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1. Introduction. Let B be an indefinite quaternion division algebra
over Q with discriminant d. Fix a maximal order O of B. A QM-abelian
surface by O over a field F is a pair (A,i) where A is an abelian variety
over F' of dimension 2, and ¢ : O — Endp(A) is an injective ring homo-
morphism (sending 1 to id) (cf. [0, p. 591]). Here Endr(A) is the ring of
endomorphisms of A defined over F. We assume that A has a left O-action.
We will sometimes omit “by O” and simply write “a QM-abelian surface”
if there is no risk of confusion. Let M? be the coarse moduli scheme over Q
parameterizing isomorphism classes of QM-abelian surfaces by O (cf. [9,
p. 93]). Then M? is a proper smooth curve over Q, called a Shimura curve.
Throughout this article, let p be a prime number not dividing d. Let M(F (p)
be the coarse moduli scheme over Q parameterizing isomorphism classes of
triples (A,7,V), where (A,14) is a QM-abelian surface by O and V is a left
O-submodule of A[p] of F),-dimension 2. Here A[p] is the kernel of multipli-
cation by p in A. Then MZ(p) is a proper smooth curve over Q, which we
call a Shimura curve of Iy(p)-type. We have a natural map

7 (p) : Mg’ (p) = MP

over Q defined by (A,4,V) — (A,1).

In previous articles, we showed that for number fields in a certain large
class, there are at most elliptic points on M (p) if p is large enough. In
this article, we prove that in fact there are no elliptic points, and obtain an
effective bound for such p. The main result is:

THEOREM 1.1. Let k be a finite Galois extension of Q which does not
contain the Hilbert class field of any imaginary quadratic field. Assume
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that there is a prime number q which splits completely in k and satisfies

B®gQ(v/—q) 2 M2(Q(v/—q)). Then there is an effectively computable con-
stant Co(k) depending on k and independent of B such that ME (p)(k) = ()

if p > max{4q, Co(k)}, p # 13.

We can identify ME(p)(C) with a quotient of the upper half-plane, and
we use the notion of elliptic points in this context, assuming that k is a
subfield of C. The Shimura curve M (p) is an analogue of the modular curve
Xo(p). Points on Xo(p) rational over Q and quadratic fields are studied in
[11], [12] (see [1] for related topics). We can also define a proper smooth curve
ME (p) over Q for B = My(Q) that is isomorphic to Xo(p). But Theorem
does not apply in this setting because B ®qg Q(v/—¢q) = M2(Q(y/—q)) for
any prime q.

In §2-4, we review a part of [3]. In §5-6, we classify the characters asso-
ciated to QM-abelian surfaces, and show that there are no k-rational points
on M(F(p) if p (> 4q, # 13) does not belong to an exceptional finite set
NPV (k). In §7, we give an upper bound of NP*¥ (k) by the method of [7].
In §8, we give an example of the estimate of p.

REMARK 1.2. MB(R) = ) (see [I3, Theorem 0]), and so M (p)(R) = 0.

Notation. For a field F, let char F denote the characteristic, F' an
algebraic closure, FP (resp. F?P) the separable closure (resp. the maxi-
mal abelian extension) inside F, and let G = Gal(F*®/F) and G¥ :=
Gal(F2P/F). For a prime number p and a field F' with char ' # p, let
0p : Gr — F; denote the mod p cyclotomic character.

Let | - | denote the usual complex absolute value on C. For a number
field k, let ng := [k : QJ; fix an inclusion & — C and take the algebraic
closure k inside C; let O, denote the ring of integers; let N(q) := #(O/q)
for a prime q of k; let di denote the absolute value of the discriminant; Cly
the ideal class group; hy, the class number; rj, the rank of the unit group O;;
Ry, the regulator; k, the completion of k at v, where v is a place (or a prime)
of k; and Ram(k) the set of prime numbers which are ramified in k.

2. Galois representations associated to QM-abelian surfaces.
We briefly review [3, §2] in order to consider the Galois representations
associated to a QM-abelian surface. Let F' be a field with char F' # p.
Let (A,i) be a QM-abelian surface by O over F. The action of Gp on
Alp|(F®eP) = Ff) determines a representation p : Gp — GL4(Fp). By a
suitable choice of basis, p factors as

5:CGp — {(812 tIZ)’ (8 t) c GLQ(FP)} C GL4(F,).

uly vy U v



An effective bound 345

Let
(2.1) Pap: Gr — GLQ(FP)

denote the Galois representation induced from p by “(3f)”, so that

B B s(o)ly t(o)ls
PA,p(U)—< u(o) Iy U(U)Iz)

Suppose A[p](F*P) has a left O-submodule V' which has dimension 2
over [F, and is stable under the action of Gr. Then we may assume that

pap(Gr) C {(‘S D} C GLy(F,).

s(o) t(o

u(o) v(o

>)> forany o € G if plo) = (

Let
(2.2) A:Gp = FX
denote the character induced from p4 ,, by “s”, so that py (o) = (’\(") *)

for any o € Gp. Note that Gp acts on V by A (i.e. p(o)(v) = Ao)v for any
oce€Gp,veV).

3. Automorphism groups. We give a brief summary of 3, §3] con-
cerning the automorphism groups of a QM-abelian surface. Let (A,7) be a
QM-abelian surface by O over a field F'. Let End(A) (resp. Aut(A)) denote
the ring of endomorphisms (resp. the group of automorphisms) of A defined
over F. Define

Endp(A) := {f € End(4) | foi(g) =i(g) o f for any g € O},
Autp(A) := Aut(A) N Endp(A).
If char F = 0, then Auto(A) = Z/2Z, ZJAZ or Z/6Z.
Let (A,i,V) be a triple, where (A, 7) is a QM-abelian surface by O over F

and V is a left O-submodule of A[p](F') of F,-dimension 2. Define a subgroup
Autp(A,V) of Autp(A) by

Autp(A,V) :={f € Autp(4) | f(V)=V}.
Assume char F' = 0. Then Autp(A,V) = Z/27Z, 7Z./AZ or Z/6Z. Note that
Autp(A) =2 Z/2Z (resp. Autp(A, V) = Z/2Z) if and only if Autp(A) = {£1}
(resp. Autp(A,V) = {£1}).

4. Fields of definition. From now on, let k be a number field. We recall
from [3} §4] some facts about the field of definition of a point of ME(p)(k).
Fix a point

z € My (p)(k).
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Let 2/ € MP(k) be the image of z by the map n%(p) : Mf(p) — MB.
Then 2’ is represented by a QM-abelian surface (say (Ag,i.)) over k, and
x is represented by a triple (A, 4., Vy;) where V, is a left O-submodule of
Alp](k) of F,-dimension 2. For a finite extension M of k, we say that we can
take (Ag, iz, Vz) to be defined over M if there is a QM-abelian surface (A, 7)

over M and a Gj-stable left O-submodule V' of A[p|(k) with dimg, V' = 2

such that there is an isomorphism between (A,7) ®ys k and (A, i) under
which V' corresponds to V. Let

Aut(z) := Autp(Az, V) and  Aut(z') := Autp(A,).

Then Aut(x) is a subgroup of Aut(z’). Note that z is an elliptic point of
order 2 (resp. 3) if and only if Aut(z) = Z/4Z (resp. Aut(x) = Z/6Z). Since
x is a k-rational point, °z = x for any ¢ € Gi. Then for any o € Gy, there
is an isomorphism

bo  (Agy iz, Vi) = (Ag, ta, Vi),
which we fix once for all. For o, 7 € Gy, let
cx(0,7) == ¢p 0%y 0 ¢} € Aut(x).
Then ¢, is a 2-cocycle, and it defines the cohomology class [c;] in
H?(Gy, Aut(z)). Here, the action of G on Aut(z) is defined in a natural

manner (cf. [3, §4]). For a place v of k, let [c;], € H?(Gy,, Aut(z)) denote
the restriction of [c;] to Gy, .

PROPOSITION 4.1 ([3, Proposition 4.2]).

(1) Suppose B ®q k = Ma(k). Further, assume Aut(xz) # {£1} or
Aut(a’) 2 Z/AZ. Then we can take (A, iy, Vy) to be defined over k.

(2) Assume Aut(x) = {£1}. Then there is a quadratic extension K of k
such that we can take (A, iz, Vy) to be defined over K.

LEMMA 4.2 ([3, Lemma 4.3]). Let K be a quadratic extension of k. As-
sume Aut(z) = {£1}. Then the following conditions are equivalent:

(1) We can take (A, iy, Vy) to be defined over K.
(2) For any place v of k satisfying [c.], # 0, the tensor product K ® k,
s a field.

5. Classification of characters. We keep the notation from Section [4]
Throughout this section, we assume Aut(x) = {£+1}. Let K be a quadratic
extension of k which satisfies the equivalent conditions in Lemma [4.2] Then
x is represented by a triple (A,4, V'), where (A,17) is a QM-abelian surface
over K and V is a left O-submodule of A[p](k) of F,-dimension 2 which is
stable under the action of Gg. Let A : G — F; be the character associated
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to V in 1’ Let A% : G3b — [F)* be the natural map induced from A. Let
(5.1) = )\abotrK/k :Gk—>G"}}°—>F;,

where trg /. : G, — G%’ is the transfer map. Then ¢'? is unramified at every
prime of k not dividing p (see [3, Corollary 5.2]), and so ¢'2 corresponds to a
character of the ideal group Jj(p) consisting of fractional ideals of k prime to p.
By abuse of notation, let ¢'2 also denote the corresponding character of Jy(p).

Let us now introduce several sets in a manner similar to [3, §5]. Let
MW (k) be the set of prime numbers which split completely in k. Note
that a prime number in the set M of [3] does not divide 6hx. Let NV (k)
be the set of primes of k which divide some prime number in M"*¥ (k). Fix
a finite subset () # S"*V(k) C NV (k) which generates Cli. For each prime
q € S"V(k), fix an element aq € O \ {0} satisfying

(5.2) 0" = agO..
For an integer n > 1, let
FR(n):={B € C|B*+aB +n =0 for some a € Z with |a| < 2v/n}.
For any element 5 € FR(n), we have |3| = y/n. From now to the end of
this section, assume that k is Galois over Q. Define
(k) = {50 = Y 4,0 € Z[Gal(k/Q)] | a, € {0,8,12, 16, 24}},
c€Gal(k/Q)
M (k) = {(a,20,q) | 0 € §™V(k), 0 € E(k), Bq € FR(N(a))},
M3 (k) := {Normyg,)g(ag’ — 57"™) € Z | (4,0, 5q) € MIV(k)} \ {0},
Ny (k) -
T (k) := {prime numbers divisible by some prime in S"¥(k)} U {2, 3},
NPY(k) = NGV (k) U TPV (k) U Ram(k).
Note that all the sets FR(n), E(k), MYV (k), M5V (k), NJV(k), TV (k)
and N7V (k) are finite. We have the following classification of ¢:

THEOREM 5.1 (cf. [3, Theorem 5.6]). If p & N7V (k), then the character
¢ : Gy — F is of one of the following types:

TYPE 2: p'2 = 9;2 and p = 3 mod 4.

TYPE 3: There is an imaginary quadratic field L such that:

(a) The Hilbert class field Hy, of L is contained in k.
(b) There is a prime pr, of L lying over p such that

= {prime divisors of some of the integers in M5V (k)},

©'%(a) = 6% mod py,

for any fractional ideal a of k prime to p. Here, § is any
element of L such that Normy,r(a) = 5O
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Proof. Tt suffices to modify the proof of [3, Theorem 5.6] slightly. By
replacing K if necessary, we may assume that every prime q € SV (k) is
ramified in K/k (see Lemma[d.2). Suppose p ¢ 7"°" (k) URam(k). Take any
prime q € S"V(k). Let ¢ be the residual characteristic of q, and let qx be
the unique prime of K above q. Then p # q. Without assuming q > 5, we
know that the abelian surface A® K, over K, has good reduction over a
totally ramified finite extension M (q)/Kq, (see [9, Proposition 3.2]). Choose
a prime p of k above p. Then M2 (qx) = 32 mod po, where 3, is an element
of FR(q) and po, which depends on p, is a prime of Q(54|q € S"*¥(k))
above p. We find an element ¢ € £(k) which satisfies the condition (ii) in
[3, Lemma 5.4(2)] and ©'2(yO}) = 7 mod p for any v € k> prime to p.
Suppose p ¢ N7V (k). Then for any prime q € S*V(k), we have ag = 524}”“.
Choose a prime qg € SV (k). Applying [3, Lemma 5.5] to qo, we see that ¢
is of type 2 or 3 in the sense of [3].

First, assume that € is of type 2. For any prime q € §"%(k), we have

Bq24h’“ = ¢'2M . We prove 524 = ¢'? without assuming q { 6hy. Write 3 = By

. h
for simplicity. Let 8 be the complex conjugate of /3. Since 524+ = ,6’24 " we

have 3 = ¢ for some ¢ € C with ¢?*" = 1. Since

Q(B) =Q(B) = Q(¢B) = Q(B,¢) 2Q(¢) and [Q(B): Q] =2,
we have (* =1 or (% = 1. Then ¢!? = 1. This implies El = (12812 = p12,
and so $'2 € Q. Since |8| = \f we have 3'2 = 4+¢5. Therefore 32 = ¢'2.

Note that the case 312 = —¢% really occurs (e.g. ¢ = 2 and 3 = 14++/—1).
Then

@2 (Froby) = ¢'?(q) = M (qk) = 34 = ¢'? = N(q)"? = 0, (Frobg)'? mod p,
where Froby € Gy, is any (arithmetic) Frobenius element at q. Combining
this with ¢'2(yOy) = Normk/(@(fy)12 mod p for any v € kX prime to p, we
conclude that ¢! = (9]1)2.

Next, assume that ¢ is of type 3 (for qo). Then by the same argument as
in the proof of [3, Theorem 5.6] we obtain the desired result. =

As for A\, we have:

LEMMA 5.2 (cf. 4, Lemma 5.11]). Suppose that p > 11, p # 13 and
p & NPV (k). Further, assume that the following conditions hold:

(a) Ewvery prime p of k above p is inert in K/k.

(b) Ewvery prime q € 8"V (k) is ramified in K/k.
If ¢ is of type 2, then we have the following assertions:

(i) The character )\129;6 : G — [ is unramified everywhere.

(ii) The map Clxg — F, induced from )\120;6 is trivial on Cgp, =

Im(Cly — Clg), where Cly — Clg is the map defined by [a]— [aOk].
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Proof. (i) The proof is the same as that of [4, Lemma 5.11(i)].

(ii) We slightly modify the argument in the proof of [4, Lemma 5.11(ii)].
Take any prime q € 8"V (k). Let ¢ be the residual characteristic of q, and let
qx be the unique prime of K above q. Then A'?(qx) = 8'2 modulo a prime
of Q(B) above p, where 3 € FR(q) is an element satisfying 524 = ¢12,
Then we have seen in the proof of Theorem that 5% = ¢'2. Note that
we may not have 8 = +./—¢q. Therefore, \'?(qO0k) = A'%(q%) = A\ (qk) =
B =¢? = 92172(qK) = Gg(q(’)K) mod p, as required. m

We have the following lemma with the same proof as in [2H4]:

LEMMA 5.3 (cf. [2, Lemma 5.6], [3 Lemma 5.12], [4, 3]). Suppose that
p>11, p # 13, p ¢ NPV(k), and that ¢ is of type 2. Let ¢ € MV (k) be a
prime number satisfying ¢ < p/4. Then (%) = —1 and ¢*~Y/2 = —1 mod p.

Furthermore, B ®qg Q(v/—¢) = M2(Q(v/—q)).

6. Irreducibility of 54 , and algebraic points on Mg (p). Let (4, 1)
be a QM-abelian surface by O over k. Assume that the representation

ﬁA,p . Gk — GLQ(FP)

in is reducible. Then there is a 1-dimensional subrepresentation of p4 ,,,
and let v be its associated character. In this case, there is a left O-submodule
V of Alp](k) satisfying dimg, V' = 2 on which Gy, acts by v, and so the triple
(A,i,V) determines a point * € M¥ (p)(k). Take any quadratic extension K
of k. Then we have the characters A : Gx — F and ¢ : Gy — F,; associated
to the triple (A ®; K,4,V). Note that ¢ = v/? by the construction of ¢.

From now to the end of this section, assume that & is Galois over Q, that
k does not contain the Hilbert class field of any imaginary quadratic field,
and that there is a prime number ¢ € M"*V (k) satisfying

B &g Q(v—q) # M2(Q(v=1))-
Fix such a ¢g. Then we have the following irreducibility result for p, ,:

THEOREM 6.1 (cf. [2, Theorem 6.5)). If p > 4q, p # 13 and p ¢ NV (k),
then the representation py , : Gy — GLa(IFp) is irreducible.

Proof. Assume that p, , is reducible. Then the associated character ¢ is
of type 2 in Theorem because k does not contain the Hilbert class field
of any imaginary quadratic field. By Lemma we have B ®g Q(v/—¢q) =
M3 (Q(y/—¢q)). This contradicts the assumption. =

We have the following theorem concerning the algebraic points on Még (p):

THEOREM 6.2 (cf. [2, Theorem 1.3]). If p > 4q, p # 13 and p ¢
NP (), then ME(p)(k) = 0.
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Proof. Suppose p > 4q, p # 13 and p ¢ N7V (k). Assume that there is
a point x € M¥ (p)(k).

(1) Suppose B ®q k = My (k).

(1-1) Assume Aut(z) # {£1} or Aut(z’) 2 Z/4Z. Then x is represented
by a triple (A,7, V') defined over k by Proposition (1), and the represen-
tation py , is reducible. This contradicts Theorem

(1-ii) Assume otherwise (i.e. Aut(z) = {£1} and Aut(z') = Z/4Z). Then
x is represented by a triple (A,4, V) defined over a quadratic extension of
k by Proposition (2), and we have a character ¢ : G — F as i.
By Theorem and Lemma we have B ®g Q(v/—¢q) = M2(Q(v/—q)),
which is a contradiction.

(2) Suppose B ®q k % Ma(k).

(2-1) Assume Aut(z) = {£1}. Then by the same argument as in (1-ii),
we have a contradiction.

(2-ii) Assume otherwise. Then z is an elliptic point of order 2 or 3.
Let Q(x) be the number field generated over Q by the coordinates of = on
ME(p). Then Q(z) = Q(v/—1) or Q(v/=3) by [8, Theorem 5.12], and so
k 2 Q(v/—1) or Q(v/=3). This contradicts the assumption because Q(y/—1)
(resp. Q(v/—3)) is the Hilbert class field of itself. m

7. An estimate of NV (k). We give an upper bound of the set N7*% (k)
by the method of [7]. The following theorem and proposition are key ingre-
dients of the estimate:

THEOREM 7.1 ([10, Theorem 1.1]). There is an absolute, effectively com-
putable constant A1 > 1 such that for every finite extension k1 of Q, every
finite Galois extension ko of k1 and every conjugacy class C of Gal(ka/k1),
there is a prime q of k1 which is unramified in ks, for which Fry = C and
N(q) is a prime number satisfying N(q) < 2d,‘?21. Here, Frq is the (arithmetic)
Frobenius conjugacy class at q in Gal(ka/k1).

PROPOSITION 7.2 ([7, Proposition 4.2]). Assume that k is Galois over Q.
Let Ay be the constant in Theorem . Then we can take S"V (k) so that
every prime q € S"V (k) satisfies N(q) < Qdﬁlhk.

For a place v of k and an element « € k, define |||, as follows:

e If v is finite, let q be the prime of k corresponding to v, and let |||, :=
N(g)~°"4(@) where ordy(«) is the order of  at q. Here, we let [|a[, := 0

if a =0.
o If v is real, let 7 : kK — R be the embedding corresponding to v, and
let |||y := |7 (c)].

e If v is complex, let 7 : k — C be one of the embeddings corresponding
to v, and let |, := |7(a)|*.



An effective bound 351

For an element o € k, let H(«) denote the absolute height of a defined by

= (T max{. Hauv})l/nk,

where v runs through all places of k. We know that there is a positive
constant J, depending on k, such that for every non-zero element o € k
that is not a root of unity, log H(a) > i /ny (cf. [BL p. 70]). We can take
Ok =log2/(ry + 1) for ny = 1,2. Both

1 1 (logl 3
0p = ———— and = 08 "08 Nk
53ny log 6ny 1201 log ny

are appropriate choices for ny > 3. Fix such a constant d;. Let
Cy(k) == rte,"x /2.

LEMMA 7.3. Let q be a prime of k. Then there is an element o € Ox\{0}
which satisfies

0" = a,Op and H(c}) < [Normyq(af)["/™ exp(C1(k)Ry).

Proof. Take an element v € Oy, \ {0} which satisfies ¢"* = yOy. Then,
by [7, Lemme 3] (or [5, Lemma 2]), there is an element u € O satisfying

H(uy) < [Normyq(v)["/™ exp(Ci (k) Ry)-
If we let ag = uy, then q = aqOf and
H(aq) < |Normy, g (u™"ag)| /™ exp(C1(k)Ry,)
= [Normy g (af)|"/™ exp(Ci (k) Ry).
The last equality holds because Normy, g(u™!) € Z* = {£1}. =

Let Ca(k) := exp(24n;Ci(k)Ry). Until the end of this section, assume
that k is Galois over Q.

LEMMA 7.4. Under the situation of Lemma we have
|(ag)?| < N(q)*""*Ca(k)

for any € € E(k).
Proof. Let € =3 ccar/q) 0. Then

()]

_ ‘ I « w’ ( [[ max{L|(a ) = T max{1, laj}l,}**
o€Gal(k/Q) o€Gal(k/Q) v]oo

= H(af)**"™ < |Normy,q(ay)|** exp(24n,C1 (k) Ry) = N(q)***Cy(k).

Note that the third equality holds because a; €0 n

For a > 0, let C(k,a) := (a24hkc2(k) + a12hk)2n,€.
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LEMMA 7.5. Under the situation of Lemma[7.3] we have
[Normys,)/0((cf)® = B24*)| < C(k,N(q))

for any € € E(k) and By € FR(N(q)).

Proof. For any 7 € Gal(k(8,)/Q), we have

|((ag)® = BF)T] < ()T + [B7+7] < N(q)*"* Ca (k) + N(q) 2.
Then

Normys,) ()" = 87") =TI [((af)® = B3"*)"]

T€Gal(k(8q)/Q)
< (N(q)*"* Ca(k) + N(q) ™)™ = C(k,N(q)). =

Until the end of this section, assume that Snew(k) satisfies the condition

in Proposition and take g in to be the a in Lemma for any
q € 8"V (k).

LEMMA 7.6. For any m € M5V (k), we have |m| < 0(1@20{?1%)‘
Proof. We have m = Normy,g,/q(ag — B§4hk) for some q € S"V(k), € €

E(k) and B, € FR(N(q)). Then we obtain |m| < C(k,N(q)) < C(k, 2d; ")
by Proposition and Lemma .

Finally we obtain an upper bound of N7V (k) as follows:
THEOREM 7.7. For any l € NPV (k), we have | < C(k, 2d;€41h’“).

Proof. Let I € NP*¥(k). If I € NPV (k), then I < C(k,2d*") by Lem-
mal7.6} If I € 7" (k), then | < max{3,2d;""}. 1f | € Ram(k), then | < dj.
Since A; > 1, we conclude that [ < C(k, 2d,‘€41h’“). n

Now Theorem [L.1] follows from Theorems [6.2] and Note that we can
take Co(k) = C(k, 2d*").

8. An example. We give an example of the estimate of p as follows:

PROPOSITION 8.1. Let k = Q(+/—5). Assume that there is a prime num-

ber ¢ € MV (k) satisfying B ®g Q(v/—q) 2 M2(Q(v/—q)). Then we have
ME(p)(k) = 0 if p > max{dq, (3%° + 324)4}.

Proof. We have ny =2, hy =2, r, =0, C1(k) =0, Ca(k) =1 and
M"Y (k) = {l : prime number | [ =1,3,7,9 mod 20}.

Let g = (3,1 4+ +/—5) C Ok. Note that we do not assume q|q here. Then
N(q) = 3 and we can take S"V(k) = {q}. We have q*> = (2 — v/—5). Let
aq = ag = 2—+/=5. Then H(a,) = 3 and Normy, jg(aq) = 9. By Lemma

[Normys,)/0((af)® — B2")| < C(k,3) = (3% + 3°4)*
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for any ¢ € £(k) and 85 € FR(3). Then max M5V (k) < (318 + 321)1 and
max NPV (k) < (318 + 324)1. Since T2°V(k) = {2,3} and Ram(k) = {2, 5},
we conclude that max NPV (k) < (348 + 324)4. Applying Theorem we
obtain the desired result. =
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