, k2}
12

(p2 − 1) · [Γ (1) : Γ ] if p > 2,

max{k1, k2} · [Γ (1) : Γ ] if p = 2

with a(n) 6≡ b(n) (mod℘).

Proof. First suppose that p is odd. Let ζ be a primitive (p − 1)th root
of unity. Then p splits completely in Q(ζ). Choose a prime ideal ℘1 of Q(ζ)
lying above p. Since the numbers 1, ζ, . . . , ζp−2 are different modulo ℘1 and
reduction modulo ℘1 induces an isomorphism (OQ(ζ)/℘1)∗ ∼= (Z/pZ)∗, we
can define a Dirichlet character χ modulo p by requiring that

χ(m)m ≡ 1 (mod p)

for all m prime to p.
Let

G1,χ := B1,χ − 2
∑

n≥1

(∑

d|n
χ(d)

)
qn

be the Eisenstein series of weight 1 and character χ on Γ0(p), where

B1,χ =
1
p

p−1∑

m=1

χ(m)m
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is the usual modified 1st Bernoulli number. In particular G1,χ is on Γ1(p).
Note that

p−1∑

m=1

χ(m)m 6≡ 0 (mod℘1).

Put

E1,χ :=
1

B1,χ
G1,χ.

Then E1,χ is a modular form of weight 1 on Γ1(p) with ℘1-integral Fourier
coefficients and

(1) E1,χ ≡ 1 (mod p).

This construction is of course well known.
Let P be a prime ideal of the composite field KQ(ζ) lying above ℘, hence

above p. Then Q := P ∩ OQ(ζ) ⊃ P ∩ Z = pZ, i.e. Q is an ideal of Q(ζ)
dividing p. By (1) we therefore find that E1,χ ≡ 1 (modQ), hence E1,χ ≡ 1
(modP).

Suppose without loss of generality that k1 > k2. From our assumption
f 6≡ g (mod℘) it then follows that f 6≡ gEk1−k2

1,χ (modP). Hence by Sturm’s
result (cf. Introduction) there exists n ≤ (k1/12)[Γ (1) : Γ ∩Γ1(p)] such that
a(n) 6≡ b(n) (modP). Since

[Γ (1) : Γ ∩ Γ1(p)] ≤ [Γ (1) : Γ1(p)][Γ (1) : Γ ] = (p2 − 1)[Γ (1) : Γ ],

this proves our assertion for p odd.
Now assume that p = 2. Let θ = 1 +

∑
n≥1 q

n2
be the basic theta

function of weight 1/2 on Γ0(4). Then θ2 has weight 1 and is on Γ1(4).
Multiplying g with θ2 and proceeding as above, taking into account that
[Γ (1) : Γ1(4)] = 12, this proves our assertion if p = 2.

3. A result in characteristic zero. As indicated in the Introduction,
from Theorem 1 one can obtain some conditional results also in characteristic
zero. For this, one has to use the fact that if f resp. g are modular forms of
integral weights k1 resp. k2 on the principal congruence subgroup Γ (N) of
level N with Fourier coefficients in OK and f ≡ g (mod℘), f 6≡ 0 (mod℘)
where ℘ is a prime ideal of OK with (℘, 2N) = 1, then k1 ≡ k2 (mod (p−1))
where ℘ | p (see [4, 5, 7]). As an example we will prove

Theorem 2. Let f resp. g be modular forms of integral weights k1 resp.
k2 on Γ0(N) with Dirichlet characters χ1 resp. χ2 modulo N , and with
Fourier coefficients a(n) resp. b(n) (n ≥ 0). Suppose that k1, k2 ≥ 2 and
k1 6= k2. Suppose furthermore that f has Fourier coefficients in a number
field K and f 6= 0. Let M be the product of the different prime divisors of N .
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Then there exists

n�





max{k1, k2} · log11 |k1 − k2| ·M11 φ(N)
#(kerχ1 ∩ kerχ2)

[Γ (1) : Γ0(N)]

if |k1 − k2| > 1,

max{k1, k2} · log2(2N) · φ(N)
#(kerχ1 ∩ kerχ2)

[Γ (1) : Γ0(N)]

if |k1 − k2| = 1,

such that a(n) 6= b(n), where the constant implied in � is absolute.

Proof. Assume that there exist f and g satisfying the given conditions
(for appropriate k1, k2, N, χ1, χ2) and that

(2) a(n) = b(n) (∀n ≤ C)

where C is a positive (absolute) multiple of

max{k1, k2} · log11 |k1 − k2| ·M11 φ(N)
#(kerχ1 ∩ kerχ2)

[Γ (1) : Γ0(N)]

or of

max{k1, k2} · log2(2N) · φ(N)
#(kerχ1 ∩ kerχ2)

[Γ (1) : Γ0(N)]

according as |k1 − k2| is > 1 or 1, and that this multiple can be chosen
arbitrarily large.

Observe that f and g can be viewed as modular forms of weights k1 resp.
k2 on the subgroup Γ0(N,χ1, χ2) of Γ0(N) consisting of matrices

(
a b
c d

)
∈

Γ0(N) with a ∈ kerχ1 ∩ kerχ2. The index of this subgroup in Γ0(N) is
φ(N)/#(kerχ1 ∩ kerχ2).

Since k2 ≥ 2, the space of cusp forms of weight k2 on Γ0(N,χ1, χ2) has
a basis consisting of functions with rational Fourier expansions [8, Thm.
3.5.2]. By the theory of Eisenstein series, the space of modular forms of
weight k2 on Γ0(N,χ1, χ2) has therefore a basis of functions {g1, . . . , gr}
with Fourier coefficients in Q(ζN ) where ζN is a primitive Nth root of unity.
If bm(n) (n ≥ 0) is the nth Fourier coefficients of gm (1 ≤ m ≤ r), then by
the valence formula (cf. Introduction), since

(∗) C ≥ k2

12
φ(N)

#(kerχ1 ∩ kerχ2)
[Γ (1) : Γ0(N)]

by our assumption, the (M + 1, r)-matrix (bm(n))0≤n≤M, 1≤n≤r has rank r.
Writing g in terms of our basis and taking into account (2) and the fact that
a(n) ∈ K for all n, we conclude that b(n) ∈ KQ(ζN ) for all n.

Again by the valence formula, since f 6= 0 and by (∗) with k2 replaced
by k1, at least one of the coefficients a(n) = b(n) for n ≤ C must be non-zero.
Dividing out by that and then taking the trace (sum of Galois conjugates)
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of f and g from KQ(ζN ) down to Q, we see that without loss of generality
we can assume that a(n), b(n) ∈ Q for all n (note that the traces are not
zero).

Since the weights are at least 2, f and g have bounded denominators,
hence multiplying with appropriate non-zero integers we can assume that f
and g have integral coefficients.

Let p be a prime. If f ≡ 0 (mod p), then by (2) and Sturm’s result also
g ≡ 0 (mod p). Dividing out by p and continuing in this way, since f 6= 0 we
can assume that f 6≡ 0 (mod p).

We will now dispose of the prime p appropriately and then apply Theo-
rem 1.

Put
a := |k1 − k2|.

Let us first suppose that a > 1. We then claim that there exists a prime
` ≤ c1 log a with (`, a) = 1, where c1 > 1 is an absolute constant (compare
the reasoning in [6, proof of Thm. 4]). Indeed, for x ≥ 2 in the usual notation
let

ϑ(x) =
∑

`≤x
log `

with the sum extending over all primes ` ≤ x. Then by the classical result
of Chebyshev there exists c2 > 0 such that

ϑ(x) > c2x (∀x ≥ 2).

Hence we can find c1 ≥ 2/log a such that

ϑ(c1x) > x (∀x ≥ 2).

Therefore ∏

`≤c1 log a

` = exp(ϑ(c1 log a)) > a,

which implies our claim.
By [3], there exists an absolute constant c3 > 0 and a prime p satisfying

p ≡ 1 (mod `M), p < c3 (`M)11/2.

Since ` | (p− 1) and (`, a) = 1, it follows that p− 1 does not divide a. Also
(p,N) = 1 and p > 2. Finally

p2 − 1 < c23 (`M)11 ≤ c23c11
1 ·M11 log11 a.

Next if a = 1, then from what we saw above there exists a prime p with
p ≤ c1 log(2N) and (p, 2N) = 1. Hence

p2 − 1 < c21 log2(2N).

We now apply Theorem 1 with K = Q and ℘ = p. Then (2) implies that
f ≡ g (mod p). However, f 6≡ 0 (mod p), hence by [4, 7] since (p,N) = 1
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we infer that k1 ≡ k2 (mod (p − 1)), which is a contradiction. This proves
Theorem 2.

Remarks. (i) Note that

[Γ (1) : Γ0(N)] = N
∏

p|N
(1 + 1/p)� N log logN

where the latter bound follows by elementary reasoning.
(ii) Note that in special situations the arguments in the proof of The-

orem 2 can be much shortened and sharper results may be derived. For
example, assuming that k1 ≡ k2 + 2 (mod 4), (N, 5) = 1 and χ1 = χ2 = 1,
we deduce taking p = 5 that a(n) 6= b(n) for some n satisfying the sharper
bound n ≤ 2 max{k1, k2} · [Γ1 : Γ0(N)].

(iii) It seems very desirable to replace M 11 in the bound of Theorem 2
for |k1 − k2| > 1 by a smaller constant depending on N . Note that the
Generalized Riemann Hypothesis (GRH) implies the existence of a prime p
with

p ≡ 1 (mod `M), p� (`M)2 log2(`M)

[3, Sect. 1]. Hence in Theorem 2 for |k1−k2| > 1 under GRH one can replace
log11 |k1 − k2| ·M11 by log4 |k1 − k2| · log4(log(|k1 − k2|M))M4.

If Q is a positive-definite integral quadratic form in an even number of
variables 2k and n ∈ N0, we denote by rQ(n) the number of representations
of n by Q. Recall that the theta series

θQ(z) =
∑

n≥0

rQ(n)qn (z ∈ H)

is a modular form of weight k on Γ0(N) with a real quadratic character
modulo N where N is the level of Q. In particular, kerχ ⊃ (Z/NZ)∗2.
Elementary considerations show that

[(Z/NZ)∗ : (Z/NZ)∗2] = 2t+max{e−3,0}

where t is the number of odd prime divisors of N and 2e is the exact 2-power
dividing N . Hence we obtain from Theorem 2 (keeping in mind Remarks (i)
and (iii)), for example, the following

Corollary. Let Q1 and Q2 be two positive-definite integral quadratic
forms of level N in an even number of variables 2k1 and 2k2 respectively ,
with k1 > k2 +1 and k2 ≥ 2. Then with the above notation there exists n ∈ N
with

n� max{k1, k2} · log11 |k1 − k2| · 2t+max{e−3,0}M11N log logN

such that rQ1(n) 6= rQ2(n), where the constant implied in � is absolute.
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Under GRH the above bound can be improved to

n� max{k1, k2} · log4 |k1 − k2|
× log4(log(|k1 − k2|M)) · 2t+max{e−3,0}M4N log logN.

Remarks. (i) It is clear that by imposing more special conditions on
Q1 and Q2, the above bounds can be much improved; compare Remark (ii)
after Theorem 2.

(ii) We do not know if a result of the above type can be proved using
only the arithmetic theory of quadratic forms and no modular forms theory.

4. The case of eigenforms of T (p). Here we want to give a slight
improvement of the assertions of Theorem 1 e.g. in the case Γ = Γ0(N) if f
and g are eigenforms of integral weights of the usual Hecke operator T (p).

Theorem 3. Let f resp. g be modular forms on Γ0(N) of integral weights
k1 resp. k2 with k1, k2 ≥ 2, k1 6= k2, and suppose that f and g have Fourier
coefficients a(n) resp. b(n) (n ≥ 0) in OK . Let p be the rational prime
with ℘ | p and suppose that p ≥ 5. Furthermore suppose that f |T (p) ≡ αpf
(mod℘), g|T (p) ≡ βpg (mod℘) with αp, βp ∈ (OK/℘)∗ where the slash
denotes the usual action of T (p) (in weights k1 and k2 respectively). Then
if f 6≡ g (mod℘), there exists

n ≤ k1 + k2 + 2 + p(p− 1)
12

[Γ (1) : Γ0(N)]

with a(n) 6≡ b(n) (mod℘).

Remark. Note that in Theorem 3 we do not require that f or g are
eigenforms of all Hecke operators nor that (℘,N) = 1.

Proof of Theorem 3. First note that because of our assumption k1, k2

≥ 2, the operator T (p) acts on the Fourier coefficients of modular forms
reduced modulo ℘ as the operator usually denoted by U(p), i.e. replaces the
nth Fourier coefficient modulo ℘ by the pnth coefficient modulo ℘.

We let

Ep−1 = 1− 2(p− 1)
Bp−1

∑

n≥1

σp−2(n)qn,

the normalized Eisenstein series of weight p − 1 on Γ (1), where Bp−1 is
the (p − 1)th Bernoulli number and σp−2(n) =

∑
d|n d

p−2. Then Ep−1 has
p-integral Fourier coefficients and Ep−1 ≡ 1 (mod p).

Determine non-negative integers a and b such that

k1 + a(p− 1) ≡ k2 + b(p− 1) 6≡ 0 (mod p).

Clearly we can do this in such a way that a+ b ≤ p.
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Put
κ1 := k1 + a(p− 1), κ2 := k2 + b(p− 1).

Then
F := fEap−1, G := gEbp−1

are modular forms of weights κ1 resp. κ2 on Γ0(N) with ℘-integral Fourier
coefficients and F ≡ f (mod℘), G ≡ g (mod℘).

Write

θ = q
d

dq
=

1
2πi

d

dz
.

Denote by
H := κ2θF ·G− κ1F · θG

the first Rankin–Cohen bracket of F and G. Then as is well known and easy
to see, H is a modular form (in fact a cusp form) of weight κ1 + κ2 + 2 on
Γ0(N). Observe that H has ℘-integral Fourier coefficients.

Now assume that

(3) a(n) ≡ b(n) (mod℘) (∀n ≤ C)

where

C :=
k1 + k2 + 2 + p(p− 1)

12
[Γ (1) : Γ0(N)].

Since κ1 ≡ κ2 (mod℘), we see that H has order of vanishing modulo ℘
greater than C. Since by construction

C ≥ κ1 + κ2 + 2
12

[Γ1 : Γ0(N)],

it follows from Sturm’s result that

(4) H ≡ 0 (mod℘).

If g ≡ 0 (mod℘), then also f ≡ 0 (mod℘), by (3) and again by Sturm’s
result since

C ≥ k1

12
[Γ1 : Γ0(N)],

hence f ≡ g ≡ 0 (mod℘), and we have a contradiction.
Therefore g 6≡ 0 (mod℘), and we find from (4) that

θ

(
f

g

)
≡ 0 (mod℘).

By (3) again and the fact that

C ≥ k2

12
[Γ1 : Γ0(N)],

it follows that

(5) f ≡ g ·A|V (p) (mod℘)
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where A is a power series in q with ℘-integral coefficients and V (p) is the
operator on (OK/℘)[[q]] given by

∑

n≥0

c(n)qn|V (p) =
∑

n≥0

c(n)qpn.

Applying U(p) on both sides of (5) we conclude that

f |U(p) ≡ g|U(p) ·A (mod℘),

hence our hypothesis implies that

(6) A ≡ αp
βp

f

g
(mod℘).

Therefore, combining (5) and (6) we obtain

f

g
≡ αp
βp
·
(
f

g

)∣∣∣∣V (p) (mod℘).

Hence f/g is constant modulo ℘ and so f ≡ g (mod℘), because there must
exist n ≤ C with a(n) ≡ b(n) 6≡ 0 (mod℘) since otherwise g ≡ 0 (mod℘).
This is a contradiction and proves Theorem 3.

5. An example in the case of Hecke eigenforms. The purpose of
this section is to prove

Theorem 4. Let f resp. g be normalized Hecke eigenforms on Γ0(N) of
even integral weights k1 resp. k2 with k1, k2 ≥ 2, k1 6= k2, and with Fourier
coefficients a(n) resp. b(n) (n ≥ 1). Suppose that (N, 30) = 1. Let Kf,g be
the number field generated over Q by the a(n) and b(n) for all n ≥ 1. Then
there are infinitely many prime ideals ℘ of Kf,g such that f 6≡ g (mod℘)
implies the existence of

(∗∗) n ≤ max
{

900,
max{k1, k2}

12
[Γ1 : Γ0(N)]

}

with a(n) 6≡ b(n) (mod℘).

Proof. As stated in the Introduction, the proof is a modification of an
argument due to M. Ram Murty in characteristic zero.

If ` is a prime with (N, `) = 1, then we have

(7) a(`2) = a(`)2 − `k1−1, b(`2) = b(`)2 − `k2−1.

By [2] there exist infinitely many prime numbers p such that 2, 3 or 5 is
a primitive root modulo p. Take a prime ideal ℘ of OKf,g lying above such
a p and assume that a(n) ≡ b(n) (mod℘) for all n satisfying (∗∗). Then for
` ∈ {2, 3, 5} it follows from (7) and the multiplicativity of the coefficients
a(n) and b(n) that

`k1−1 ≡ `k2−1 (mod℘),
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hence
`k1−k2 ≡ 1 (mod p).

Since ` is a primitive root modulo p, we conclude that k1 ≡ k2 (mod p− 1).
For p ≥ 5, let Ep−1 be the normalized Eisenstein series of weight p − 1

on Γ1 as in Section 4. Assuming k1 > k2, we then infer from (7) that

f ≡ gE(k1−k2)/(p−1)
p−1 (mod℘)

and from Sturm’s result obtain the contradiction f ≡ g (mod℘).
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