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1. Introduction. A classical problem of the theory of diophantine equa-
tions is to find the solutions of

xn = Dy2 + 1(1)

in integers x, y. Using elementary and algebraic number theoretical tools
J. H. E. Cohn [2] proved necessary conditions for the unsolvability of (1).
Moreover, he solved (1) completely for D ≤ 100 up to the six pairs

(n,D) = (3, 31), (5, 31), (3, 38), (3, 61), (5, 71) and (7, 71)

and parity conditions on x. We summarize our results in the following the-
orem.

Theorem. Apart from (x, y) = (1, 0) equation (1) has the solutions

(x, y) = (5,±12) if (n,D) = (3, 31),

(x, y) = (2,±1) if (n,D) = (5, 31),

(x, y) = (7,±3) if (n,D) = (3, 38),

(x, y) = (13,±6) if (n,D) = (3, 61),

none if (n,D) = (5, 71),

none if (n,D) = (7, 71).

This confirms the conjecture of Cohn [2].
To prove the Theorem, recently developed techniques of numerical dio-

phantine analysis are used. Notice that if n = 3 then (1) is an elliptic curve
in canonical form over Q and if n = 5 then we can transform it by using a
straightforward argument to some curve of genus one. In the case n = 3 one
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can use directly the method developed by J. Gebel, A. Pethő, H. G. Zimmer
[4] and R. J. Stroeker and N. Tzanakis [7].

The equation
(D2y)2 = (Dx)3 −D3

was solved in Gebel, Pethő and Zimmer [5] for D = 31 and D = 38 assum-
ing the Birch and Swinnerton-Dyer conjecture. This is equivalent to (1) for
(n,D) = (3, 31) and (3, 38). To avoid the Birch and Swinnerton-Dyer conjec-
ture in the above cases and to handle (n,D) = (3, 61) we used J. Cremona’s
program mwrank combined with the method of [5].

If n = 5, then (1) can be easily transformed to some equations of the
form

v2 = Q(u),

where Q is a quartic polynomial with integer coefficients. We solve the re-
sulting equations partly by referring to results of Cohn’s paper and partly
by using the method of N. Tzanakis [8], which was implemented by the first
author in the computer algebra system Magma [1].

When n = 7 we use the arguments of M. Mignotte and B. M. M. de Weger
[6] and we reduce our equation to several Thue equations.

We are grateful to Gary Walsh for calling our attention to the paper of
Cohn.

2. The case n = 3. Cohn was not able to solve completely the equations

E ′D: x3 = Dy2 + 1, with D = 31, 38, 61 and x odd.(2)

Multiplying both sides of (2) by D3 we obtain

(Dx)3 = (D2y)2 +D3,

which with the notation Dx = u, D2y = v has the shape

ED: v2 = u3 −D3.(3)

Equation (3) represents a Mordell’s equation v2−u3 = k and the integer
points of this kind of equation were computed by Gebel, Pethő and Zimmer
[5] for |k| ≤ 105 provided that the Birch and Swinnerton-Dyer conjecture is
true. For the values 31 and 38 the inequality D3 < 105 holds, hence |u| ≤
3.791 · 109 by [5, Table 8]. Using J. Cremona’s mwrank [10] we checked the
computation of [5] and observed that the results coincide, but now without
the assumption of the Birch and Swinnerton-Dyer conjecture.

For D = 61 the value of D3 is larger than 105, hence we computed the
solution of (3) in this case by using the computer algebra system Magma.
We note that for D ∈ {31, 38, 61} the torsion subgroup E tors

D (Q) has order
two and is generated by the point (D, 0). The results of our computation
are listed in Table 1.
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Table 1

D ED(Q)/Etors
D (Q) ED(Z) E′D(Z)

31 〈(155, 1922)〉 (31, 0), (155,±1922) (1, 0), (5,±2)

38 〈(57, 361)〉 × 〈(522, 11924)〉 (522,±11924), (38, 0) (1, 0), (7,±3)
(57,±361), (266,±4332)

61
〈(

610
8 , 3721

8

)〉
×
〈(

4230480540
3796416 , 141208887617

3796416

)〉
(793,±22326), (61, 0) (1, 0), (13,±6)

3. The case n = 5. In Cohn’s paper two equations remain unsolved:

x5 = 31y2 + 1,(4)

x5 = 71y2 + 1.(5)

In both cases he did not determine the solutions with even x. Equations (4)
and (5) have the common shape

x5 − 1 = py2.

By computing the factorization of the left hand side of this equation we
obtain

(x− 1)(x4 + x3 + x2 + x+ 1) = py2.

For integers x the greatest common divisor of x− 1 and x4 +x3 +x2 +x+ 1
is 1 or 5. Hence, it remains to consider the following systems of diophantine
equations:

(I)

{
y2

1 = x− 1,

py2
2 = x4 + x3 + x2 + x+ 1;

(II)

{
py2

1 = x− 1,

y2
2 = x4 + x3 + x2 + x+ 1;

(III)

{
5y2

1 = x− 1,

5py2
2 = x4 + x3 + x2 + x+ 1;

(IV)

{
5py2

1 = x− 1,

5y2
2 = x4 + x3 + x2 + x+ 1.

The second equation of (II) is not solvable for even x by [2, Lemma 2.3]. For
the second equation of (IV) we can apply Corollary 3 of [2] and conclude
that its only solution is (y1, y2) = (0, 1).

Therefore we have to deal in what follows only with the equations (I)
and (III) for p = 31 and 71. To obtain the integral solutions of the occurring
quartic elliptic equations we follow closely the arguments from the article
of N. Tzanakis [8]. Since for each curve the calculation is similar we explain
the method only for the equation

355y2 = x4 + x3 + x2 + x+ 1(6)
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which, by putting Y = 355y, is also given in the more suitable form

Y 2 = 355(x4 + x3 + x2 + x+ 1).

To apply the algorithm from [8] we have to find a non-trivial rational point
on this curve. By a direct search the point (−26/9, 11005/81) was found.
We put

u = 9x and v = 81Y = 28755y.

This results in the quartic elliptic equation

Q : v2 = 355u4 − 33725u3 + 1219425u2 − 19714925u+ 121110025(7)

=: Q(u)

for which we can apply the algorithm of Tzanakis. Note that (0, 11005) is a
rational point on this curve.

Using the birational map

x′ =
22010

√
Q(u)− 19714925u+ 22010

u2 + 406475 =: f∗(u),

y′ = −484440100
√
Q(u) + 5331263300500

u3

+
−433925499250u+ 569183383625

62u2

u3 +
55535

62
x′ +

437315625
62

we obtain the elliptic curve

E : y′2 = x′3 − 2756166750x′ − 22014881915625 =: g(x′)

which is in canonical form. Applying Cremona’s mwrank program [10] we
find that E has rank one over the rational numbers and that a generator of
the infinite part of the Mordell–Weil group is given by

P1 = (890919999/14161,−12337932682818/1685159).

The torsion subgroup has order two and is generated by T = (−47925, 0).
The main idea of [8] is to express the elliptic integral related to the

quartic elliptic equation by real values of elliptic logarithms ui of points of
E(R). Denote by ω the fundamental real period of the Weierstraß ℘-function
associated to E and by e1 the largest real root of the equation g(t) = 0. Then
by [9] we can define for every point P = (xP , yP ) ∈ E(R) with xP ≥ e1 the
elliptic logarithm of P by

ψ(P ) ≡ ± 1
ω

∞�

xP

dt√
g(t)

(mod 1).

We need some further notation: Denote by (U, V ) ∈ Q(Z) an integral solu-
tion of equation (7) and by P ∈ E(R) the corresponding point on E . Fur-
ther let P0 be the point (x0, y0) = (22010

√
355 + 406475, 19714925

√
355 +
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371143625) ∈ E(R). We assume in what follows that U is a positive integer.
Then, by a simple but tedious calculation we obtain

∞�

U

du√
Q(u)

= −
f∗(U)�

x0

dt√
g(t)

if U > 55. Checking the criteria from [8] we see that relation (13) in [8]
holds. Moreover, either P or P + T may be written as m1P1 for a suitable
integer m1 ∈ Z. It follows that

−
∞�

U

du√
Q(u)

= ψ(P0) +m1ψ(P1) +m0ω.

Since P0 and P1 are linearly independent over the rational numbers the last
equation defines already a linear form in elliptic logarithms. The values of
these logarithms are given by

ω = 0.09850931 . . . , ψ(P0) = 0.00993580 . . . and ψ(P ) = 0.05808409 . . .

Following the arguments in [8], we can derive an upper bound for the abso-
lute value of the occurring linear form. A combination of this upper bound
and the lower bound for linear forms in elliptic logarithms due to S. David [3]
results in the upper bound M ≤ 1026 for the size of the absolute value |m1|.
From the normalization of the elliptic logarithm it is immediate that |m0|
is bounded by M + 1. Applying two times standard reduction techniques
in combination with Proposition 4 of [8] we are able to reduce the initial
bound on M to 3. We compute all linear combinations m1P1 and m1P1 +T
for |m1| ≤ 3, map these points back to the quartic elliptic equation and
check if we found an integral solution or not. Finally, we have to make sure
that we found all “small solutions”. This can be done by checking if Q(u)
is a square for integer values 0 ≤ u ≤ 55. The calculation showed that the
only integral solutions of equation (7) are given by (0,±11005).

Remark. In the last computations we assumed U > 0. For negative
values of U we have to do the same calculations for the quartic equation
v2 = Q(−u). The computations for this curve have been done too and did
not yield any new solutions. It follows that equation (6) has no integral
points.

The three remaining quartic elliptic equations were solved analogously.
It turned out that all curves correspond to elliptic curves in canonical form
with rank one over the rational numbers. Finally, we were able to show that
only the elliptic curve 31y2 = x4 + x3 + x2 + x + 1 has integral solutions.
These solutions are given by (2,±1).
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4. The case n = 7. Finally, we consider the diophantine equation

x7 = 71y2 + 1.

By putting X = 71x and Y = 714y we obtain the equation

X7 = Y 2 + 716 · 71.(8)

The computation of all integer solutions of (8) can be reduced to the analysis
of several Thue equations. This approach was used by M. Mignotte and
B. M. M. de Weger to solve two similar equations of degree five [6]. Below
we follow the arguments from [6].

We denote by K the imaginary quadratic number field Q(
√
−71). The

class number of K is seven and an integral basis of K is given by the two
generators w0 = 1 and w1 = (1+

√
−71)/2. To find the set of Thue equations

corresponding to equation (8) we consider this equation as an equation in
ideals in K. Then we have

〈Y + 713 ·
√
−71〉 = a7

for some integral ideal a in K. We observe that the prime 3 splits, say

〈3〉 = pp,

where p = 〈3, 1 + 2w1〉. It follows that the ideal class of p has order 7 in the
classgroup and that there is an integer k with |k| ≤ 3 such that p−ka is a
principal ideal. Moreover there exist u′, v′ ∈ NK/Q(p)−max{0,k} · Z with

p−ka = 〈u′ + v′w1〉.
It follows that

Y + 713 ·
√
−71 = γk(u′ + v′w1)7,(9)

where γ is a generator of the principal ideal p7. A value for γ may be com-
puted by solving a norm equation in the number field K. Our computation
showed that we can take γ = −45 − 2w1. Comparing the imaginary parts
in equation (9) and multiplying by a common denominator leads to the de-
sired Thue equations. By taking a closer look at these equations it follows
by symmetry reasons that it suffices to restrict further considerations to the
cases with k ≥ 0.

Let k ≥ 0 and denote by u, v ∈ Z integers such that u′ = 3−ku and
v′ = 3−kv. We distinguish four cases:

In the case k = 0 we have

−3977u7+6307u6v+5691u5v2−1225u4v3−595u3v4+21u2v5+7uv6 =715822,

which can be solved quite easily. One can check that the only solution (u, v)
in integers is given by (1,−2). This solution corresponds to the trivial solu-
tion (x, y) = (1, 0) of the original equation.
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If k = 1 we have to find the integral solutions of the Thue equation

219355u7 − 228137u6v − 293937u5v2 + 36155u4v3 + 29225u3v4

− 231u2v5 − 329uv6 − 2v7 = 1565502714.

It is not possible to solve this equation modulo 43, hence it has no solution
in rational integers.

In the case k = 2 we have to consider the equation

184u7 + 14959u6v − 24675u5v2 − 1387435u4v3 − 647185u3v4

+ 14595987u2v5 + 7195195uv6 − 11482961v7 = 3423754435518.

One can observe that in this case we have 9 | (u + v). This allows us to
simplify the equation by putting 1

9(u + v) = U and v = V , which leads to
the equation

184U7 + 1519U6V − 1365U5V 2 − 1435U4V 3 + 665U3V 4

+ 147U2V 5 − 35V 6U − V 7 = 2 · 713.

We solved this equation by applying the ThueSolve function in Magma,
and no solution was found.

Finally, we consider the case k = 3. This time we have to find the integral
solutions (u, v) of

−12554u7 − 656705u6v + 2775297u5v2 + 63728945u4v3 − 19529965u3v4

− 699990585u2v5 − 163022321uv6 + 576703027v7 = 7487750950477866.

One can observe that in this case we have 81 | (u+ 10v). As in the previous
case a simplification is possible. This time we substitute 1

81(u + 10v) = U
and v = V , which leads to

−12554U7 + 8225U6V + 21693U5V 2 − 31535U4V 3

+ 16835U3V 4 − 4305U2V 5 + 511UV 6 − 21V 7 = 2 · 713.

We solved this equation by Magma, and no solution was found. This com-
pletes our argument and the Theorem follows.
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