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1. Introduction. The well known “H conjecture” (see [HaR]) states
that n2 + 1 is prime infinitely often. This is equivalent to the existence of
infinitely many primes p satisfying {p1/2} < p−1/2. The current methods of
analytic number theory are far from being sufficient to prove these conjec-
tures.

However, Kubilius [Kub] and Ankeny [Ank] proved already about fifty
years ago, assuming the truth of the Riemann Hypothesis for Hecke L-
functions with Größencharacters over Q(i), that p = n2 + m2 is infinitely
often prime with m� log p. This implies that {p1/2} < p−1/2+ε for infinitely
many primes p. Of course, this is only a conditional result.

As demonstrated in [Ba1, 2], [Ha1, 2] and [BaH], it is also possible to ob-
tain some unconditional non-trivial results on small fractional parts of p1/2,
or more generally, on small fractional parts of pλ, λ being a fixed real num-
ber lying in the interval (0, 1). In particular, for λ = 1/2 Balog and Harman
obtained {p1/2} < p−1/4+ε for infinitely many primes p. This result has
recently been beaten. Combining Kubilius’s ideas with efficient sieve meth-
ods, Harman and Lewis [HaL] unconditionally showed that the exponent 1/4
may be replaced by 0.262. However, their method works only for λ = 1/2,
whereas the methods in [Ba1, 2], [Ha1, 2] and [BaH] are applicable to all λ
in certain subintervals of (0, 1).

In the present paper, we focus our interest mainly on small exponents λ.
Our starting point is the following result of Harman (Theorem 4 in [Ha2]).

Theorem 1. Suppose that ε > 0, B > 0 and λ ∈ (0, 1/5] are given. Let
N ≥ 3. For every positive integer k define

e1(λ, k) :=
5k − (2k + 4)λ

12k + 4
, e2(λ, k) :=

5k
12k − 6

− λ

and
e(λ, k) := min{e1(λ, k), e2(λ, k)}.
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Furthermore, define
E(λ) := max

k∈N
e(λ, k).

Then for
N−E(λ)+ελ ≤ δ ≤ 1(1)

we have ∑

N<n≤2N
{nλ}<δ

Λ(n) = δN

(
1 +O

(
1

(logN)B

))
(2)

as N →∞.

Here, as in the following, Λ(n) denotes the von Mangoldt function.
As to be seen from the remark attached to Theorem 4 in [Ha2], this

result essentially keeps its validity if one introduces an additional summation
condition “[nλ] ∈ A” on the left side of (2), where A is any given subset of
the set of positive integers (only the main term on the right side of (2)
correspondingly changes). Harman’s motivation to introduce this additional
condition appears to be the special case when A is the set of primes.

Furthermore, in the same remark attached to Theorem 4 in [Ha2] it is
noted that the condition λ ≤ 1/5 may be replaced by λ ≤ 1/2 without any
change in the result.

To prove his result, Harman used density estimates for the set of non-
trivial zeta zeros and an estimate for the 2kth power moment of Dirichlet
polynomials ∑

m∼M
amm

it.

Hitherto, we have only considered small fractional parts of pλ. A nat-
ural generalisation of this question is to consider small fractional parts of
{pλ − θ}, where θ is a given real number. Unlike Theorem 4 in [Ha2], many
results in [Ba1, 2] and [Ha1, 2] are formulated for {pλ − θ} with a general
real θ. To extend Theorem 4 in [Ha2] in order to cover this general case, one
needs estimates for power moments of shifted Dirichlet polynomials

∑

m∼M
am(m+ θ)it.

In case θ is rational these shifted Dirichlet polynomials can be easily rewrit-
ten as ordinary ones: If θ = b/q, where b, q are non-negative integers (without
loss of generality, θ can supposed to be non-negative), then

∑

m∼M
am(m+ θ)it = q−it

∑

m∼M
am(qm+ b)it.

Therefore, Harman’s method works for all rational θ, not only for θ = 0.
However, for irrational θ there seem to be no reasonable known estimates

of the 2kth moment of
∑

m∼M am(m+ θ)it if k > 2. Harman obtained such
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estimates only for k ≤ 2. But in this case his power moment estimates for
irrational θ are essentially the same as the known ones for rational θ. Thus,
Theorem 1 keeps its validity also for irrational θ if we replace the function
E(λ) by

E∗(λ) := max{e(λ, 1), e(λ, 2)}.(3)

Summarising the above observations, Theorem 1 can be extended to the
following

Theorem 2. Suppose that ε > 0, B > 0, λ ∈ (0, 1/2] and a real θ are
given. Let N ≥ 3. Let A be an arbitrarily given subset of the set of positive
integers. Define E(λ) as in Theorem 1 and E∗(λ) as in (3). Suppose that
condition (1) is satisfied if θ is rational and that

N−E
∗(λ)+ελ ≤ δ ≤ 1(4)

is satisfied if θ is irrational. Then
∑

N<n≤2N
{nλ−θ}<δ

[nλ]∈A

Λ(n) =
δ

λ

∑

Nλ<n≤(2N)λ
n∈A

n1/λ−1 +O

(
δN

(logN)B

)
(5)

as N →∞.

It is easily verified that E∗(λ) = 5/14 − 2λ/7 for λ ≤ 5/18. Using zero
density estimates and trivially estimating the shifted Dirichlet polynomials
appearing in the method, or directly applying Huxley’s prime number theo-
rem, one obtains 5/12−λ in place of E∗(λ), which yields a better result than
E∗(λ) if λ < 1/12. This demonstrates that Harman’s method is ineffective
if θ is irrational and λ is close to 0.

The first aim of the present paper is to prove a substantially better result
than the one obtained from Huxley’s prime number theorem for irrational θ
and λ close to 0. Our second aim is to improve Theorem 2 for rational θ.
We shall prove the following

Theorem 3. Suppose that ε > 0, B > 0, λ ∈ (0, 1/2] and a real θ are
given. If θ is irrational , then suppose that λ < 5/19. Let N ≥ 3. Let A be
an arbitrarily given subset of the set of positive integers. For every positive
integer k define

f1(λ, k) :=
5
12
− k + 6

6(k + 1)
λ, f2(λ, k) :=

5
11
− 5k + 1

11
λ

and

f(λ, k) := min{f1(λ, k), f2(λ, k)}.
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Furthermore, define

Fθ(λ) :=
{
F (λ) if θ is rational ,

f(λ, 1) otherwise,

where
F (λ) := max

k∈N
f(λ, k).

Suppose that

N−Fθ(λ)+ελ ≤ δ ≤ 1.(6)

Then we have the asymptotic estimate (5) as N →∞.

We note that

f(λ, 1) = f1(λ, 1) =
5
12
− 7λ

12
(7)

for all λ > 0.

In the next section we shall discuss Theorem 3 in detail and compare
this result with Theorem 2. From the third section onwards we shall prove
Theorem 3.
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2. Discussion of Theorem 3. In case θ is irrational it is supposed in
Theorem 3 that λ < 5/19. We have E∗(λ) = 5/14− 2λ/7 if λ < 5/19. Thus,
we get 5/12 − 7λ/12 = f(λ, 1) > E∗(λ) if λ < 1/5. Therefore, Theorem 3
yields a sharper result than Theorem 2 if θ is irrational and λ < 1/5. More-
over, since f(λ, 1) > 5/12 − λ for all λ > 0, Theorem 3 is always sharper
than the result directly obtained from Huxley’s prime number theorem (see
the preceding section).

We now turn to the case when θ is rational. It is easily verified that
F (λ) = 5/12− λ/6 +O(λ2) as λ→ 0, whereas E(λ) = 5/12− λ/2 +O(λ2)
as λ → 0. Thus, F (λ) > E(λ) for every sufficiently small λ > 0. Therefore,
Theorem 3 is sharper than Theorem 2 if θ is rational and λ is sufficiently
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small. We now make this observation more precise by analysing and com-
paring E(λ) and F (λ).

It is easily seen that there are sequences (η1,k), (η2,k) of real numbers
with

1/2 = η2,1 > η1,2 > η2,2 > η1,3 > η2,3 > . . . , lim
k→∞

ηi,k = 0 (i = 1, 2),

such that

E(λ) =
{
e1(λ, k − 1) if η2,k−1 ≥ λ ≥ η1,k,

e2(λ, k) if η1,k ≥ λ ≥ η2,k,

where the functions ei(λ, k) (i = 1, 2) are defined as in Theorem 1. So E(λ)
is a continuous piecewise linear function. To determine ηi,k for k ≥ 2, we
simply have to solve the linear equations

e1(x, k − 1) = e2(x, k), e2(x, k) = e1(x, k).

In this manner, we obtain

η1,k =
(

5
12

+
1

6(k − 1)

)
1

k − 1/2
, η2,k =

5
12
· 1
k − 1/2

if k ≥ 2. Similarly, we obtain

F (λ) =
{
f1(λ, k − 1) if φ2,k−1 ≥ λ ≥ φ1,k,

f2(λ, k) if φ1,k ≥ λ ≥ φ2,k,
(8)

where φ2,1 = 1/2 and

φ1,k =
1

2(6k − 1− 11/k)
, φ2,k =

1
2(6k − 1− 11/(k + 1))

if k ≥ 2. Using these explicit expressions for E(λ) and F (λ), it is not difficult
to calculate that F (λ) > E(λ) whenever λ < 5/66 or 1/3 < λ < 1/2.
Consequently, for rational θ Theorem 3 yields a sharper result than Theo-
rem 2 in these λ-ranges.

Some additional remarks. (a) We have E∗(1/2) = E(1/2) = f(1/2, 1) =
F (1/2) = 1/8 and E(λ) = F (λ) = 5/11 − λ if 5/66 = η2,6 ≤ λ ≤ 9/110
= η1,6.

(b) In the homogeneous case A = N, Harman and Balog were able to
prove better results than Theorems 2 and 3 for λ > 1/5 (see Theorem 3
of [Ha2], Theorem 2 of [BaH] and the papers [Ba1, 2], [Ha1]).

(c) It is not difficult to prove that on the Riemann Hypothesis the func-
tion Fθ(λ) in Theorem 3 can be replaced by (1−λ)/2 for all λ in the interval
0 < λ < 1 and all real θ.

3. Auxiliary results and outline of the method. We let the con-
ditions of Theorem 3 be kept throughout the remaining part of the paper.
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Without loss of generality, we continually suppose that 0 ≤ θ < 1. By ε and
B we always mean the constants ε and B from Theorem 3.

We define h = hθ(λ) to be the smallest positive integer such that

Fθ(λ) = f(λ, h).(9)

In particular, we always have h = 1 when θ is irrational. When θ is rational,
we have h ≥ 2 if and only if λ < 1/11 = φ1,2. In this case, we obtain

hλ < 2/11(10)

from (8) by a short calculation.
Using (9) and the definition of Fθ(λ) in Theorem 3, we obtain

5
12
≤ λ+ f(λ, h) ≤ 5

11
(11)

if h ≥ 2 and
λ

2
+ f(λ, h) ≤ 5

11
(12)

in any case. Moreover, we have

λ+ f(λ, 1) = λ+ f1(λ, 1) =
5(1 + λ)

12
≤ 5

8
(13)

for every λ ≤ 1/2 and

λ ≤ λ+ f(λ, 1)− ελ
2

(14)

if λ < 5/19 and ε ≤ (5− 19λ)/(12λ). We shall use the inequalities (10)–(14)
in the course of this paper.

Next, we introduce some more notations. We write

Dy(u, s) :=
∑

Nλ<n≤u
n∈A

(n+ y)s/λ−1

for any real u > Nλ, y ≥ 0 and complex s. Moreover, we put

Dy(s) := Dy((2N)λ, s).

As usual, by the symbol % we denote the non-trivial zeta zeros, and we
write γ for the imaginary part and β for the real part of %. We define

Sθ(u, σ) :=
∑

% : 0<γ≤T
σ≤β≤σ+1/(logN)

|Dθ(u, iγ)|(15)

for any σ with 0 ≤ σ ≤ 1− 1/(logN), where the parameter T will be fixed
at the beginning of the next section.

The first step of our method is to use the explicit formula of Landau in
order to reduce the sum on the left side of (5) to sums of the form Sθ(u, σ).
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Proposition 1 (explicit formula). For x > 2, T0 > 1 we have
∑

n<x

Λ(n) = x−
∑

% : |γ|≤T0

x%

%
+O

(
x

T0
(log xT0)2 + log x

)
.

We then estimate the sum Sθ(u, σ) in several σ-regions by different me-
thods.

To control the range 0 ≤ σ ≤ 6/11, we use the following mean value esti-
mate for shifted Dirichlet polynomials which can be established in the same
manner as the corresponding well known mean value estimate for ordinary
(unshifted) Dirichlet polynomials (see [Ivi] for example).

Proposition 2. Suppose that 0 ≤ θ < 1, K ≥ 1 and T ≥ 1. Let (ak)
be an arbitrary sequence of complex numbers. Suppose that |ak| ≤ A for all
k ∼ K. Let (tr) be an increasing sequence of positive real numbers such that
tr+1−tr ≥ 1 for every positive integer r. Let R be a positive integer. Suppose
that tR ≤ T . Then

R∑

r=1

∣∣∣
∑

k∼K
ak(k + θ)itr

∣∣∣
2
� A2(T +K)K log(2K).

Here, as in the following, the notation k ∼ K means K < k ≤ 2K.
To tackle Sθ(u, σ) in the range 1−∆ < σ ≤ 1, ∆ being defined as in (38),

we use the second zero density estimate of the later Proposition 6 as well as
Vinogradov’s zero-free-region result.

Proposition 3 (Vinogradov; see [Ivi]). There is an absolute constant
C > 0 such that

β ≤ 1− C(log |γ|)−2/3(log log |γ|)−1/3

for every non-trivial zeta zero % = β + iγ.

To calculate Sθ(u, σ) in the range 6/11 < σ ≤ 1 − ∆, we employ the
following relation which is also the basis of the zero detection method for
counting non-trivial zeta zeros (cf. [Ivi] for example).

Proposition 4. Suppose that X,Y ≥ 1, T > 1, logN � log T �
log Y � log T � logN and logX � logN . Define

MX(s) :=
∑

n≤X
µ(n)n−s, a(k) :=

∑

d|k
d≤X

µ(d).

Then a(k) = 0 if 1 < k ≤ X,

ζ(s)MX(s) =
∞∑

k=1

a(k)k−s

if Re s > 1 and
1/2 < U1(%) or 1/2 < U2(%)(16)



84 S. Baier

if N is sufficiently large and % = β+ iγ is a non-trivial zeta zero satisfying
β ≥ 1/2 and (logN)2 < γ ≤ T , where

U1(%) :=
∣∣∣

(logN)2�

−(logN)2

ζ(1/2 + i(γ + t))MX(1/2 + i(γ + t))(17)

× Y 1/2−β+itΓ (1/2− β + it) dt
∣∣∣,

U2(%) :=
∣∣∣

∑

X<k≤Y (logN)2

a(k)k−%e−k/Y
∣∣∣.(18)

The sum on the right side of (18) is supposed to equal 0 if X ≥ Y (logN)2.
We call every zero % satisfying 1/2 < Uj(%) a zero of type j (j = 1, 2).

We shall now proceed similarly to the original zero detection method,
with the difference that here every non-trivial zeta zero % is weighted by
|Dθ(u, iγ)|. Our method shall lead us to the problem of estimating mean
values of products of shifted and ordinary (unshifted) Dirichlet polynomials.
In the following, we state such mean value estimates.

Theorem 4. Suppose that α 6= 0, 0 ≤ θ < 1, T > 0, K ≥ 1, L ≥ 1.
If θ 6= 0, then additionally suppose that L ≤ T 1/2. Let (ak) and (bl) be
arbitrary sequences of complex numbers. Suppose that |ak| ≤ A for all k ∼ K
and |bl| ≤ B for all l ∼ L. Then

(19)
T�

0

∣∣∣
∑

k∼K
akk

it
∣∣∣
2 ∣∣∣
∑

l∼L
bl(l + θ)iαt

∣∣∣
2
dt

� A2B2(T +KL)KL log3(2KLT ),

the implied �-constant depending only on α. If θ = 0, then log3(2KLT )
on the right side of (19) may be replaced by log2(2KLT ).

We shall rather need a discrete form of Theorem 4, namely

Theorem 4∗. Let the conditions of Theorem 4 be kept. Moreover , let
(tr) be an increasing sequence of positive real numbers such that tr+1−tr ≥ 1
for every positive integer r. Further , let R be a positive integer. Suppose that
tR ≤ T . Then

(20)
R∑

r=1

∣∣∣
∑

k∼K
akk

itr
∣∣∣
2 ∣∣∣
∑

l∼L
bl(l + θ)iαtr

∣∣∣
2

� A2B2(T +KL)KL log4(2KLT ),

the implied �-constant depending only on α. If θ = 0, then log4(2KLT )
on the right side of (20) may be replaced by log3(2KLT ).
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We postpone the proofs of Theorems 4, 4∗ to the last section, in which
we shall also derive the following more general mean value estimate from
Theorem 4∗.

Theorem 5. Suppose that α 6= 0, 0 ≤ θ < 1, T > 0, 1 ≤ K1 < K2, 1 ≤
L1 < L2, h ∈ N, ε0 > 0 and 1/2 ≤ σ ≤ 1. If θ is irrational , then additionally
suppose that L2 ≤ T 1/2 and h = 1. Let (ak) and (bl) be arbitrary sequences
of complex numbers. Suppose that |ak| ≤ A and |bl| ≤ B for all positive
integers k and l. Let (tr) be an increasing sequence of positive real numbers
such that tr+1 − tr ≥ 1 for every positive integer r. Let R be a positive
integer. Suppose that tR ≤ T . Then

(21)
R∑

r=1

∣∣∣
∑

K1<k≤K2

akk
−(σ+itr)

∣∣∣
2 ∣∣∣

∑

L1<l≤L2

bl(l + θ)iαtr−1
∣∣∣
2h

� A2B2h(TK1−2σ
1 L−h1 +K

2(1−σ)
2 )(K2L2T )ε0 ,

the implied �-constant depending only on α, θ, h and ε0.

Theorem 5 is made for a direct application in the present paper.
In addition to these mean value estimates, we use the following well

known fourth power moment estimate for the Riemann zeta function on the
critical line.

Proposition 5. We have
T�

0

|ζ(1/2 + it)|4 dt� T log4 T.

Finally, we shall employ zero density estimates of Ingham and Huxley
which themselves are consequences of the zero detection method.

Proposition 6 (see [Ivi]). For T > 2 we have

N(σ, T )�
{
T 3(1−σ)/(2−σ)(log T )5 if 1/2 ≤ σ ≤ 3/4,

T 3(1−σ)/(3σ−1)(log T )44 if 3/4 ≤ σ ≤ 1,

where N(σ, T ) denotes the number of zeta zeros % = β + iγ with β ≥ σ and
0 < γ ≤ T .

4. Reduction to sums over non-trivial zeta zeros. We define

T0 :=
Nλ(logN)B+2

δ
and

T := Nλ+f(λ,h)−ελ(logN)B+2.(22)
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We note that T0 ≤ T by (9) and condition (6) of Theorem 3. Furthermore,
we state the following five bounds, which shall be used in the course of this
paper. If h ≥ 2, then we have

T � N5/11−ελ/2(23)

as well as

N5/12−ελ � T(24)

by (11). We always have

TN−λ/2 � N5/11−ελ/2(25)

by (12). If h = 1, then we have

T = N5(1+λ)/12−ελ(logN)B+2(26)

� N5/8−ελ/2

by (13). If h = 1, λ < 5/19, ε ≤ (5− 19λ)/(12λ) and N ≥ 5, then we have

(2N)λ ≤ T 1/2(27)

by (14).
By means of Proposition 1, we now decompose the sum on the left side

of (5) into a main term and an error term involving non-trivial zeta zeros.

Lemma 1. We have
∑

N<n≤2N
{nλ−θ}<δ

[nλ]∈A

Λ(n)− δ

λ
D0(1)

� δ(logN)B+3 sup
0≤σ≤1−1/(logN)

Nσ sup
Nλ<u≤(2N)λ

Sθ(u, σ)

+
δN

(logN)B
+Nλ logN,

the implied �-constant depending only on λ and B.

Proof. Obviously, the sum in question can be written in the form

(28)
∑

N<n≤2N
{nλ−θ}<δ

[nλ]∈A

Λ(n)

=
∑

Nλ<n≤(2N)λ
n∈A

∑

(n+θ)1/λ≤m<(n+θ+δ)1/λ

Λ(m) +O(Nλ logN).
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Combining this estimate and Proposition 1, and taking condition (6) into
account, we get

∑

N<n≤2N
{nλ−θ}<δ

[nλ]∈A

Λ(n) =
∑

Nλ<n≤(2N)λ
n∈A

((n+ θ + δ)1/λ − (n+ θ)1/λ)(29)

−
∑

Nλ<n≤(2N)λ
n∈A

∑

% : |γ|≤T0

(n+ θ + δ)%/λ − (n+ θ)%/λ

%

+O

(
δN

(logN)B
+Nλ logN

)
.

Using Taylor’s formula, we approximate the first sum on the right side of
(29) by

∑

Nλ<n≤(2N)λ
n∈A

((n+ θ + δ)1/λ − (n+ θ)1/λ) =
δ

λ
D0(1) +O(δN1−λ).(30)

The fraction within the double sum on the right side of (29) can be written
as an integral, namely

(n+ θ + δ)%/λ − (n+ θ)%/λ

%
=

1
λ

θ+δ�

θ

(n+ y)%/λ−1 dy.

From that and the symmetry of the set of zeta zeros it follows that the
double sum on the right side of (29) can be estimated by

(31)
∑

Nλ<n≤(2N)λ
n∈A

∑

% : |γ|≤T0

(n+ θ + δ)%/λ − (n+ θ)%/λ

%

� δ sup
0≤y≤δ

∑

% : 0<γ≤T0

|Dθ+y(%)|.
Moreover, we have

(32)
∑

% : 0<γ≤T0

|Dθ+y(%)|

� (logN) sup
0≤σ≤1−1/(logN)

∑

% : 0<γ≤T0
σ≤β≤σ+1/(logN)

|Dθ+y(%)|.

The next step is to reduce the shifted Dirichlet polynomial Dθ+y(%) to
Dθ(iγ). By partial summation, we get

(33) Dθ+y(%)

=
∑

Nλ<n≤(2N)λ
n∈A

(n+ θ + y)β/λ
(

1 +
y

n+ θ

)iγ/λ−1

(n+ θ)iγ/λ−1
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= ((2N)λ + θ + y)β/λ
(

1 +
y

(2N)λ + θ

)iγ/λ−1

Dθ(iγ)

−
(2N)λ�

Nλ

d

du

(
(u+ θ + y)β/λ

(
1 +

y

u+ θ

)iγ/λ−1)
Dθ(u, iγ) du.

For Nλ ≤ u ≤ (2N)λ, 0 ≤ y ≤ δ, 0 < γ ≤ T0 and 0 ≤ σ ≤ β ≤
σ + 1/(logN) ≤ 1 we have

(34)
d

du

(
(u+ θ + y)β/λ

(
1 +

y

u+ θ

)iγ/λ−1)

=
β

λ
(u+ θ + y)β/λ−1

(
1 +

y

u+ θ

)iγ/λ−1

−
(
iγ

λ
− 1
)

y

(u+ θ)2 (u+ θ + y)β/λ
(

1 +
y

u+ θ

)iγ/λ−2

� Nβ−λ + δT0N
β−2λ � Nσ−λ(logN)B+2.

From (33) and (34), we obtain

(35) |Dθ+y(%)| � Nσ(logN)B+2
(
|Dθ(iγ)|+N−λ

(2N)λ�

Nλ

|Dθ(u, iγ)| du
)
.

From (35), T0 ≤ T and the definition of Sθ(u, σ) in (15), we derive
∑

% : 0<γ≤T0
σ≤β≤σ+1/(logN)

|Dθ+y(%)| � Nσ(logN)B+2 sup
Nλ<u≤(2N)λ

Sθ(u, σ).(36)

Combining (28)–(32) and (36), we obtain the desired estimate.

By Lemma 1, in order to prove (5), we still have to show that

NσSθ(u, σ)� N

(logN)2B+3(37)

for 0 ≤ σ ≤ 1− 1/(logN). This shall be the task of the next sections.

5. Estimation of NσSθ(u, σ) for 0 ≤ σ ≤ 6/11 and for 1−∆ < σ ≤ 1.
In this section we establish (37) for 0 ≤ σ ≤ 6/11 and for 1 −∆ < σ ≤ 1,
where

∆ :=
{

0.212 if h ≥ 2,

1/36 if h = 1.
(38)
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Lemma 2. Without loss of generality assume that ε ≤ f(λ, h)/λ. Then
for 0 ≤ σ ≤ 6/11 we have

NσSθ(u, σ)� N1−ελ/3.

Proof. By the Cauchy–Schwarz inequality, we have

Sθ(u, σ)� N(T )1/2
( ∑

% : 0<γ≤T
σ≤β≤σ+1/(logN)

|Dθ(u, iγ)|2
)1/2

,(39)

where N(T ) denotes the number of all non-trivial zeta zeros % with
0 < γ ≤ T . By the well known properties of the set of zeta zeros, we can split
the set of zeros % satisfying the conditions 0 < γ ≤ T, σ ≤ β ≤ σ+1/(logN)
into O(logT ) subsets S satisfying the condition

%1, %2 ∈ S, %1 6= %2 ⇒ |Im %1 − Im %2| ≥ 1.

Employing Proposition 2, we get
∑

%∈S
|Dθ(u, iγ)|2 � (T +Nλ)N−λ(logN)(40)

for Nλ < u ≤ (2N)λ.
Combining (25), (39), (40) and N(T ) � T log T , and taking the condi-

tion ε ≤ f(λ, h)/λ of Lemma 2 into account, we obtain the desired bound.

Lemma 3. For 1−∆ < σ ≤ 1− 1/(logN) we have

NσSθ(u, σ)� N exp(−(logN)1/4).

Proof. By Proposition 3, there is no zeta zero % with 0 < γ ≤ T on the
right side of the line Re s = κ(T ), where

κ(T ) := 1− C(logT )−2/3(log log T )−1/3.

Therefore, we can assume that σ ≤ κ(T ).
We first consider the case when h ≥ 2. From the trivial estimate

Dθ(u, iγ)� 1,

the second zero density estimate of Proposition 6 and (23), we obtain

NσSθ(u, σ)� Nσ+(15(1−σ))/(11(3σ−1))(logN)44.(41)

We notice that
15

11(3σ − 1)
< 1− 1

3751
(42)

if σ > 1−∆ = 0.788. From (41), (42) and the above assumption σ ≤ κ(T )
follows

NσSθ(u, σ)� N1−(1−κ(T ))/3751(logN)44.
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From this, we obtain

NσSθ(u, σ)� N exp(−(logN)1/4)(43)

by a short calculation. This completes the proof for the case when h ≥ 2.
Now, let h = 1. Then, similarly to (41), we get

NσSθ(u, σ)� Nσ+(15(1−σ))/(8(3σ−1))(logN)44(44)

by using (26). We notice that
15

8(3σ − 1)
< 1− 1

46
(45)

if σ > 1−∆ = 35/36. In a similar manner to the case when h ≥ 2, from (44)
and (45), we anew obtain (43). This completes the proof.

6. Zero detection method with weights. Next, we use a modified
form of the zero detection method to handle the sum Sθ(u, σ) in the range
6/11 < σ ≤ 1−∆.

We note that by (22) the condition logN � log T � logN of Proposi-
tion 4 is satisfied if ε < 1.

Lemma 4. Suppose that 1/2 ≤ σ ≤ 1 − 1/(logN). Then, under the
conditions and using the definitions of Proposition 4, we have

Sθ(u, σ)� (V1(u, σ)1/(2h) + V2(u, σ)1/2)N ελ/400 + (logN)3

with

V1(u, σ) := N(σ, T )2h−3/2T 1/2Y 1−2σ(46)

×
(logN)2�

−(logN)2

∑

%

(σ)|MX(1/2 + i(γ + t))|2 · |Dθ(u, iγ)|2h dt

and

(47) V2(u, σ) := N(σ, T )

× sup
X<v≤Y (logN)2

∑

%

(σ)
∣∣∣
∑

X<k≤v
a(k)e−k/Y k−(σ+iγ)

∣∣∣
2
· |Dθ(u, iγ)|2,

where the notation (σ) attached to the summation symbol indicates the sum-
mation condition “(logN)2 < γ ≤ T and σ ≤ β ≤ σ+1/(logN)”. The term
V2(u, σ) is supposed to equal 0 if X ≥ Y (logN)2.

Proof. We first consider the contribution of zeta zeros with small ima-
ginary part γ ≤ (logN)2. By N((logN)2) � (logN)3 and the trivial esti-
mate Dθ(u, iγ)� 1, we get

∑

% : 0<γ≤(logN)2

σ≤β≤σ+1/(logN)

|Dθ(u, iγ)| � (logN)3.



On the pλ problem 91

It remains to prove that
∑

%

(σ)|Dθ(u, iγ)| � (V1(u, σ)1/(2h) + V2(u, σ)1/2)N ελ/400.(48)

By Proposition 4, for every sufficiently large N we have
∑

%

(σ)|Dθ(u, iγ)| ≤
(∑

%

(σ,1) +
∑

%

(σ,2)
)
|Dθ(u, iγ)|,(49)

where the notation (σ, j) attached to the summation symbol on the right
side indicates that % is a zero of type j (for the definition of “type j” see
Proposition 4) satisfying the summation condition (σ), i.e. (logN)2 < γ ≤ T
and σ ≤ β ≤ σ + 1/(logN). We now separately consider the two sums on
the right side of (49).

By Hölder’s inequality and 1/2 < U1(%) for every zero % of type 1, we
get

(∑

%

(σ,1)|Dθ(u, iγ)|
)h
� N(σ, T )h−1

∑

%

(σ) U1(%) · |Dθ(u, iγ)|h.(50)

Using the triangle and the Cauchy–Schwarz inequalities, and applying Stir-
ling’s formula to the Gamma factor contained in the integrand on the right
side of (17), we derive

(51)
(∑

%

(σ)U1(%)|Dθ(u, iγ)|h
)2

� (logN)2N(σ, T )1/2Y 1−2σ
(∑

%

(σ)
(logN)2�

−(logN)2

|ζ(1/2 + i(γ + t))|4 dt
)1/2

×
( (logN)2�

−(logN)2

∑

%

(σ)|MX(1/2 + i(γ + t))|2 · |Dθ(u, iγ)|2h dt
)
.

Taking notice of log T � logN and N(t+ 1)−N(t) = O(log(2t)) for t ≥ 1,
and using Proposition 5, the term involving the ζ-function on the right side
can be estimated by

(52)
∑

%

(σ)
(logN)2�

−(logN)2

|ζ(1/2 + i(γ + t))|4 dt

� (logN)3
T+(logN)2�

0

|ζ(1/2 + it)|4 dt� T (logN)7.
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Since 1/2 < U2(%) for every zero % of type 2, we have
∑

%

(σ,2)|Dθ(u, iγ)| �
∑

%

(σ)U2(%)|Dθ(u, iγ)|.

From that, applying partial summation to the term U2(σ) on the right side
and taking N1/(logN) = e into account, we obtain

(53)
∑

%

(σ,2)|Dθ(u, iγ)|

� sup
X<v≤Y (logN)2

∑

%

(σ)
∣∣∣
∑

X<k≤v
a(k)e−k/Y k−(σ+iγ)

∣∣∣ · |Dθ(u, iγ)|.

By the Cauchy–Schwarz inequality, we get

(54)
(∑

%

(σ)
∣∣∣
∑

X<k≤v
a(k)e−k/Y k−(σ+iγ)

∣∣∣ · |Dθ(u, iγ)|
)2

� N(σ, T )
∑

%

(σ)
∣∣∣
∑

X<k≤v
a(k)e−k/Y k−(σ+iγ)

∣∣∣
2
· |Dθ(u, iγ)|2.

Combining (49)–(54), we obtain (48). This completes the proof.

To bound Vj(u, σ) (j = 1, 2) by simple terms involving the parameters X
and Y , we apply Theorem 5 after splitting the set of zeta zeros satisfying
the condition (σ) into O(logT ) subsets S such that |Im %1 − Im %2| ≥ 1 for
every pair %1, %2 ∈ S with %1 6= %2. We take into consideration the fact that

|a(k)| ≤ τ(k)� N ε1

for X < k ≤ Y (logN)2, where τ(k) denotes the number of divisors of k
and ε1 is any positive constant. Moreover, we point out that for irrational
θ the additional conditions u = L2 ≤ T 1/2 and h = 1 in Theorem 5 are
really satisfied. Indeed, at the beginning of Section 3 we noticed that h = 1
if θ is irrational, and by (27) and the condition λ < 5/19 in Theorem 3, the
inequality u ≤ T 1/2 is satisfied if ε ≤ (5− 19λ)/(12λ) and N ≥ 5 (the latter
two conditions may be supposed without loss of generality).

In this manner, we obtain the following result.

Lemma 5. Suppose that 1/2 ≤ σ ≤ 1−1/(logN). If θ is irrational , then
suppose that λ < 5/19 and ε ≤ (5− 19λ)/(12λ). Then, on the conditions of
Proposition 4, we have

V1(u, σ)� N(σ, T )2h−3/2T 1/2Y 1−2σ(TN−hλ +X)Nhελ/200,

V2(u, σ)� N(σ, T )(TN−λX1−2σ + Y 2(1−σ))N ελ/200,

the implied �-constant only depending on ε.
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7. Estimation of NσSθ(u, σ) for 6/11 < σ ≤ 1−∆. The final step of
the proof of Theorem 3 is to show

Lemma 6. The estimate (37) holds true for 6/11 < σ ≤ 1−∆.

Lemma 6 follows from the preceding Lemmas 4, 5 and the following

Lemma 7. Without loss of generality assume that ε ≤ 1/(10λ). Then for
any σ in the range 6/11 < σ ≤ 1−∆ there are parameters X, Y satisfying
the conditions of Proposition 4 such that

Rj(σ)� N2−ελ/90 (j = 1, . . . , 4)(55)

as N →∞, where

R1(σ) := N(σ, T )2−3/(2h)T 3/(2h)N2σ−λY (1−2σ)/h,

R2(σ) := N(σ, T )2−3/(2h)T 1/(2h)N2σX1/hY (1−2σ)/h,

R3(σ) := N(σ, T )TN2σ−λX1−2σ,

R4(σ) := N(σ, T )N2σY 2(1−σ),

the implied �-constant in (55) depending only on ε.

Proof. Firstly, we consider the case when h = 1. We put

Y := N1−ελ/5(1 + N(σ, T ))−1/(2(1−σ))

and
X := 1 + Y 2σ−1N2(1−σ)(1−2ελ/5)T−1/2(1 + N(σ, T ))−1/2.

We now derive some simple estimates for X and Y to verify the condi-
tions of Proposition 4. Trivially, we have 1 ≤ X. By (26) and the well known
bound

N(σ, T )� T 12(1−σ)/5(log T )44

following from Proposition 6, we get

N (1−λ)/2 � Y � N.

This implies logN � log Y � logN . Consequently, log T � log Y � log T .
The last condition to be verified is logX � logN . To prove this inequality,
it suffices to show that X ≤ Y for sufficiently large N , which follows from
1 = o(Y ) and

Y 2σ−1N2(1−σ)(1−2ελ/5)T−1/2(1 + N(σ, T ))−1/2 = o(Y )(56)

as N →∞. The bound (56) can be easily obtained from the definition of Y ,
the bound N(σ, T ) � T (log T ) and σ ≤ 1 − ∆ = 35/36. Therefore, all
conditions of Proposition 4 to X, Y are satisfied.

Next, we calculate the order of magnitude of the terms Rj(σ). From the
definitions of X, Y and σ ≤ 35/36, we obtain
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R4(σ)� N2−ελ/90,(57)

R2(σ) = N2−ελ/45 +R1(σ)T−1Nλ,(58)

R1(σ)� (1 + N(σ, T ))σ/(2(1−σ))T 3/2N1−λ+ελ/5.(59)

From Proposition 6, we derive

(60) sup
1/2≤σ≤35/36

(1 + N(σ, T ))σ/(1−σ)

� T ελ/5( sup
1/2≤σ≤3/4

T 3σ/(2−σ) + sup
3/4≤σ≤35/36

T 3σ/(3σ−1)).

The function g1(σ) := σ/(2− σ) is increasing on the interval [1/2, 3/4], and
the function g2(σ) := σ/(3σ − 1) is decreasing on the interval [3/4, 35/36].
Therefore, from (60) follows

sup
1/2≤σ≤35/36

(1 + N(σ, T ))σ/(1−σ) � T 9/5+ελ/5.(61)

Combining the first line of (26), (59) and (61), we get

R1(σ)� N2−ελ/2.(62)

From Nλ ≤ T , (58) and (62), we obtain

R2(σ)� N2−ελ/45.(63)

The last step is to verify the bound

R3(σ)� N2−ελ/5.(64)

From X ≤ Y (which we have seen above) and the definitions of X and Y ,
we conclude

(
Y

X

)2σ−1

≤ Y

X
≤
(

T

1 + N(σ, T )

)1/2

N ελ/5,

from which follows

R3(σ) = N(σ, T )TN2σ−λX1−2σ

≤ N(σ, T )1/2T 3/2N2σ−λY 1−2σN ελ/5 = R1(σ)N ελ/5.

Combining this inequality and (62), we get (64).
By (57), (62), (63) and (64), the bound (55) is satisfied for j = 1, . . . , 4.

This completes the proof for the case when h = 1.
Secondly, we consider the case when h ≥ 2. We observe that Nhλ ≤ T

by (10), (24) and the assumption ε ≤ 1/(10λ) of Lemma 7. Here we put

X := TN−hλ, Y := N1−ελ/4(1 + N(σ, T ))−1/(2(1−σ))

unlike the case when h = 1. Using Proposition 6, (23) and ε ≤ 1/(10λ), it is
easily verified that X and Y satisfy the conditions of Proposition 4. Further,
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it is an immediate consequence of the definition of Y and the condition
6/11 < σ ≤ 1 − ∆ = 0.788 that (55) holds true for j = 4. Here, as in the
following, we use the condition 6/11 < σ ≤ 0.788 in order to obtain the
correct ε-terms.

From the definitions of X and Y follows

(65) R1(σ) +R2(σ)

� N(σ, T )2−3/(2h)+(2σ−1)/(2h(1−σ))T 3/(2h)N2σ(1−1/h)+1/h−λ+ελ/(7h).

By Proposition 6, we have

N(σ, T )� TA(σ)(1−σ)+ελ/10,(66)

where

A(σ) =
{

3/(2− σ) if 1/2 ≤ σ ≤ 3/4,

3/(3σ − 1) if 3/4 < σ ≤ 1.

Combining (22), (65) and (66), and taking (11) and h ≥ 2 into consideration,
we get

R1(σ) +R2(σ)� N r1(σ)+c1−ελ/10,(67)

where

r1(σ) := (λ+ f(λ, h))
(

2− 2
h

+
(

5
2h
− 2
)
σ

)
A(σ) + 2

(
1− 1

h

)
σ,

c1 := (λ+ f(λ, h))
3

2h
+

1
h
− λ.

Our next aim is to show that r1(σ) is increasing on the interval 6/11 <
σ < 3/4 and decreasing on the interval 3/4 < σ ≤ 0.788. For 6/11 < σ < 3/4
we have

r′1(σ) = −(λ+ f(λ, h))
(

2− 3
h

)
3

(2− σ)2 + 2
(

1− 1
h

)
.

From that, (11) and h ≥ 2, we obtain

r′1(σ) ≥ 14
55

+
34

55h
> 0

for 6/11 < σ < 3/4. Hence, r1(σ) is increasing on this interval. For 3/4 <
σ ≤ 0.788 we have

r′1(σ) = −(λ+ f(λ, h))
(

12− 21
2h

)
1

(3σ − 1)2 + 2
(

1− 1
h

)
.

From that and (11), we obtain

r′1(σ) < −0.6 +
0.4
h

< 0

for 3/4 < σ ≤ 0.788. Hence, r1(σ) is decreasing on this interval.
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We note that the function r1(σ) is continuous on the interval (6/11, 0.788]
since A(σ) is continuous on this interval. From that and the above observa-
tions, we conclude that the exponent r1(σ) + c1 − ελ/10 on the right side
of (67) takes its maximum at the point σ0 = 3/4. Furthermore, from

λ+ f(λ, h) ≤ λ+ f1(λ, h) =
5
12

+
5hλ

6(h+ 1)
,

we obtain
r1(3/4) + c1 ≤ 2

by a short calculation. From that and (67), we derive (55) for j = 1, 2.
Finally, we evaluate the term R3(σ). From (22), (66) and the definition

of X, we obtain

R3(σ)� N r2(σ)−(h+1)λ−ελ/2,(68)

where
r2(σ) := (λ+ f(λ, h))(2 + A(σ))(1− σ) + 2(1 + hλ)σ.

For 6/11 < σ < 3/4 we have

r′2(σ) = −(λ+ f(λ, h))
(

2 +
3

(2− σ)2

)
+ 2(1 + hλ).

From that and (11), we obtain

r′2(σ) > 0

for 6/11 < σ < 3/4. Hence, r2(σ) is increasing on this interval. At the end
of this section, we shall separately prove that r2(σ) is decreasing on the
interval 3/4 < σ ≤ 0.788.

Like r1(σ), the function r2(σ) is continuous on the interval (6/11, 0.788].
Consequently, the exponent r2(σ)− (h+ 1)λ− ελ/2 on the right side of (68)
takes its maximum at the point σ0 = 3/4. Furthermore, from

λ+ f(λ, h) ≤ λ+ f2(λ, h) =
5
11

+
(10− 5h)λ

11
,

we obtain
r2(3/4)− (h+ 1)λ ≤ 2

by a short calculation. From that and (68), we derive (55) for j = 3. This
completes the proof of Lemma 7.

By proving Lemma 7 we have also completed the proof of Theorem 3.
It remains to show that r′2(σ) < 0 for 3/4 < σ ≤ 0.788 if h ≥ 2. On this

interval, we have

r′2(σ) = −(λ+ f(λ, h))
(

2 +
6

(3σ − 1)2

)
+ 2(1 + hλ).
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Thus, r′2(σ) < 0 for 3/4 < σ ≤ 0.788 is equivalent to

2
(

2 +
6

1.3642

)−1

=: ξ <
λ+ f(λ, h)

1 + hλ
,

where ξ ≈ 0.3828.
By definition, for k ∈ N we have

λ+ f(λ, k)
1 + kλ

= min
{
λ+ f1(λ, k)

1 + kλ
,
λ+ f2(λ, k)

1 + kλ

}

with
λ+ f1(λ, k)

1 + kλ
=

5
12

(
1−

(
1− 1

1 + kλ

)(
1− 2

1 + k

))
,

λ+ f2(λ, k)
1 + kλ

=
5
11
· 1 + (2− k)λ

1 + kλ
.

For fixed k ≥ 2 the functions gi(λ) := (λ + fi(λ, k))/(1 + kλ) (i = 1, 2) are
obviously decreasing for λ > 0. Furthermore, by (8) and h ≥ 2, we have

λ ≤ φ1,h =
1

2(6h− 1− 11/h)
, f(φ1,h, h) = f2(φ1,h, h).

Hence, it suffices to prove that

ξ < zh :=
5
11
· 1 + (2− h)/(2(6h− 1− 11/h))

1 + h/(2(6h− 1− 11/h))
.(69)

Inequality (69) holds true for h = 2, 3, 4. Furthermore, it is easily seen that
the sequence (zh) is decreasing for h ≥ 4, and we have

lim
h→∞

zh =
5
13

> ξ.

This completes the proof.

8. Proofs of Theorems 4, 4∗ and 5. Theorem 4∗ can be derived from
Theorem 4 in a standard way using the inequality

|f(x)| ≤
x+1/2�

x−1/2

(|f(t)|+ |f ′(t)|) dt,

which is valid for every continuously differentable function f : [x − 1/2,
x+ 1/2]→ C.

To derive Theorem 5 from Theorem 4∗, we proceed as follows: In case θ
is rational we write the shifted Dirichlet polynomial on the left side of (21)
as an ordinary one via the relation

∑

L1<l≤L2

bl(l + θ)iαtr−1 = q−iαtr+1
∑

L1<l≤L2

bl(ql +m)iαtr−1,
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where θ = m/q, m and q being non-negative integers. We then write the
2hth power of the absolute value of the Dirichlet polynomial on the right
side in the form∣∣∣

∑

L1<l≤L2

bl(ql +m)iαtr−1
∣∣∣
2h

=
∣∣∣

∑

(qL1+m)h<n≤(qL2+m)h

cnn
iαtr
∣∣∣
2
,

where
cn := n−1

∑

L1<l1,...,lh≤L2
n=(ql1+m)...(qlh+m)

bl1 . . . blh .

We note that
|cn| ≤ Bhn−1dh(n)� Bhnε2−1,

where dh(n) denotes the divisor function of order h and ε2 is any positive
constant. Now, we divide each of the Dirichlet polynomials∑

K1<k≤K2

akk
−(σ+itr) and

∑

(qL1+m)h<n≤(qL2+m)h

cnn
iαtr

into O(logK2) and O(logL2) partial sums over ranges of the form K <
k ≤ 2K and L < l ≤ 2L respectively, use the Cauchy–Schwarz inequality,
multiply out the two resulting sums of squares of absolute values of Dirichlet
polynomials, and sum up over r. In this manner, we obtain a sum of terms
having the same shape as the one on the left side of (20), where now θ = 0.
Applying Theorem 4∗ with θ = 0 to these terms, we obtain the desired
bound.

When θ in Theorem 5 is irrational, it is supposed that h = 1. Now, we
just split up the ordinary and the shifted Dirichlet polynomial on the left
side of (21) in the same manner as above, use the Cauchy–Schwarz inequa-
lity, multiply out, sum up over r and apply Theorem 4∗. In this way, we
again obtain the desired bound. This completes the proof of Theorem 5.

We now turn to proving Theorem 4. If θ = 0, Theorem 4 is nothing but a
slight modification of Theorem 1 in [BaH]. However, in the case when θ 6= 0
Theorem 4 actually appears to be a new result, which we shall prove in the
following.

Without loss of generality, we assume that A = B = 1 and α > 0. We
denote the integral in question on the left side of (19) by I.

Multiplying out the integrand contained in I, integrating the resulting
fourfold sum term by term and using the standard inequalities

T�

0

xit dt� min{T, |log x|−1}

for x > 0 and
|logω| � |ω − 1|
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for 2−(α+1) ≤ ω ≤ 2α+1, we obtain

I ≤
∑

k1,k2∼K

∑

l1,l2∼L
min

{
T,

∣∣∣∣
k1(l2 + θ)α

k2(l1 + θ)α
− 1

∣∣∣∣
−1}

(70)

≤ 2α
∑

k1,k2∼K

∑

l1,l2∼L
min

{
T,

∣∣∣∣
k1

k2
−
(
l1 + θ

l2 + θ

)α∣∣∣∣
−1}

≤ 2α
∑

d≤2K

∑

k1,k2∼K/d
(k1,k2)=1

∑

l1,l2∼L
min

{
T,

∣∣∣∣
k1

k2
−
(
l1 + θ

l2 + θ

)α∣∣∣∣
−1}

.

Let M := [2+α+(log T )/(log 2)]. In the following, we suppose that H ≥ 1/2
and 0 < Z ≤ 2M/T ≤ 22+α. By G(H,Z) we denote the number of solu-
tions to ∣∣∣∣

k1

k2
−
(
l1 + θ

l2 + θ

)α∣∣∣∣ ≤ Z

with k1, k2 ∼ H, (k1, k2) = 1 and l1, l2 ∼ L. We then have

(71)
∑

k1,k2∼H
(k1,k2)=1

∑

l1,l2∼L
min

{
T,

∣∣∣∣
k1

k2
−
(
l1 + θ

l2 + θ

)α∣∣∣∣
−1}

� T

M∑

m=0

G(H, 2m/T )2−m.

Let S(H) be the set of all fractions k1/k2 with k1, k2 ∼ H, (k1, k2) = 1.
This set is well-spaced with spacing 1/(4H2). Hence,

G(H,Z) =
∑

l1,l2∼L

∣∣∣∣
{
u ∈ S(H) :

∣∣∣∣
(
l1 + θ

l2 + θ

)α
− u
∣∣∣∣ ≤ Z

}∣∣∣∣(72)

� L2(ZH2 + 1).

By a short calculation, from (72), we derive

T

M∑

m=0

G(H, 2m/T )2−m � (H2L2 + TL2) log(2T ).(73)

We now estimate the left side of (73) in an alternative way. Using the
Cauchy–Schwarz inequality and taking the above-mentioned spacing prop-
erties of the set S(H) into account, we obtain

G(H,Z) =
∑

u∈S(H)

∣∣∣∣
{
l1, l2 ∼ L :

∣∣∣∣u−
(
l1 + θ

l2 + θ

)α∣∣∣∣ ≤ Z
}∣∣∣∣(74)

� H

( ∑

u∈S(H)

∣∣∣∣
{
l1, l2 ∼ L :

∣∣∣∣u−
(
l1 + θ

l2 + θ

)α∣∣∣∣ ≤ Z
}∣∣∣∣

2)1/2
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� H

(
(ZH2+1)

∣∣∣∣
{
l1, l2, l

′
1, l
′
2 ∼ L :

∣∣∣∣
(
l1 + θ

l2 + θ

)α
−
(
l′1 + θ

l′2 + θ

)α∣∣∣∣ ≤ 2Z
}∣∣∣∣
)1/2

.

Using Taylor’s formula, 1/2≤ (l1 +θ)/(l2 +θ)≤ 2 and 1/2≤ (l′1 +θ)/(l′2 +θ)
≤ 2, we deduce that there is a positive constant c depending only on α such
that

(75)

∣∣∣∣
{
l1, l2, l

′
1, l
′
2 ∼ L :

∣∣∣∣
(
l1 + θ

l2 + θ

)α
−
(
l′1 + θ

l′2 + θ

)α∣∣∣∣ ≤ 2Z
}∣∣∣∣

≤
∣∣∣∣
{
l1, l2, l

′
1, l
′
2 ∼ L :

∣∣∣∣
l1 + θ

l2 + θ
− l′1 + θ

l′2 + θ

∣∣∣∣ ≤ cZ
}∣∣∣∣.

Taking the first inequality on page 145 of [Ha2] into account, we get

(76)
∣∣∣∣
{
l1, l2, l

′
1, l
′
2 ∼ L :

∣∣∣∣
l1 + θ

l2 + θ
− l′1 + θ

l′2 + θ

∣∣∣∣ ≤ cZ
}∣∣∣∣

≤ |{l1, l2, l′1, l′2 ∼ L : |(l1 + θ)(l′2 + θ)− (l′1 + θ)(l2 + θ)| ≤ cZ(2L+ θ)2}|
� (ZL2 + 1)L2 log2(2L).

The implied �-constant does not depend on θ. Combining (74), (75)
and (76), we get

G(H,Z)� (ZH2L2 + Z1/2(H + L)HL+HL) log(2L).(77)

By a short calculation, from (77), we derive

(78) T

M∑

m=0

G(H, 2m/T )2−m

� (H2L2 + T 1/2(H + L)HL+ THL) log(2L) log(2T ).

Combining (73) and (78), and taking the condition L ≤ T 1/2 in Theo-
rem 4 into account, we get

(79) T

M∑

m=0

G(H, 2m/T )2−m

� (H2L2 + THL+ T min{H2, L2}) log(2L) log(2T ).

From (70), (71) and (79), we obtain

(80) I �
(
K2L2 + TKL log(2K) + T

∑

d≤2K

min
{
K2

d2 , L
2
})

× log(2L) log(2T ).
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If K ≤ L, then we have
∑

d≤2K

min
{
K2

d2 , L
2
}
≤
∑

d≤2K

K2

d2 � K2 ≤ KL.

Otherwise, we have
∑

d≤2K

min
{
K2

d2 , L
2
}
≤

∑

d≤K/L
L2 +

∑

K/L<d≤2K

K2

d2 � KL.

Therefore, from (80) follows

I � (K2L2 + TKL) log(2K) log(2L) log(2T ).

This implies the result of Theorem 4.

We note that if the condition L ≤ T 1/2 in Theorem 4 could be removed
for all θ 6= 0, then the condition λ ≤ 5/19 in Theorem 3 could be removed
for all irrational θ.
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