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1. Introduction. Let f denote a multiplicative function with 0 ≤
f(n) ≤ 1 for all positive integers n. Define

Θ(f, x) :=
∏

p≤x

(
1− 1

p

)(
1 +

f(p)
p

+
f(p2)
p2 + · · ·

)
.

Given a real number w ≥ 1 in this paper we are concerned with the problem
of determining

(1.1) g(w) := lim inf
x→∞

1
x

∑

n≤x
f(n) and G(w) := lim sup

x→∞

1
x

∑

n≤x
f(n),

where both limits are taken over the class of multiplicative functions f
with Θ(f, x) = 1/w + o(1). (To be more precise, suppose that ε(x) is a
positive-valued function for which ε(x) → 0 as x → ∞. Define g(w, x) :=
min(1/x)

∑
n≤x f(n) and G(w, x) := max(1/x)

∑
n≤x f(n), where the “min”

and “max” are taken over all multiplicative f , with 0≤f(n)≤1 for all n ≥ 1,
and 1− ε(x)<wΘ(f, x)<1 + ε(x). Then let g(w) := lim infx→∞ g(w, x) and
G(w) := lim supx→∞G(w, x).)

P. Erdős and I. Ruzsa [1] showed that g(w) > 0 for all w. Consider the
function f with f(pk) = 1 for p ≤ x1/w and f(pk) = 0 for x1/w ≤ p ≤ x.
Then one has Θ(f ;x) = 1/w + o(1) and further

∑
n≤x f(n) = ψ(x, x1/w),

the number of integers below x having no prime factors above x1/w. It is
well known that for any fixed w we have

(1.2) ψ(x, x1/w) = x%(w)
(

1 +O

(
w

log x

))
,
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where %(w) is the Dickman–de Bruijn function, defined by %(w) = 1 for
0 ≤ w ≤ 1, and w%′(w) = −%(w− 1) for all w ≥ 1. This example shows that
g(w) ≤ %(w) and A. Hildebrand [6] established that in fact g(w) = %(w).
Since %(w) = w−w+o(w) note that g(w) decays very rapidly as w increases.

Regarding G(w), R. Hall [4] established that G(w) ≤ eγ/w and Hilde-
brand [5] improved this slightly by showing that G(w) ≤ w−1

� w
0 %(t) dt.

Since
� ∞
0 %(t) dt = eγ this does mark an improvement over Hall’s result,

but the difference from eγ/w is w−1
� ∞
w
%(t) dt = w−w+o(w), which is very

small. In this paper we shall prove that G(w) = eγ/w − 1/w2+o(1), but it
remains to determine G(w) more precisely. We shall also give a shorter proof
of Hildebrand’s result that g(w) = %(w).

Theorem 1. For all w ≥ 1 we have

(1.3) G(w) ≥ max
w≥∆≥0

(
%(w +∆) +

∆�

0

%(t)
w +∆− t dt

)
.

When w is large, the maximum is attained for ∆ ∼ logw/log logw, and
yields

G(w) ≥ eγ

w
− (eγ + o(1)) logw

w2 log logw
.

Theorem 2. For all large w we have

G(w) ≤ eγ

w
− 1
w2 exp(c(logw)2/3(log logw)1/3)

for a positive constant c.

We also give an explicit upper bound for G(w) valid for all w.

Theorem 3. For 1 ≤ w we have

G(w) ≤ 1− logw + (logw)2/2

and equality holds here for 1 ≤ w ≤ 3/2. For w ≥ 1 put

Λ(w) :=
1
2

(w + 1/w) +
logw

2
(w − 1/w).

Then
G(w) ≤ Λ(w) log(1 + eγ/(wΛ(w))).

The first bound in Theorem 3 is better than the second for w ≤ 3.21 . . . ,
when the second bound takes over. Note that the second bound in Theorem 3
equals eγ/w− (e2γ + o(1))/w3 logw, only a little weaker than the bound in
Theorem 2, while being totally explicit.

In the range 1 ≤ w ≤ 3/2 we may check that the right side of (1.3)
equals 1− logw + (logw)2/2 = G(w). Perhaps it is true that G(w) is given
by the right side of (1.3) for all w.
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We end this section by giving a simple construction that proves Theo-
rem 1.

Proof of Theorem 1. Let y be large and consider the completely mul-
tiplicative function f defined by f(p) = 0 for p ∈ [y, yw] and f(p) = 1
for all other primes p. Put x = yw+∆ where 0 ≤ ∆ ≤ w and note that
Θ(f, x) =

∏
y≤p≤yw(1 − 1/p) ∼ 1/w. An integer n ≤ x with f(n) = 1 has

at most one prime factor between yw and x, and all its other prime factors
are below y. Hence

∑

n≤x
f(n) = ψ(x, y) +

∑

yw≤p≤x
ψ(x/p, y),

and by (1.2) and the prime number theorem this is

∼ x%(w +∆) + x
∑

yw≤p≤x

1
p
%

(
w +∆− log p

log y

)

∼ x
(
%(w +∆) +

∆�

0

%(t)
w +∆− t dt

)
,

which gives the lower bound (1.3) for G(w). For large w we see that

%(w +∆) +
∆�

0

%(t)
w +∆− t dt

=
1

w +∆

∆�

0

%(t) dt+
∆�

0

t%(t)
(w +∆)(w +∆− t) dt+ %(w +∆)

and since
� ∞
0 t%(t) dt <∞ and

� ∆
0 %(t) dt = eγ −∆−(1+o(1))∆ the above is

1
w +∆

(eγ −∆−(1+o(1))∆) +O

(
1
w2

)
.

The quantity above attains a maximum for ∆ = (1 + o(1)) logw/log logw,
completing the proof of Theorem 1.

We noted above that G(w) = 1 − logw + (logw)2/2 for 1 ≤ w ≤ 1.5
(with the maximum attained in (1.3) at ∆ = w). Next we record the bounds
obtained for 1.5 ≤ w ≤ 2 (though here the maximum is attained with ∆ a
little smaller than w).

The upper and lower bounds for G(w) given by Theorems 1 and 3

w 1.5 1.6 1.7 1.8 1.9 2.0

G(w) ≥ .676735 .640255 .608806 .581685 .557392 .535905
G(w) ≤ .676736 .640449 .610155 .584960 .564135 .547080
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2. Reformulation in terms of integral equations. E. Wirsing [8]
observed that questions on mean values of multiplicative functions can be
reformulated in terms of solutions to a certain integral equation. We formal-
ized this connection precisely in our paper [2] and we now recapitulate the
salient details. We will prove our results by establishing the corresponding
statements for solutions to integral equations.

The following class of integral equations is relevant to the study of mul-
tiplicative functions f with |f(n)| ≤ 1 for all n: Let χ be a measurable
function with χ(t) = 1 for t ≤ 1 and |χ(t)| ≤ 1 for all t ≥ 1. Let σ(u) = 1
for u ≤ 1 and for u > 1 we define σ to be the solution to

(2.1) uσ(u) =
u�

0

χ(t)σ(u− t) dt.

In [2] we showed that there is a unique continuous solution σ(u) to (2.1)
and that |σ(u)| ≤ 1 for all u. In fact σ(u) is given by

(2.2a) σ(u) = 1 +
∞∑

j=1

(−1)j

j!
Ij(u;χ),

where

(2.2b) Ij(u;χ) =
�

t1,...,tj≥1
t1+···+tj≤u

1− χ(t1)
t1

· · · 1− χ(tj)
tj

dt1 · · · dtj .

The connection between multiplicative functions and the integral equa-
tion (2.1) is given by the following result, which is Proposition 1 in [2].

Proposition 2.1. Let f be a multiplicative function with |f(n)| ≤ 1 for
all n, and f(n) = 1 for n ≤ y. Let ϑ(x) =

∑
p≤x log p and define

χ(u) = χf (u) =
1

ϑ(yu)

∑

p≤yu
f(p) log p.

Then χ(t) is a measurable function with |χ(t)| ≤ 1 for all t and χ(t) = 1 for
t ≤ 1. Let σ(u) be the corresponding unique solution to (2.1). Then

1
yu

∑

n≤yu
f(n) = σ(u) +O

(
u

log y
+

1
yu

)
.

For our problems on non-negative multiplicative functions we will restrict
attention to integral equations where χ(t) only takes values in [0, 1]. The
corresponding solution σ(u) to (2.1) then also takes values in [0, 1]. We also
define

(2.3) E(u) = Eχ(u) := exp
(u�

0

1− χ(t)
t

dt

)
.
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Notice that Θ(f, yu) ∼ 1/E(u) when χ is defined as in Proposition 2.1.
Analogously to g(w) and G(w) we may define

g̃(w) = lim inf
u,χ

Eχ(u)=w

σ(u) and G̃(w) = lim sup
u,χ

Eχ(u)=w

σ(u),

where the limits are taken over all pairs u, χ with u ≥ 1, where χ is a
measurable function for which χ(t) = 1 for t ≤ 1 and χ(t) ∈ [0, 1] for all t,
and with Eχ(u) = w. We shall show that these quantities are in fact equal
to g(w) and G(w) respectively. Something similar was stated (but not very
precisely) by Hildebrand in his discussion paper [7].

Theorem 2.2. We have g(w) = g̃(w) and G(w) = G̃(w).

To prove Theorem 2.2 we need to know how small primes affect the mean
values of multiplicative functions, so that we can remove their effect and be
in a position to use Proposition 2.1. We also require a converse to Propo-
sition 2.1 which allows us to go from integral equations to multiplicative
functions. Such results were established in [2] and we now quote them in
our context. Proposition 4.4 of [2] (with ϕ = π/2 there) gives the following
lemma.

Lemma 2.3. Let f be a multiplicative function with 0 ≤ f(n) ≤ 1 for
all n. Let 1 ≥ ε ≥ log 2/log x and take g to be the completely multiplicative
function with g(p) = 1 if p ≤ xε and g(p) = f(p) otherwise. Then

1
x

∑

n≤x
f(n) = Θ(f, xε)

1
x

∑

m≤x
g(m) +O(ε1/4−1/2π).

Next, Proposition 1 (Converse) in [2] gives the following converse to
Proposition 2.1.

Proposition 2.4. Let χ be a given measurable function with χ(t) = 1
for t ≤ 1 and χ(t) ∈ [0, 1] for all t ≥ 1 and let σ denote the corresponding
solution to (2.1). Given ε > 0 and u ≥ 1 there exist arbitrarily large y and
a multiplicative function f with f(n) = 1 for n ≤ y and 0 ≤ f(n) ≤ 1 for
all n and with∣∣∣∣χ(t)− 1

ϑ(yt)

∑

p≤yt
f(p) log p

∣∣∣∣ ≤ ε for almost all 0 ≤ t ≤ u.

Further , for all 1 ≤ t ≤ u,

σ(t) =
1
yt

∑

n≤yt
f(n) +O(uε − 1) +O

(
u

log y

)
.

We will defer the proof of Theorem 2.2 to the next section. But let us
note that combining Lemma 2.3 with Proposition 2.1 gives
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(2.4a) g(w) ≥ min
w≥v≥1

1
v
g̃

(
w

v

)
and G(w) ≤ max

w≥v≥1

1
v
G̃

(
w

v

)
.

Also from Proposition 2.4 we get

(2.4b) g(w) ≤ g̃(w), G̃(w) ≤ G(w).

We end this section by recording two facts which will be useful in our later
work. Firstly when χ(t) ∈ [0, 1] one obtains inclusion-exclusion inequalities
from (2.2a,b): namely, for all even integers n we have (see Proposition 3.6
of [2])

(2.5)
n∑

j=0

(−1)j

j!
Ij(u;χ) ≥ σ(u) ≥

n+1∑

j=0

(−1)j

j!
Ij(u;χ).

Secondly from (2.2a,b) and a little combinatorics we obtain the following
lemma (see Lemma 3.4 of [2]):

Lemma 2.5. Let χ and χ̂ be two measurable functions with χ(t)= χ̂(t)=1
for 0 ≤ t ≤ 1 and |χ(t)|, |χ̂(t)| ≤ 1 for all t. Let σ and σ̂ be the corresponding
solutions to (2.1). Then σ̂(u) equals

σ(u) +
∞∑

j=1

1
j!

�

t1,...,tj≥1
t1+···+tj≤u

χ̂(t1)− χ(t1)
t1

· · · χ̂(tj)− χ(tj)
tj

×σ(u− t1 − · · · − tj) dt1 · · · dtj .

3. Upper bounds for G(w) and Lipschitz estimates. For a mea-
surable function g : [0,∞)→ C we will denote the Laplace transform of g by
L(g, s) :=

� ∞
0 g(t)e−st dt. If g is integrable and grows sub-exponentially (that

is, for every ε > 0, |g(t)| �ε e
εt almost everywhere) then the Laplace trans-

form is well defined for all complex numbers s with Re(s) > 0. Integrating
term by term in (2.2a,b) we see that

(3.1) L(σ, s) =
1
s

exp
(
−L
(

1− χ(v)
v

, s

))
.

Suppose now that χ(t) = 1 for t ≤ 1 and χ(t) ∈ [0, 1] for all t and we
are given u ≥ 1. Define χ̂(t) = χ(t) for t ≤ u and χ̂(t) = 0 for t > u. If σ
and σ̂ are the corresponding solutions to (2.1) then note that σ(v) = σ̂(v)
for v ≤ u and that Eχ(v) = Eχ̂(v) for v ≤ u. Now

σ(u) = σ̂(u) =
1
u

u�

0

σ̂(t)χ̂(u− t) dt

≤ 1
u

u�

0

σ̂(t) dt =
1
u

∞�

0

σ̂(t) dt− 1
u

∞�

u

σ̂(t) dt.
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Further

L
(

1− χ̂(t)
t

, s

)
− logE(u) =

∞�

0

(
1− χ̂(t)

t

)
e−st dt−

u�

0

1− χ(t)
t

dt

=
u�

0

(
1− χ(t)

t

)
(e−st − 1) dt+

∞�

u

e−st

t
dt

= −γ − log(su) +O(u|s|)

for small s, since γ =
� 1
0

1−e−t
t dt−

� ∞
1

e−t

t dt. Hence

1
u

∞�

0

σ̂(t) dt =
1
u

lim
y→0
L(σ̂, y) = lim

y→0

1
yu

exp
(
−L
(

1− χ̂(t)
t

, y

))
=

eγ

E(u)
,

and so we have

(3.2) σ(u) ≤ eγ

E(u)
− 1
u

∞�

u

σ̂(t) dt.

We use (3.2) in the proofs of Theorems 2 and 3, since it allows us to give
an upper bound for σ(u) by determining a “smoothed lower bound” for σ̂.
Our plan for proving a bound on this integral is to bound how much σ̂(t)
changes as t gets bigger than u, via Lipschitz-type estimates.

For general complex χ with |χ| ≤ 1, and σ satisfying (2.1), we might
expect to have a Lipschitz estimate of the form

(3.3) | |σ(u)|−|σ(v)| | �
(
u− v
u

)κ(
1+log

u

u− v

)
whenever 1 ≤ v ≤ u

for certain values of κ > 0; and indeed we established (3.3) in [3] for κ =
1 − 2/π. Any increase in the value of κ allows stronger consequences, and
we believe that κ = 1 in (3.3) is probably valid. Note that no exponent > 1
is possible since |%(1 + δ)−%(1)| = log(1 + δ) ∼ δ for 0 ≤ δ ≤ 1. We are able
to improve “1 − 2/π” to “1 − 1/π” in the special case that χ(t) ∈ [0, 1] for
all t.

Theorem 4. Let χ be a measurable function with χ(t) = 1 for t ≤ 1 and
χ(t) ∈ [0, 1] for t > 1, and let σ denote the corresponding solution to (2.1).
Then

|σ(u)− σ(v)| �
(
u− v
u

)1−1/π(
1 + log

u

u− v

)
whenever 1 ≤ v ≤ u.

Theorem 4 follows immediately from the stronger but more complicated
Proposition 4.2 below, and the fact that |σ(u)−σ(v)| ≤ 3(u− v)/u whenever
v ≤ u(1− 1/E(u)). This is trivial for v ≤ 2u/3, whereas for larger v in the
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range, we obtain

|σ(u)− σ(v)| ≤ eγ

E(v)
≤ ueγ

vE(u)
≤ 3(u− v)

u
,

using Hall’s result that σ(u) ≤ eγ/E(u).
Using (3.3) in (3.2) leads to the bound

G̃(w) ≤ eγ/w − Cκ/(w1+1/κ logw)

for some positive constant Cκ. Thus if (3.3) holds with κ = 1 then we would
be able to deduce that G(w) = eγ/w − (logw)O(1)/w2 by Theorem 1.

In order to prove Theorem 3 we give the following explicit Lipschitz
estimate (see also Proposition 4.1 of [2]).

Proposition 3.1. Let χ be a measurable function with χ(t) = 1 for t ≤ 1
and χ(t) ∈ [0, 1] for all t, and let σ(u) denote the corresponding solution to
(2.1). Then for all u ≥ 1 and 1 ≥ δ > 0 we have

log(1+δ)
(
E(u)− 1/E(u)

2
+logE(u)

E(u) + 1/E(u)
2

)
≥ σ(u(1+δ))−σ(u)

and

σ(u(1 + δ))− σ(u)

≥ − log(1 + δ)
(
E(u) + 1/E(u)

2
+ logE(u)

E(u)− 1/E(u)
2

)
.

Proof. We shall only prove the lower bound, the proof of the upper
bound is similar. From (2.2a,b) we see that

σ(u(1 + δ))− σ(u) ≥ −
∞∑

j=1
j odd

1
j!

(Ij(u(1 + δ);χ)− Ij(u;χ)).

By symmetry we see that Ij(u(1 + δ);χ)− Ij(u;χ) equals

j

�

t1,...,tj−1≥1

1− χ(t1)
t1

· · · 1− χ(tj−1)
tj−1

×
�

max(t1,...,tj−1,u−t1−···−tj−1)≤tj
tj≤u(1+δ)−t1−···−tj−1

1− χ(tj)
tj

dt1 · · · dtj .

The integral over tj is

≤ log
u/j + uδ

u/j
= log(1 + jδ) ≤ j log(1 + δ),

since max(t1, . . . , tj−1, u−t1−· · ·−tj−1) ≥ u/j. Further since δ < 1 we have
t1, . . . , tj−1 ≤ u and so these integrals contribute ≤ (logE(u))j−1. Thus we
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have

σ(u(1 + δ))− σ(u) ≥ −
∞∑

j=1
j odd

1
j!
j2 log(1 + δ)(logE(u))j−1,

and the result follows easily.

Proof of Theorem 2.2. Fix w ≥ v ≥ 1. Suppose χ(t) = 1 for t ≤ 1
and χ(t) ∈ [0, 1] for all t and let σ(u) denote the corresponding solution to
(2.1) (we will think of χ as giving the optimal function for either g̃(w/v)
or G̃(w/v)). Let U ≥ 1 be a parameter which we will let tend to infinity.
Put χ1(t) = χ(t/U) and note that the corresponding solution to (2.1) is
σ1(u) = σ(u/U). Define χ2(t) = 0 for 1 ≤ t ≤ v and χ2(t) = χ1(t) for
all other t, and let σ2(u) denote the corresponding solution to (2.1). By
Lemma 2.5 we see that for U ≥ v,

σ2(uU) = σ1(uU) +
∞∑

j=1

(−1)j

j!

�

v≥t1,...,tj≥1
t1+···+tj≤uU

1
t1
· · · 1

tj

× σ1(uU − t1 − · · · − tj) dt1 · · · dtj .
By Proposition 3.1 we know that

σ1(uU − t1 − · · · − tj) = σ1(uU) +O

(
min

(
1, Eχ(u) logEχ(u)

jv

uU

))
.

Using this above we easily see that for large U with u, v, w fixed we have
σ2(uU) ∼ σ1(uU)/v = σ(u)/v and note further that Eχ2(uU) = vEχ1(uU)
= vEχ(u).

This scaling argument shows that for 1 ≤ v ≤ w we have g̃(w/v) ≥ vg̃(w)
and that G̃(w/v) ≤ vG̃(w). Using these inequalities in (2.4a) we deduce
that g(w) ≥ g̃(w) and that G(w) ≤ G̃(w) and combining this with (2.4b)
we obtain Theorem 2.2.

Now that Theorem 2.2 has been established, to prove Theorem 3 it suf-
fices to establish the analogous bounds for G̃(w) and we establish these
next.

Proof of Theorem 3. Using the inclusion-exclusion upper bound (2.5)
with n = 2 we see that σ(u) ≤ 1− logE(u) + (logE(u))2/2. It follows that
G(w) = G̃(w) ≤ 1− logw+(logw)2/2. If w ≤ 3/2 then consider χ(t) = 0 for
1 ≤ t ≤ w and χ(t) = 1 for all other t. Then we see that the corresponding
solution σ(u) satisfies σ(u) = 1 − logw + (logw)2/2 for 3 ≥ u ≥ 2w. Thus
G̃(w) = 1− logw + (logw)2/2 for 1 ≤ w ≤ 3/2.

We now establish the second bound of the theorem. As noted in the
introduction the second bound is worse than the first for w ≤ 3.21 and so
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we may suppose that w ≥ 2. With χ̂, σ̂ as above, note that σ̂(t) ≥ 0 for all t,
and

σ̂(u(1 + δ)) ≥ σ̂(u)− Λ(E(u)) log(1 + δ) for 0 ≤ δ ≤ 1

by Proposition 3.1. If E(u) ≥ 2 then Λ(E(u)) ≥ 7/4 > 1/log 2 so that
exp(σ(u)/Λ(E(u)))− 1 < 1. Hence we obtain

1
u

∞�

u

σ̂(t) dt ≥
exp(σ(u)/Λ(E(u)))−1�

0

(σ(u)− Λ(E(u)) log(1 + δ)) dδ

= −σ(u) + Λ(E(u))
(

exp
(

σ(u)
Λ(E(u))

)
− 1
)
,

and inserting this into (3.2) we get the theorem.

4. An improved upper bound: Proof of Theorem 2. Our proof
of Theorem 2 is also based on (3.2) and on obtaining lower bounds for
u−1

� ∞
u
σ̂(t) dt. However Theorem 4 is not quite strong enough to obtain this

conclusion and so, in this section, we develop a hybrid Lipschitz estimate
which for our problem is almost as good as (3.3) with κ = 1. We begin with
the following proposition (compare Lemma 2.2 and Proposition 3.3 of [3]).

Proposition 4.1. Let χ be a measurable function with χ(t) = 1 for
t ≤ 1 and χ(t) in the unit disc for all t. Let σ be the corresponding solution
to (2.1). Let 1 ≤ v ≤ u be given real numbers, and put δ = u− v. Define

F := max
y∈R

exp
(
γ −

u�

0

Re
(

1− χ(t)e−ity

t

)
dt

)
|1− e−iyδ|.

Then

|σ(u)− σ(v)| ≤ δ

u
log

eu

δ
+ F + F

2/(uF )�

0

1− e−2xu

x
dx

≤ δ

u
log

eu

δ
+ F log

e3

F
.

Proof. As in the proof of Theorem 3 take χ̂(t) = χ(t) for t ≤ u and
χ̂(t) = 0 for t > u, and let σ̂ be the corresponding solution to (2.1). Set
σ(t) = σ̂(t) = 0 for t < 0. Note that

|uσ(u)− vσ(v)| = |uσ̂(u)− vσ̂(v)| =
∣∣∣
u�

0

χ(t)(σ̂(u− t)− σ̂(v − t)) dt
∣∣∣

≤
u�

0

|σ̂(t)− σ̂(t− δ)| dt =
u�

0

2t|σ̂(t)− σ̂(t− δ)|
(∞�

0

e−2xt dx
)
dt
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≤ 2
∞�

0

u�

0

{|tσ̂(t)− (t− δ)σ̂(t− δ)|+ δ|σ̂(t− δ)|}e−2tx dt dx

≤
∞�

0

I(x) dx+
∞�

0

u�

δ

2δe−2tx dt dx = δ log
u

δ
+
∞�

0

I(x) dx,

where

I(x) =
u�

0

2|tσ̂(t)− (t− δ)σ̂(t− δ)|e−2tx dt.

As

|σ(u)− σ(v)| ≤ 1
u

(|uσ(u)− vσ(v)|+ δ|σ(v)|) ≤ δ

u
+

1
u
|uσ(u)− vσ(v)|,

it follows that

(4.1) |σ(u)− σ(v)| ≤ δ

u
log

eu

δ
+

1
u

∞�

0

I(x) dx.

By Cauchy’s inequality

I(x)2 ≤
(

4
u�

0

e−2tx dt
)( u�

0

|tσ̂(t)− (t− δ)σ̂(t− δ)|2e−2tx dt
)

≤ 2
(

1− e−2xu

x

)(∞�

0

|tσ̂(t)− (t− δ)σ̂(t− δ)|2e−2tx dt
)
.

By Plancherel’s formula the second term above is

=
1

2π

∞�

−∞
|L(tσ̂(t)− (t− δ)σ̂(t− δ), x+ iy)|2 dy

=
1

2π

∞�

−∞
|L(tσ̂(t), x+ iy)|2|1− e−(x+iy)δ|2 dy.

From (2.1) we see that L(tσ̂(t), x+ iy) = L(σ̂, x+ iy)L(χ̂, x+ iy) and so the
above equals

1
2π

∞�

−∞
|L(σ̂, x+ iy)L(χ̂, x+ iy)|2|1− e−(x+iy)δ|2 dy

≤ F (x)2 · 1
2π

∞�

−∞
|L(χ̂, x+ iy)|2 dy,

where
F (x) := max

y∈R
|1− e−(x+iy)δ| |L(σ̂, x+ iy)|.
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Now, by Plancherel’s formula again,

1
2π

∞�

−∞
|L(χ̂, x+ iy)|2 dy =

∞�

0

|χ̂(t)|2e−2tx dt ≤
u�

0

e−2tx dt =
1− e−2xu

2x
,

and so

(4.2) I(x) ≤ 1− e−2xu

x
F (x).

We now demonstrate that F (x) is a decreasing function of x. Suppose
that β > 0 is real, and recall that the Fourier transform of k(z) := e−β|z| is
k̂(ξ) =

� ∞
−∞ e−β|z|−iξz dz = 2β/(β2 + ξ2). Hence

e−βz = k(z) = k(−z) =
1
π

∞�

−∞

β

β2 + ξ2 e
−iξz dz

by Fourier inversion for z > 0. It follows that for δ + t > 0 we have

(1− e−δ(x+β+iy))e−t(x+β+iy)

=
1
π

∞�

−∞

β

β2 + ξ2 e
−t(x+iy+iξ)(1− e−δ(x+iy+iξ)) dξ.

Multiplying both sides by σ̂(t), and integrating t from 0 to ∞, we deduce
that

(1− e−δ(x+β+iy))L(σ̂, x+ β + iy)

=
1
π

∞�

−∞

β

β2 + ξ2 L(σ̂, x+ iy + iξ)(1− e−δ(x+iy+iξ)) dξ

≤ (max
y∈R
|(1− e−δ(x+iy))L(σ̂, x+ iy)|) 1

π

∞�

−∞

β

β2 + ξ2 dξ,

and so F (x+ β) ≤ F (x) as claimed. Therefore F (x) ≤ limx→0+ F (x).
Now if s = x+ iy with x > 0 then

L
(

1− χ(v)
v

, s

)
=
∞�

0

(
1− χ(v)e−ivy

v

)
e−vx dv +

∞�

0

e−vs − e−vx
v

dv

=
∞�

0

(
1− χ(v)e−ivy

v

)
e−vx dv + log(x/s),

so that

L(σ, s) =
1
x

exp
(
−
∞�

0

(
1− χ(v)e−ivy

v

)
e−vx dv

)
.
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Using this for σ̂ we have

|L(σ̂, x+ iy)| = 1
x

exp
(
−
∞�

u

e−tx

t
dt−

u�

0

Re
(

1− χ(t)e−ity

t

)
e−tx dt

)
.

For x� 1/u we get
∞�

u

e−tx

t
dt =

∞�

ux

e−t

t
dt =

∞�

1

e−t

t
dt+

1�

ux

e−t − 1
t

dt+ log
1
ux

= −γ + log
1
ux

+O(ux),

since γ =
� 1
0

1−e−t
t dt−

� ∞
1

e−t

t dt, so that

|L(σ̂, x+ iy)| = eγu exp
(
−
u�

0

Re
(

1− χ(t)e−ity

t

)
dt+O(ux)

)
.

Note that this is�u 1, so that the maximum of |1− e−(x+iy)δ| |L(σ̂, x+ iy)|
cannot occur with ‖yδ/2π‖ → 0 as x → 0+ (here ‖t‖ denotes the distance
from the nearest integer to t), else F (x) �u x + ‖yδ/2π‖ → 0 as x → 0+,
implying that F (x) = 0, which is ridiculous. Thus the maximum occurs
with ‖yδ/2π‖ � 1 as x → 0+ so that 1 − e−(x+iy)δ = 1− e−iyδ + O(xδ) =
(1− e−iyδ){1 +O(xδ)}, so that

|1− e−(x+iy)δ| |L(σ̂, x+ iy)|

= u|1− e−iyδ| exp
(
γ −

u�

0

Re
(

1− χ(t)e−ity

t

)
dt+O(ux)

)
.

Therefore F (x) ≤ uF{1+O(ux)} for sufficiently small x; and so F (x) ≤ uF .
Also F (x) ≤ 2 maxy∈R |L(σ̂, x+ iy)| ≤ 2/x. Therefore, by (4.2), we get

I(x) ≤





1− e−2xu

x
uF if x ≤ 2/(uF ),

2
x2 if x > 2/(uF ),

which when inserted in (4.1) yields the first estimate in the proposition.
Now if F ≤ 1 then
2/(uF )�

0

1− e−2xu

x
dx ≤

2/u�

0

1− e−2xu

x
dx+

2/(uF )�

2/u

1
x
dx ≤ 2 + log(1/F ),

and so we deduce the second estimate of Proposition 4.1. If F > 1 this holds
trivially since |σ(u)− σ(v)| ≤ 2.

As an application of this proposition, we establish the following strange-
looking Lipschitz estimate in the case that χ(t) ∈ [0, 1] for all t ≥ 1.
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Proposition 4.2. Let χ be a measurable function with χ(t) = 1 for
t ≤ 1 and χ(t) ∈ [0, 1] for t > 1, and let σ denote the corresponding solution
to (2.1). Let 1 ≤ v ≤ u be given and write E(u) = (u/(u − v))θ for θ > 0.
Then

|σ(u)− σ(v)| �
(
u− v
u

)min{1,1− 1
π sin(πθ)}(

1 + log
u

u− v

)
.

Proof. Let δ = u−v and A =
� u
0

1−χ(t)
t dt = logE(u). We will show that

(4.3) exp
(
−
u�

0

1− χ(t) cos(ty)
t

dt

)
min(1, δy)

�
(
δ

u

)min{1,1− 1
π sin( πA

log(u/δ) )}

for all positive y. The result then follows from Proposition 4.1 since F �
left side of (4.3).

If y ≤ e/u then the left side of (4.3) is ≤ eδ/u and the result follows.
Henceforth we may suppose that y > e/u. Since cosx = 1 +O(x2), we get

1/y�

0

1− χ(t) cos(ty)
t

dt =
1/y�

0

1− χ(t)
t

dt+O(1).

Thus if we let z :=
� u
1/y

1−χ(t)
t dt then

u�

0

1− χ(t) cos(ty)
t

dt = A− z +O(1) +
u�

1/y

1− χ(t) cos(ty)
t

dt

= A− z +O(1) +
u�

1/y

1− cos(ty)
t

dt

+
u�

1/y

1− χ(t)
t

cos(ty) dt

= A− z + log(uy) +O(1) +
uy�

1

1− χ(t/y)
t

cos t dt,

by making a change of variables, and since (integrating by parts)

u�

1/y

cos(ty)
t

dt =
sin(ty)
yt

∣∣∣∣
u

1/y
+

u�

1/y

sin(ty)
yt2

dt = O(1).
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By periodicity
uy�

1

1− χ(t/y)
t

cos t dt =
π�

0

G(θ) cos θ dθ,

where

G(θ) :=
∑

t±θ∈2πZ
1≤t≤uy

1− χ(t/y)
t

and the sum over t above is over real values of t in the range [1, uy] such
that t± θ is an integer multiple of 2π. Note that

0 ≤ G(θ) ≤ 1
π

log(uy) +O(1) for all θ,

and
π�

0

G(θ) dθ =
u�

1/y

1− χ(t)
t

dt = z.

Consider the problem of minimizing
� π
0 G(θ) cos θ dθ over all functions G

satisfying these two constraints. Since cos θ decreases from 1 to −1 in the
range [0, π], we see that this is achieved by taking G(θ)=0 for θ∈ [0, π−θ0],
and G(θ) = π−1 log(uy) + O(1) for θ ∈ [π − θ0, π], where θ0 satisfies
θ0(π−1 log(uy) +O(1)) = z. We conclude that

π�

0

G(θ) cos θ dθ ≥
π�

π−θ0
cos θ

(
1
π

log(uy) +O(1)
)
dθ

= − 1
π

log(uy) sin θ0 +O(1)

= − 1
π

log(uy) sin
(

πz

log(uy) +O(1)

)
+O(1)

= − 1
π

log(uy) sin
(

πz

log(uy)

)
+O(1),

since 0 ≤ z ≤ log(uy). Therefore

(4.4)
u�

0

1− χ(t) cos(ty)
t

dt

≥ A− z + log(uy)
(

1− 1
π

sin
(

πz

log(uy)

))
+O(1).

In the domain 0 ≤ z ≤ log(uy), the right side of (4.4) is a non-increasing
function of z, so that it is greater than the value with z replaced by log(uy),
that is, it is > A+O(1). Therefore the left side of (4.3) is� e−A min(1, δy),
which is ≤ δ/u if A ≥ log(uy), as required. If A < log(uy) then the



320 A. Granville and K. Soundararajan

right side of (4.4) is greater than the value with z replaced by A, which
is log(uy)− log(uy)

π sin(πA/log(uy)) +O(1), so that the left side of (4.3) is

� min(1, δy)
uy

(uy)
1
π sin( πA

log(uy) ).

This function is maximized when y = 1/δ in the range log(uy) ≥ A, at
which point it yields the right side of (4.3), completing the proof.

Proof of Theorem 2. Let α = E(u) = eA. We may assume that α is large,
and that σ(u) ≥ 1/α, else our result follows trivially. Let v = (1 + e−λ)u for
some parameter λ > A, and select χ̂(t) = χ(t) for t ≤ u and χ̂(t) = 0 for
t > u, as earlier. Using Proposition 4.2 we deduce that there is a constant
C such that

(4.5) |σ̂(u)− σ̂(v)| ≤ C(1 + λ) exp
(
−λ+

λ

π
sin
(
πA

λ

))
.

If λ ≥ 2A, then this is ≤ C(1 +λ) exp(−λ(1− 1/π)), which is easily verified
to be ≤ 1/(2α) if α is sufficiently large. If A < λ ≤ 2A, then the right
side of (4.5) is ≤ 2C(1 + A) exp(−λ + λ

π sin(πA/λ)), which is a decreasing
function of λ in our range. For λ = A+ ξ where ξ := cA2/3(logA)1/3, with
c > (6/π2)1/3, this equals

2C(1 + A) exp
(
−A− ξ +

A+ ξ

π
sin
(

πA

A+ ξ

))

= 2C(1 + A) exp
(
−A− π2

6
ξ3

A2 +O

(
ξ4

A3

))
≤ 1

2α
.

Thus we have proved that |σ̂(u) − σ̂(v)| ≤ 1/(2α) for all λ ≥ A + ξ, which
implies that σ̂(v) ≥ 1/(2α) for u ≤ v ≤ u(1 + e−A−ξ). Therefore

1
u

∞�

u

σ̂(t) dt ≥ 1
u

u(1+e−A−ξ)�

u

σ̂(v) dv ≥ 1
u
· ue−A−ξ · 1

2α
>

1
2α2 exp(ξ)

,

which implies the theorem, by (3.2).

5. Determining g(w) = g̃(w): preliminaries. In the remainder of
the paper we will give an alternative, substantially shorter, proof of Hilde-
brand’s result that g(w) = g̃(w) = %(w). More precisely, we will establish
the following theorem.

Theorem 5. Let χ(t) = 1 for t ≤ 1 and χ(t) ∈ [0, 1] for all t > 1, and
let σ(u) denote the corresponding solution to (2.1). Then σ(u) ≥ %(E(u))
for all u. Further if 1 ≤ E(u) ≤ 2 and σ(u) = %(E(u)) then E(u/2) = 1.
If E(u) ≥ 2 and σ(u) = %(E(u)) then E(u/E(u)) = 1; that is, χ(t) = 1 for
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t ≤ u/E(u), and χ(t) = 0 for u/E(u) ≤ t ≤ u, except possibly on a set of
measure 0.

If 1 ≤ E(u) ≤ 2 then using (2.5) with n = 0 we see that σ(u) ≥
1− I1(u;χ) = 1− logE(u) = %(E(u)). Further (2.5) with n = 2 gives

σ(u) ≥ 1− I1(u;χ) +
1
2
I2(u;χ)− 1

6
I3(u;χ)

≥ 1− logE(u) +
1
2
I2(u;χ)

(
1− logE(u)

3

)

so that σ(u) = %(E(u)) if and only if I2(u;χ) = 0, or in other words
E(u/2) = 1. This proves Theorem 5 in the range 1 ≤ E(u) ≤ 2 and we
assume below that E(u) > 2.

Henceforth we let u0 := u/E(u) < u1 := u(1− 1/E(u)). We also define

B(u) = Bχ(u) =
u�

0

χ(v) dv.

We note a simple principle that we shall use repeatedly.

Lemma 5.1. Let b ≥ a be real numbers. Let f : [a, b] → [0, 1] and g :
[a, b] → R be measurable functions, such that g is non-decreasing in [a, b],
with A :=

� b
a
f(t) dt. Then

a+A�

a

g(t) dt ≤
b�

a

f(t)g(t) dt ≤
b�

b−A
g(t) dt.

Proof. To prove the lower bound note that

b−A�

a

f(t)g(t) dt ≤ g(b− A)
b−A�

a

f(t) dt = g(b− A)
b�

b−A
(1− f(t)) dt

≤
b�

b−A
g(t)(1− f(t)) dt,

and the result follows. The upper bound can be proved analogously.

Lemma 5.2. For all 0 ≤ t ≤ y,

y
E(t)
E(y)

− t ≤ B(y)−B(t) ≤ y − t E(y)
E(t)

.

Written differently ,

E(t) ≤ E(y)
y

(t+B(y)−B(t)) and E(y) ≤ E(t)
t

(y −B(y) +B(t)).
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Proof. Note that

E(y)
E(t)

=
y

t
exp
(
−
y�

t

χ(v)
v

dv

)
.

Applying Lemma 5.1 (with f(v) = χ(v) and g(v) = −1/v) we deduce that

− log
t+B(y)−B(t)

t
≤ −

y�

t

χ(v)
v

dv ≤ − log
y

y −B(y) +B(t)
,

and the lemma follows.

We note that

(5.1) B(y) ≥ y

E(y)
,

E(t)
t
≥ E(y)

y
for 0 ≤ t ≤ y,

which is a particular case of Lemma 5.2.
Our proof of Theorem 5 splits into two cases which we handle by different

methods. The first case, which we treat in Section 6, is when either E(u)
is small (≤ 2.6) or if E(u0) ≥ E(u) − 1 is large. The other case concerns
E(u) ≥ 2.6 and E(u0) < E(u)− 1, which is handled in Section 7.

6. The case 2 < E(u) ≤ 2.6, or E(u0) ≥ E(u)− 1

Proposition 6.1. If E(u) > 2 and E(u0) ≥ E(u) − 1 then σ(u) >
%(E(u)).

Proof. Define χ̂(t) = χ(t) for t ≤ u0 and χ̂(t) = 1 for t > u0 and let σ̂
denote the solution to the corresponding integral equation. By Lemma 2.5
we have

σ(u)− σ̂(u) =
∞∑

j=1

(−1)j

j!

�

t1,...,tj≥u0
t1+···+tj≤u

1− χ(t1)
t1

· · · 1− χ(tj)
tj

× σ̂(u− t1 − · · · − tj) dt1 · · · dtj

≥ −
∑

j odd

1
j!

( u�

u0

1− χ(t)
t

dt

)j
= −1

2

(
E(u)
E(u0)

− E(u0)
E(u)

)
.(6.1)

Let 2 ≤ n denote the largest even integer below E(u). In the integral
defining Ij(u, χ̂) the integrand can be non-zero only if each ti ≤ u0, so that
0 ≤ Ij(u, χ̂) ≤ (logE(u0))j for all j. Also we have t1 + · · · + tj ≤ ju0 ≤
nu0 ≤ u0E(u) = u if j ≤ n, implying that Ij(u, χ̂) = (logE(u0))j . Therefore
by the inclusion-exclusion inequality (2.5) we see that

(6.2a) σ̂(u) ≥ 1 +
n+1∑

j=1

(−1)j

j!
Ij(u, χ̂) ≥

n+1∑

j=0

(−1)j

j!
(logE(u0))j .
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Further note that
In+2(u, χ̂)
(n+ 2)!

− In+3(u, χ̂)
(n+ 3)!

≥ In+2(u, χ̂)
(n+ 2)!

(
1− logE(u0)

n+ 3

)

≥ (logE(u/(n+ 2)))n+2

(n+ 2)!

(
1− logE(u0)

n+ 3

)

≥ (log(E(u0)E(u)/(n+ 2)))n+2

(n+ 2)!

(
1− logE(u0)

n+ 3

)
,

since E(u/(n + 2)) ≥ E(u0)u/((n+ 2)u0) = E(u0)E(u)/(n + 2) by (5.1).
Thus another lower bound furnished by (2.5) is

σ̂(u) ≥
n+1∑

j=0

(−1)j

j!
(logE(u0))j(6.2b)

+
(log(E(u0)E(u)/(n+ 2)))n+2

(n+ 2)!

(
1− logE(u0)

n+ 3

)
.

If 2 ≤ E(u) ≤ 6 then using (6.1) together with (6.2b) for appropriate n
we check that σ(u) > %(E(u)) if E(u0) ≥ E(u)− 1. If 6 ≤ n ≤ E(u) ≤ n+ 2
then the right side of (6.2a) is at least 1/E(u0) − (log(n + 2))n+2/(n + 2)!
and combining this with (6.1) we get that for E(u0) ≥ E(u)− 1,

σ(u) ≥ 1
2E(u)(E(u)− 1)

− 1
(n+ 2)(n+ 1)

(log(n+ 2))n+2

n!

≥ .014
(n+ 2)(n+ 1)

> %(n) ≥ %(E(u)),

since (log(n+ 2))n+2/n! ≤ (log 8)8/6! < .486 for n ≥ 6 (note that .14/56 >
2 · 10−4 whereas %(6) ≈ 2 · 10−5).

Henceforth we may assume that E(u0) ≤ E(u) − 1. We complete this
section by giving a proof of Theorem 5 for the range 2 < E(u) ≤ 2.6.

Proposition 6.2. If 2 < E(u) ≤ 2.6 then σ(u) ≥ %(E(u)) and equality
holds only when E(u0) = 1.

Proof. By Proposition 6.1 we may assume that eξ := E(u/3) ≤ E(u0) ≤
E(u)−1 so that ξ ≤ log(E(u)−1). Since one of t1, t2 or t3 (in the definition
of I3) must be less than u/3, we see easily that

I3(u) ≤ 3
( u/3�

1

1− χ(v)
v

dv

)
I2(u) ≤ 3ξI2(u).

Thus using (2.5) with n = 2 we get

(6.3) σ(u) ≥ 1− I1(u) +
1
2

(1− ξ)I2(u) = 1− logE(u) +
1
2

(1− ξ)I2(u).
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Now I1(u−v)/v is a non-increasing function so by Lemma 5.1 we obtain

I2(u) ≥
u/3�

1

1− χ(v)
v

I1(u− v) dv +
u�

u/3

1− χ(v)
v

I1(u− v) dv

≥
u/3�

u/(3eξ)

I1(u− v)
dv

v
+

u�

ueξ/E(u)

I1(u− v)
dv

v
.

Note that I1(t) = logE(t) ≥ logE(u) −
� u
t
dv/v = log(E(u)t/u), and also

that I1(t) ≥ logE(u/3) = ξ if t ≥ u/3. Using these bounds above we get

I2(u) ≥
u/3�

u/(3eξ)

log
(
E(u)
u

(u− v)
)
dv

v

+
u1�

ueξ/E(u)

log
(
E(u)
u

(u− v)
)
dv

v
+

2u/3�

u1

ξ
dv

v
.

Let

γ(E(u)) =
E(u)−1�

1

log(E(u)− t) dt
t

=
u1�

u0

log(E(u)− vE(u)/u)
dv

v
.

We see that

I2(u) ≥ γ(E(u)) + ξ log
(

2
3

E(u)
E(u)− 1

)

+
u/3�

u/(3eξ)

log
(
E(u)
u

(u− v)
)
dv

v

−
ueξ/E(u)�

u/E(u)

log
(
E(u)
u

(u− v)
)
dv

v
.

After the changes of variables v = ut/(3eξ) and v = ut/E(u), respectively,
this becomes

γ(E(u)) + ξ log
(

2
3

E(u)
E(u)− 1

)
+
eξ�

1

log
(
E(u)(1− t/(3eξ))

E(u)− t

)
dt

t

≥ γ(E(u)) + ξ

(
log
(

2
3

E(u)
E(u)− 1

)
+ log

(
E(u)(1− 1/(3eξ))

E(u)− 1

))
,

since log
(E(u)(1−t/(3eξ))

E(u)−t
)

is an increasing function of t, as 3eξ > 3 > E(u).
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Inserting the above bound for I2 in (6.3) we deduce that

σ(u) ≥ %(E(u)) +
ξ

2

{
(1− ξ)

(
log
(

2
3

E(u)
E(u)− 1

)

+ log
(
E(u)(1− 1/(3eξ))

E(u)− 1

))
− γ(E(u))

}
,

since %(x) = 1− log x+γ(x)/2 in the range 2 ≤ x ≤ 3. Now, the quantity in
{} is a decreasing function of E(u) (since each term is), and so is bounded
below by the value when substituting 2.6 in for E(u), and this is positive for
all ξ ≤ log(1.6). It follows that σ(u) ≥ %(E(u)) and strict inequality holds
unless ξ = 0. If ξ = 0 then σ(u) = 1 − I1(u) + I2(u)/2 and if this equals
%(E(u)) then one must have I2(u) = γ(E(u)), and arguing as above using
Lemma 5.1, we see that this implies that E(u0) = 1.

7. The case E(u0) ≤ E(u)− 1 and E(u) > 2.6. We call u a champion
for σ if the absolute minimum of σ(v)−%(E(v)) in the interval 0 ≤ v ≤ u is
attained at u. Evidently we need only establish Theorem 5 for champion u.

Proposition 7.1. If u is a champion for σ and

(7.1) u%(E(u)) ≤
u�

0

χ(t)%(E(u− t)) dt,

then σ(u) ≥ %(E(u)). Further if strict inequality holds in (7.1) then σ(u) >
%(E(u)).

Proof. Since u is a champion for σ, we have

σ(u)− %(E(u)) ≤ σ(v)− %(E(v))

for all 0 ≤ v ≤ u. Multiplying both sides by χ(u− v) and then integrating
with respect to v from 0 to u, we obtain

B(u)(σ(u)− %(E(u))) ≤ uσ(u)−
u�

0

χ(v)%(E(u− v)) dv ≤ u(σ(u)− %(E(u))),

by (2.1) and (7.1). The result follows as B(u) ≤ u.

We will complete the proof of Theorem 5 by showing that (7.1) holds
for E(u) > 2.6 and E(u0) ≤ E(u) − 1 and also determining when equality
holds in (7.1). We define

I1 =
u�

u1

%(E(u− t))χ(t) dt, I2 =
u1�

u0

%(E(u− t))χ(t) dt

and

I3 =
u0�

0

%(E(u− t))χ(t) dt.
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Put V = u−B(u0). Note that B(u0) ≤ u0 and so u ≥ V ≥ u− u0 = u1.
Since %(E(u− t)) is a non-decreasing function of t we see by Lemma 5.1

that

I3 =
u0�

0

χ(t)%(E(u− t)) dt ≥
B(u0)�

0

%(E(u− t)) dt =
u�

V

%(E(t)) dt.

In the range V ≤ t ≤ V E(u)/E(V ) we have the bound E(t) ≤ E(V )t/V , and
in the range V E(u)/E(V ) ≤ t ≤ u we have the trivial bound E(t) ≤ E(u).
Employing these bounds above we deduce that

I3 ≥
(
u− V E(u)

E(V )

)
%(E(u)) +

V E(u)/E(V )�

V

%

(
E(V )
V

t

)
dt(7.2)

=
(
u− V E(u)

E(V )

)
%(E(u)) +

V

E(V )

E(u)�

E(V )

%(t) dt

= u%(E(u))− V

E(V )

E(V )�

E(u)−1

%(t) dt.

Next

I1 ≥ %(E(u0))(B(u)−B(u1))(7.3a)

≥ %(E(u0))
%(E(u)− 1)

(B(u)−B(u1))%(E(u)− 1)

≥ V

E(V )

E(u1)+τ�

E(u)−1

%(t) dt,

for τ satisfying

(7.3b) (E(u1) + τ)− (E(u)− 1) =
E(V )
V

%(E(u0))
%(E(u)− 1)

(B(u)−B(u1)).

By Lemma 5.2 and (5.1) we have

B(u)−B(u1) ≥ uE(u1)
E(u)

− u1 =
u

E(u)
(E(u1)− E(u) + 1)

≥ V

E(V )
(E(u1)−E(u) + 1),

and so τ ≥ 0 as E(u0) ≤ E(u)− 1.
Finally note that

(7.4) I2 ≥ %(E(u1))(B(u1)−B(u0)) ≥ V

E(V )

E(u1)+τ+τ ′�

E(u1)+τ

%(t) dt,

where τ ′ = (E(V )/V )(B(u1)−B(u0)).
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Combining the lower bounds given above for I1, I2 and I3, we see that
(7.1) follows provided τ+τ ′ ≥ E(V )−E(u1). Now let C be a real number≥ 1
such that %(E(u0)) ≥ C%(E(u)−1). Define η := u0E(V )/V ≥ 1 by (5.1), and
λ := E(u)−1/E(u0). By (5.1) we have V = u−B(u0) ≤ u−u0/E(u0) = u0λ,
and so ηλ ≥ ηV/u0 = E(V ). Therefore if

(7.5) E(u0) ≥ η(1 + C − Cη)λ+ 1 + η − E(u)

then, by Lemma 5.2,
V

E(V )
(τ + τ ′ + (E(u1)− E(u) + 1))

=
%(E(u0))
%(E(u)− 1)

(B(u)−B(u1)) + (B(u1)−B(u0))

≥ C(B(u)−B(u1)) + (B(u1)−B(u0))

≥ C(B(u)−B(V )) +B(V )−B(u0)

≥ C
(
u
E(V )
E(u)

− V
)

+ V
E(u0)
E(V )

− u0 ≥
V

E(V )
(E(V )−E(u) + 1),

so that τ + τ ′ ≥ E(V )− E(u1) as desired. Further if strict inequality holds
in (7.5) then the inequality in (7.1) is also strict.

If C ≥ 1 + 1/λ then the right side of (7.5) is decreasing in η ≥ 1, so
that it suffices to verify (7.5) at η = 1. This states that E(u0) ≥ λ + 2 −
E(u) = 2 − 1/E(u0), which always holds, further the inequality is strict
unless E(u0) = 1. Consequently, if %(E(u0))/%(E(u)−1) ≥ E(u)/(E(u)−1)
then criterion (7.1) follows, since λ ≥ E(u) − 1, and further (7.1) holds
strictly unless E(u0) = 1.

If C < 1 + 1/λ, then the right side of (7.5) attains its maximum when
η = (C + 1 + 1/λ)/(2C), so that (7.5) holds if

(7.6) E(u0) +
(C + 1)2

4CE(u0)
≥ E(u)

(C − 1)2

4C
+ 1 +

C + 1
2C

+
1

4Cλ
.

Taking C = 1 and noting that λ ≥ 2.6 − 1/E(u0) we find that strict
inequality in (7.6) holds (and thus strict inequality in (7.1)) if E(u0) ≥
1.4341. Hence we may assume that E(u0) < 1.4341. If E(u) ≥ 2.802 then
%(E(u0))/%(E(u)−1) ≥ %(1.4341)/%(1.802) > 2.802/1.802≥E(u)/(E(u)−1)
so that (7.1) holds (and equality there is possible only when E(u0) = 1).
Hence we may assume that 2.6 ≤ E(u) < 2.802.

Now take C = %(1.4341)/%(1.6) > 1 so that (7.6) holds strictly (and thus
(7.1) holds strictly) if E(u0) ≥ 1.2383. Hence we may assume that E(u0) <
1.2383. If E(u) ≥ 2.6635 then %(E(u0))/%(E(u)− 1) ≥ %(1.2383)/%(1.6635)
> 2.6635/1.6635 ≥ E(u)/(E(u)−1) so that (7.1) holds (again with equality
only when E(u0) = 1). Hence we may assume that 2.6 ≤ E(u) < 2.6635.
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Now take C = %(1.2383)/%(1.6) > 1 so that (7.6) holds strictly (and thus
(7.1) strictly) if E(u0) ≥ 1.0648. Hence we may assume that E(u0) < 1.0648.
If E(u) ≥ 2.6 then %(E(u0))/%(E(u) − 1) ≥ %(1.0648)/%(1.6) > 2.6/1.6 ≥
E(u)/(E(u) − 1) so that (7.1) holds and with equality possible only when
E(u0) = 1.

References

[1] P. Erdős and I. Ruzsa, On the small sieve. I. Sifting by primes, J. Number Theory
12 (1980), 385–394.

[2] A. Granville and K. Soundararajan, The spectrum of multiplicative functions, Ann.
of Math. 153 (2001), 407–470.

[3] —, —, Decay of mean values of multiplicative functions, Canad. J. Math. 55 (2003),
1191–1230.

[4] R. R. Hall, Halving an estimate obtained from Selberg’s upper bound method , Acta
Arith. 25 (1974), 347–351.

[5] A. Hildebrand, Quantitative mean value theorems for nonnegative multiplicative func-
tions I , J. London Math. Soc. 30 (1984), 394–406.

[6] —, Quantitative mean value theorems for nonnegative multiplicative functions II ,
Acta Arith. 48 (1987), 209–260.
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