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1. Introduction. A G-function, introduced by Siegel, is a solution of
a linear differential equation satisfying some conditions. For example, al-
gebraic functions over a number field and the Gauss hypergeometric series
with rational parameters are G-functions. The detailed definition is given
below.

In this paper, we will consider Diophantine properties related to rational
values of G-functions.

Some irrationality results and some irrational measures for values of G-
functions are known ([G], [C] et al.). First of all, we recall the results on
special values of G-functions. We may say, in brief, that the results are like
this:

Let f(x) be a G-function and let ε be any small positive real. Let p, q ∈
Z \ {0} with q large. If log |p| < O(ε log |q|), then under some assumptions,
the value f(p/q) is irrational.

See [G], [C] for more details.
Unfortunately, the condition “log |p| < O(ε log |q|)” seems artificial but

indispensable. This is simply a technical reason: handling G-functions like
E-functions. (See [Sh] for E-functions.)

Now we consider a question: “Find alternative natural conditions for
statements relating to values of G-functions.”

In this paper, we abandon regarding G-functions as an analogy of E-
functions. From the viewpoint of radii of convergence, G-functions seem to
be near algebraic functions, not near E-functions. Viewing G-functions as
something like near-algebraic functions, we will introduce naively a set of
their “rational points”. We will then consider some Diophantine approxima-
tions on this set as properties related to rational values of G-functions. By
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virtue of this approach, we will obtain some Diophantine properties under
natural conditions.

Since algebraic functions defined over a number field are G-functions, the
results obtained are extensions of Diophantine properties of rational points
on algebraic curves.

Throughout this paper, K denotes a number field with finite degree
[K : Q ] <∞.

1.1. Some results of the algebraic cases. In order to compare the alge-
braic cases and ours, we recall Liouville’s inequality about rational points on
algebraic curves and an estimate on the number of rational points on them.
First, we recall the so-called Liouville inequality. To simplify, we consider
only special cases with genus 0.

Proposition 1 (Liouville’s inequality). Let g(y)∈K(y), n := degy g(y),
f(x, y) := x− g(y) ∈ K(x, y). Put

S1 := {g(y) ∈ K | y ∈ K}
= {x ∈ K | there exists y ∈ K such that f(x, y) = 0}.

Fix t ∈ K with (d/dy)g(t) 6= 0. Put a := g(t). Then there exists a positive
constant c > 0 such that

|α− a| > c

H(α)[K:Q ]/n

for all α ∈ S1 with α 6= a. Here the symbol | . . . | means the usual abso-
lute valuation, and H(α) is the absolute Height of α. We note that c is
independent of α.

Proposition 1 is a slight extension of the original Liouville inequality.
It is easy to verify it by using some properties of the height function (see,
for example, [Se, 2.6]). One of the assertions of Proposition 1 is that this
Diophantine approximation for rational points on an algebraic curve depends
on the degree of the curve.

We remark that some sharper bounds for positive genus cases are known
which use the Weil height, like Roth’s theorem (see, for example, [Se, 7.3]).

In this paper, we will consider only the Liouville-type bound and its
variants.

Some of our main results in §1.3 below (Theorem A and Corollary C)
are extended versions of Proposition 1 for G-functions.

Next, we also recall an estimate on the number of rational points on
algebraic curves.

Proposition 2 (estimate on the number of rational points on algebraic
curves). Let f(x, y) ∈ Q[x, y] be an absolutely irreducible polynomial , and



Rational values of G-functions 313

let n := degx f(x, y). Put

S2 := {x ∈ Q | there exists y ∈ Q such that f(x, y) = 0}.
Then for any closed interval [a, b] ⊂ R which does not contain singular
points of S2, we have:

lim
B→∞

log #{ζ ∈ S2 | H(ζ) ≤ B, ζ ∈ [a, b]}
logB

≤ 2
n
.

The upper limit in Proposition 2 has a trivial upper bound 2 by Scha-
nuel’s estimate (see [Se, 2.5]).

We remark that, due to Néron, Mumford and Faltings, it is well known
that the upper bound is 0 if the curve defined by f(x, y) = 0 has a positive
genus.

The rest of our main results are Theorem B and Corollary D in §1.3,
which are weaker but extended versions of Proposition 2 for G-functions.

1.2. G-functions and G-operators. Before stating our results, we recall
the notions of G-function and G-operator. A G-function is a local solution
of a linear differential equation, and a G-operator is the linear differential
equation itself.

First, we recall the definition of G-functions.

Definition. A G-function is

(1) a power series solution ∈ K[[x]] of a linear differential equation de-
fined over K(x) such that

(2) the Height of the tuples of 0th, 1st, . . . , ith coefficients of the power
series grows at most geometrically in i ∈ N.

It is known that algebraic functions defined over K (which have a power
series expression), polylogarithms, and the Gauss hypergeometric series with
rational parameters are G-functions. Since algebraic functions are G-func-
tions, the general properties of G-functions are also the properties of
algebraic curves defined over a number field. For more information on
G-functions, see e.g. [A], [B], [C].

Next, we recall the definition of G-operators. In brief, a G-operator is a
linear differential equation satisfying an arithmetic condition. We consider
the linear differential equation

(EQ)
d

dx
m = Am,

where A ∈ Mn(K(x)), a matrix of rational functions. In this paper, we
always assume that m is a column vector solution.
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Definition. We say d/dx− A (or simply (EQ)) is a G-operator if

lim
m→∞

∑

v-∞

1
m

max
i≤m

log+
∣∣∣∣
1
i!

t(
d

dx
+ tA

)i
I

∣∣∣∣
v

<∞,

where I is the identity matrix, v in
∑
v-∞ runs over all non-Archimedean

normalized (in the sense of §2.1 below) valuations of K. Here
t(

d

dx
+ tA

)
tB :=

t(
d

dx
B +BA

)
for B ∈Mn(K(x)),

and | . . . |v is the so-called Gauss norm.

For more information on G-operators, see e.g. [A], [C], [N1].
It might seem that the definition of G-operators depends on the choice

of coordinates, but see [N3].
We note that G-functions are defined as power series; on the other hand,

G-operators are defined by A in (EQ), which is a matrix of rational functions.
In other words, G-functions are local objects and G-operators are global
objects.

Here we recall a fundamental fact: the notions of G-functions and of G-
operators are equivalent under some conditions. In particular, under some
natural conditions, if m, which is a local solution of (EQ), is a vector of
G-functions, then (EQ) is a G-operator. We will use this fact in §4.3 below.
See [C], [A], [N1] for details.

1.3. Results. Now, we state our results. We will give their proofs in §4.
Let d(x) ∈ Z[x], a polynomial over the rational integers, be a common

denominator of the components of A in (EQ), that is, d(x)A ∈ Mn(OK [x])
where OK is the ring of integers of K.

We say that a function f is analytic on a closed disk D ⊂ C if there
exists an open disk U with D ⊂ U such that f is analytic on U .

Theorem A. Let D be a closed disk ⊂ C centered at ζ0 ∈ K with radius
< 1/2. For a vector solution m(x) = t(f1(x), . . . , fn(x)) of (EQ), suppose
the following :

(0) (EQ) is a G-operator with n ≥ 2.
(1) m(x) is analytic on D and f1(x), . . . , fn(x) are linearly independent

over C(x).
(2) There exist no solutions of d(x) = 0 on D.

Put

SK := {ζ ∈ D ∩K | there exists κζ ∈ C, 6= 0 such that κζm(ζ) ∈ Kn},
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where κζ depends on m(ζ). If ζ0 ∈ SK , then for any small ε > 0, there
exists an effective constant c <∞ such that

|ζ0 − ζ| ≥
1

H(ζ)[K:Q ](1/n+ε)

for any ζ ∈ SK with H(ζ) ≥ c. Here c depends on H(ζ0), A, ε, D and is
independent of ζ.

Theorem B. Under the assumptions of Theorem A, we have

lim
B→∞

log #{ζ ∈ SK | H(ζ) ≤ B}
logB

≤ 4
n

[K : Q ].

The trivial upper bound in Theorem B is 2[K : Q ] by Schanuel’s esti-
mate.

We recall §1.1. Although the meaning of n is different, Theorem A cor-
responds to Proposition 1 and Theorem B to Proposition 2.

We also obtain non-algebraic cases as corollaries.

Corollary C. Under the assumptions of Theorem A, assume moreover
that :

(3) f1(x), . . . , fn(x) are homogeneously algebraically independent over
C(x).

(4) f1(x), . . . , fn(x) are G-functions.

If ζ0 ∈ SK , then for any small ε > 0, there exists an effective constant
c <∞ such that

|ζ0 − ζ| ≥
1

H(ζ)ε

for any ζ ∈ SK with H(ζ) ≥ c. Here c depends on H(ζ0), A, ε, D and is
independent of ζ.

Corollary D. Under the assumptions of Corollary C, we have

lim
B→∞

log #{ζ ∈ SK | H(ζ) ≤ B}
logB

= 0.

We remark that the estimates in Corollaries C and D (non-algebraic
function cases) are similar to the cases of algebraic curves with positive
genus (non-rational function cases). See §1.1 again.

1.4. Examples. Here we show some examples. Example 1 concerns alge-
braic functions, and Example 2 deals with non-algebraic functions.

Example 1 (Fermat’s curves). Let k be a natural number ≥ 2. We con-
sider the curve xk + yk = 1. Thus, y = k

√
1− xk is not a rational function.

Moreover,
d

dx

(
1
y

)
=
(

0 0
0 xk−1

xk−1

)(
1
y

)
.
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Now let n be 2, let ζ0 be in K with |ζ0| < 1/2 such that k
√

1− ζk ∈ K
(e.g., ζ0 = 0), and define D := {z ∈ C | |z − ζ0| ≤ 1/3}. The set SK in
Theorem A is

SK := {ζ ∈ D ∩K | y = k
√

1− ζk ∈ K}.
Therefore for any small ε > 0 there exists an effective constant c <∞ such
that

|ζ0 − ζ| ≥
1

H(ζ)[K:Q ](1/2+ε)
for any ζ ∈ SK with H(ζ) ≥ c.

We remark that the effectiveness of c in Example 1 should be distin-
guished from the ineffective finiteness results on the number of rational
points on some curves.

Next, we show examples concerning the Gauss hypergeometric series.
We consider the Gauss hypergeometric series with parameters α, β, γ ∈ Q

(γ 6= −1,−2, . . .),

F (α, β, γ;x) :=
∞∑

i=1

(α)i(β)i
(γ)i i!

xn.

Let F denote F (α, β, γ;x) for simplicity. The function F satisfies the linear
differential equation

(hyp) x(1− x) y′′ = ((1 + α+ β)x− γ)y′ + αβy.

Example 2 (rational values of the logarithmic derivative of the Gauss
hypergeometric series). Let D be a closed disk with radius < 1/2 which is
contained in the open disk centered at the origin with radius 1. Assume that
D does not contain the origin. Set

SK := {x ∈ D ∩K | F (x) 6= 0, F ′(x)/F (x) ∈ K}.
Assume that there exists a solution of (hyp) which is not an algebraic func-
tion (this is obviously the case if F is not algebraic), and assume that
α, β, γ − α, γ − β 6∈ Z. Then:

(a) If ζ0 ∈ SK , then for any small ε > 0, there exists c < ∞, effective,
such that

|ζ0 − ζ| >
1

H(ζ)ε
for any ζ ∈ SK with H(ζ) > c.

(b) lim
B→∞

log #{ζ ∈ SK | H(ζ) ≤ B}
logB

= 0.

(For transcendental properties of values of the Gauss hypergeometric
series itself, see [Wo].)

Proof of Example 2. The radius of convergence of F at the origin is 1.
Since F satisfies (hyp), the vector m = (F,F ′) is a solution of (EQ) with
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n = 2, A ∈M2(Q(x)), d(x) = x(x− 1). Moreover, by Theorem 5 in [BMV],
F and F ′ are algebraically independent over C(x). Since the set SK of
Example 2 corresponds to SK of Corollaries C and D, we obtain the assertion
of Example 2.

For the readers interested in periodic functions, we add an example of a
special case: elliptic integrals of the first and second kind. Let

y(x) :=
1
π

1�

0

dt√
t(1− t)(1− tx)

, w(x) :=
1
π

1�

0

1− tx√
t(1− t)(1− tx)

dt

and let D be as in Example 2. Set

SK := {ζ ∈ D ∩K | w(x) 6= 0, y(ζ)/w(ζ) ∈ K}.
Then the estimates (a) and (b) of Example 2 hold for this SK .

It is easy to verify this special case. We consider the case of α = −1/2,
β = 1/2, γ = 1 in Example 2. Then the second assumption in Example 2
holds. The first assumption in Example 2 also holds, since there exists a
solution of (hyp) with a logarithmic singularity at the origin. Moreover,

y(x) = F (1/2, 1/2, 1;x), w(x) = F (−1/2, 1/2, 1;x), xw′ = − 1
2 (w − y).

Therefore for ζ ∈ K with 0 < |ζ| < 1, the conditions w′(ζ)/w(ζ) ∈ K and
y(ζ)/w(ζ) ∈ K are equivalent, that is, the SK in Example 2 and here are
the same. This completes the proof of this case.

The content of this paper is the following: In §2, we will show some
properties of G-operators, and recall some known results which will be used
in §3 and §4. Next in §3, we will give a fundamental inequality (Lemma 3.4).
This section requires long calculations, but the inequality makes our proofs
simple.

In §4, we will give the proofs of Theorems A, B, and Corollaries C and D.
We will also show Liouville’s inequality for G-functions on moving targets
(Theorem E).

2. Preliminaries. In this section, we recall the height functions, show
some properties of G-operators, and state some related results which are
necessary for the later sections.

2.1. Heights. We use the symbol | . . . | for the usual absolute valuation:
|s+
√
−1 t| :=

√
s2 + t2, s, t ∈ R. Let K be a number field with finite degree,

and set dK := [K : Q ]. If v is a place of K, the symbol | . . . |v denotes the
valuation at v, and Kv the completion of K at v.

We use the notation v | p if v is an extension of a prime number p which
is a non-Archimedean place on Q. We also use the notations v |∞ if v is an
Archimedean place, and v -∞ if v is a non-Archimedean place.



318 M. Nagata

We assume that | . . . |v is normalized as follows: If v | p, then we put
dv := [Kv : Qp] and define |p|v := p−dv/dK . If v |∞, then for α ∈ K and for
a Q-homomorphism σ : K → C such that |σ(α)| and | . . . |v induce the same
topology on K, we put

dv :=
{

1 if σ(K) ⊂ R,
2 if σ(K) 6⊂ R,

and we define |α|v := |σ(α)|dv/d. Here | . . . | is the usual valuation.
In the latter case, we will use the symbol | . . . |σ (resp. dσ) instead of

| . . . |v (resp. dv): | . . . |σ := |σ(. . .)|dv/d = |σ(. . .)|dσ/d. In particular, in the
case of σ = id (the identity homomorphism), we write | . . . |1 (resp. d1)
instead of | . . . |id: | . . . |1 = | . . . |id := | . . . |did/d = | . . . |d1/d.

The following is obvious: for α ∈ K, if |α| < 1, then |α|1 = |α|d1/dK

≤ |α|1/dK .
From now on, let MK be the set of all normalized valuations of K, and

set M0
K = {v ∈ MK | v -∞}, M∞K = {v ∈ MK | v |∞}, M1

K = {v ∈ MK |
v |∞, v 6= id}.

The following is the product formula on a number field: if α ∈ K \ {0},
then

∏
v∈MK

|α|v = 1.

Next, for a non-negative integer n and α := (α0, α1, . . . , αn)∈Kn+1\{0},
we define

H(α) :=
∏

v∈MK

max(|α0|v, . . . , |αn|v),

h(α) :=
∑

v∈MK

log max(|α0|v, . . . , |αn|v).

By the product formula, h((x, y)) = h((1, y/x)) if x, y ∈ K and x 6= 0.
For α ∈ K, we call H(α) := H((1, α)) =

∏
v max(1, |α|v) the Height

of α, and h(α) := h((1, α)) =
∑
v log max(1, |α|v) the (logarithmic) height

of α. Thus h(α) = h(1/α) if α ∈ K \ {0}. We note that h(α) is different
from h((α)) (h((α)) = 0 if α 6= 0).

We use the notation log+ a := log max(1, a) if a ∈ R. Thus h(α) =∑
v∈MK

log+ |α|v.
For a polynomial P := α0 + α1x+ . . .+ αnx

n ∈ K[x], we put

H(P ) :=
∏

v∈MK

max(|α0|v, . . . , |αn|v),

h(P ) :=
∑

v∈MK

log max(|α0|v, . . . , |αn|v).

Let Ms,t(K[x]) be the set of s×t-matrices whose components are in K[x].



Rational values of G-functions 319

For φ := A0 +A1x+ . . .+Anx
n ∈Ms,t(K[x]), (ai,j,k) := Ak ∈Ms,t(K)

for k = 0, 1, . . . , n, ai,j,k ∈ K, we put

H(φ) :=
∏

v∈MK

max
i,j,k

(|ai,j,k|v), h(φ) :=
∑

v∈MK

log max
i,j,k

(|ai,j,k|v).

We note here that in the definition of the height of polynomials log+ is
not used, and of course v in the summation runs also over v |∞.

2.2. G-operators revisited. We denote by K(x) the rational function field
in one variable over K. For n ∈ N, and for an n× n-matrix A ∈Mn(K(x))
of rational functions, we consider the linear differential equation

(EQ)
d

dx
m = Am.

Here, we assume that m is a column vector solution.
Moreover we denote by OK the integer ring of K, and we fix a polynomial

d as a denominator of A:

(2.1) d = d(x) ∈ Z[x] such that dA ∈Mn(OK [x]).

Let γ1 be the geometric (logarithmic) height of A in (EQ),

(2.2) γ1 := max(deg d, deg dA).

Here deg dA means the maximal degree of its components.
We note that d is just one of the denominators of A. In this paper, it is

not necessary that γ1 be minimal. This remark will be used in the proof of
Corollaries C and D.

Now we go back to valuations. For P = a0 + a1x + . . . + anx
n ∈ K[x],

we put
|P |v := max(|a0|v, . . . , |an|v)

for v ∈MK . Thus h(P ) =
∑
v∈MK

log |P |v.
For v -∞, it is known that |PQ|v = |P |v|Q|v for P,Q ∈ K[x]. This fact

is the so-called Gauss lemma ([L1, p. 55, Proposition 2.1]).
Let I be the identity matrix.
If we defined a geometric G-operator to be such that the degrees (as

the logarithmic geometric height) of Jµ in Lemma 2.1 below grow at most
arithmetically, the lemma would state that every (EQ) is a geometric G-
operator. (Therefore this definition is redundant.)

Lemma 2.1. Let A be a matrix in (EQ), and let d be a common denom-
inator of A as in (2.1). For µ = 0, 1, . . . , put

Jµ :=
(
d

dx
+ tA

)µ
I,
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where J0 = I, (d/dx + tA)Jµ := (d/dx)Jµ + tAJµ, that is, J1 = tA, J2 =
(d/dx) tA+ tA tA, . . . Then for µ = 0, 1, . . . we have

(2.3) dµ+1Jµ+1 = −µ
(
d

dx
d

)
(dµJµ) + d

(
d

dx
+ tA

)
(dµJµ),

(2.4) dµJµ ∈Mn(OK [x]), deg(dµJµ) ≤ µγ1.

Proof. Since d is in the center of Mn(K(x)), we have
(
d

dx
+ tA

)
(dµJµ) =

(
d

dx
dµ
)
Jµ + dµ

d

dx
Jµ + tAdµJµ

= µ

(
d

dx
d

)
dµ−1Jµ + dµ

(
d

dx
+ tA

)
Jµ.

By multiplying the last relations by d, we obtain (2.3).
Next, for µ = 0, (2.4) holds as J0 = I. For µ = 1, from

dJ1 = d

(
d

dx
+ tA

)
I = d tA

and by (2.1), (2.2), both dJ1 ∈Mn(OK [x]) and deg(dJ1) ≤ γ1 hold.
We continue by induction on µ. We assume that (2.4) holds for µ ≥ 1.

Since d ∈ Z[x] and dA ∈ Mn(OK [x]), we obtain dµ+1Jµ+1 ∈ Mn(OK [x])
by (2.3) from the assumption dµJµ ∈Mn(OK [x]). Moreover, by (2.3),

deg(dµ+1Jµ+1)

≤ max(max(γ1−1, 0)+deg(dµJµ), γ1+max(deg(dµJµ)−1, 0), γ1+deg(dµJµ)).

From the assumption deg(dµJµ) ≤ µγ1, we obtain deg(dµ+1Jµ+1) ≤
(µ+ 1)γ1.

By Lemma 2.1, we have (dµ/µ!)(d/dx + tA)µI ∈ Mn(K[x]), a matrix
of polynomials, and thus for m ∈ N ∪ {0}, we can define the real-valued
functions G0, G∞, G1 by

(2.5)

G0(m) :=
∏

v-∞
max

µ=0,1,...,m

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

,

G∞(m) :=
∏

v|∞
max

µ=0,1,...,m

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

,

G1(m) :=
∏

v-∞
v 6=1

max
µ=0,1,...,m

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

.

Remark. (0) Since the number of v ∈MK with |(dµ/µ!)(d/dx+ tA)µI|v
6= 1 is finite, each product above is finite.
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(1) Since (dµ/µ!)(d/dx+ tA)µI = I for µ = 0, for v ∈MK we have

max
µ=0,1,...,m

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

≥ 1.

Therefore each G0(m), G∞(m), G1(m) is an increasing function of m. In
particular, G0(m) ≥ 1, G∞(m) ≥ 1, G1(m) ≥ 1. Moreover it is obvious that

G1(m) ≤ G1(m) max
µ=0,1,...,m

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
1

= G∞(m).

(2) Since d ∈ Z[x], we have |d|v ≤ 1 for v -∞. Hence by Gauss’ lemma,
for µ = 0, 1, . . . we have

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

≤
∣∣∣∣

1
µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

.

Therefore

G0(m) ≤
∏

v-∞
max

µ=0,1,...,m

∣∣∣∣
1
µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

,

that is, if (EQ) is a G-operator, then there exists a finite constant c < ∞,
independent of m, such that G0(m) ≤ Cm0 for m = 0, 1, . . .

Again we could define an Archimedean G-operator to have G∞(m) grow-
ing at most geometrically for m = 0, 1, . . . The following Lemma 2.2 states
that every (EQ) is an Archimedean G-operator. (Therefore this definition is
also redundant.)

Lemma 2.2. There exists a constant C < ∞, independent of m, such
that G∞(m) ≤ Cm for m = 0, 1, . . .

Proof. From (2.1), (2.2), let dj ∈ Z and αj ∈Mn(OK) be such that

d =
γ1∑

j=0

djx
j , d tA =

γ1∑

j=0

αjx
j .

According to (2.4) in Lemma 2.1, we define Aj,µ in Mn(OK) by

dµJµ =
µγ1∑

j=0

Aj,µx
j .

Since (d/dx)d =
∑γ1
j=0 jdjx

j−1, we have

(2.6)
(
d

dx
d

)
(dµJµ) =

γ1∑

j=0

jdjx
j−1

µγ1∑

k=0

Ak,µx
k =

(µ+1)γ1∑

t=0

∑

j+k=t
0≤j≤γ1

0≤k≤µγ1

jdjAk,µx
t−1.



322 M. Nagata

Next, since (d/dx)(dµJµ) =
∑µγ1
j=0 jAj,µx

j−1, we also have

d

(
d

dx
(dµJµ)

)
=

γ1∑

j=0

djx
j

µγ1∑

k=0

kAk,µx
k−1(2.7)

=
(µ+1)γ1∑

t=0

∑

j+k=t
0≤j≤γ1

0≤k≤µγ1

kdjAk,µx
t−1.

Finally, we have

(2.8) d tA(dµJµ) =
γ1∑

j=0

αjx
j

µγ1∑

k=0

Ak,µx
k =

(µ+1)γ1∑

t=0

∑

j+k=t
0≤j≤γ1

0≤k≤µγ1

αjAk,jx
t.

By (2.3) and (2.6)–(2.8), we obtain

dµ+1Jµ+1 = −µ
(
d

dx
d

)
dµJµ + d

(
d

dx
+ tA

)
(dµJµ)

=
(µ+1)γ1∑

t=0

∑

j+k=t
0≤j≤γ1

0≤k≤µγ1

−µjdjAk,µxt−1 + kdjAk,µx
t−1 + αjAk,µx

t.

For t = 0, 1, . . . , (µ+ 1)γ1 − 1, the coefficient of xt in the last equation is

(2.9) −
∑

j+k=t+1
0≤j≤γ1

0≤k≤µγ1

(µjdjAk,µ − kdjAk,µ) +
∑

j+k=t
0≤j≤γ1

0≤k≤µγ1

αjAk,µ.

For the remaining case: t = (µ+ 1)γ1, the coefficient of xt is

(2.10)
∑

j+k=(µ+1)γ1
0≤j≤γ1

0≤k≤µγ1

αjAk,µ = αγ1Aµγ1,µ.

Now, for v ∈MK , we define

d(v) := max
j=0,...,γ1

|dj |v, α(v) := max
j=0,...,γ1

|αj |v,

A(µ, v) := max
k=0,...,µγ1

|Ak,µ|v.

We consider only the cases of v |∞. As αj ∈ Mn(K) and v |∞, for
j = 0, . . . , γ1, k = 0, . . . , γ1µ, we have

|µjdjAk,µ|v ≤ |µ|v|γ1|vd(v)A(µ, v), |kdjAk,µ|v ≤ |µ|v|γ1|vd(v)A(µ, v),

|αjAk,µ|v ≤ |n|vα(v)A(µ, v).
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For any t, the number of terms in
∑

j+k=t+1
0≤j≤γ1

0≤k≤µγ1

is at most γ1 + 1 because 0 ≤ j ≤ γ1.
Now we will estimate (2.9) and (2.10). The value of | . . . |v at (2.9) satisfies

|(2.9)|v ≤ |γ1 + 1|v|3|v max(|µ|v|γ1|vd(v), |n|vα(v))A(µ, v).

The value of | . . . |v at (2.10) satisfies

|(2.10)|v ≤ |γ1 + 1|v|n|vα(v)A(µ, v).

We note that these are estimates of the coefficients of xt in dµ+1Jµ+1.

Now, let Aj,µ+1 ∈Mn(OK) be such that dµ+1Jµ+1 =
∑(µ+1)γ1
j=0 Aj,µ+1x

j .
With the above arguments, we obtain

max
k=0,...,(µ+1)γ1

|Ak,µ+1|v ≤ max(|(2.9)|v, |(2.10)|v)

≤ |γ1 + 1|v|3|v max(|µ|v|γ1|vd(v), |n|vα(v))A(µ, v).

Put
βv := |γ1 + 1|v max(|γ1|vd(v), |n|vα(v)).

Then

A(µ+ 1, v) = max
k=0,...,(µ+1)γ1

|Ak,µ+1|v ≤ |3|vβv|µ|vA(µ, v).

Therefore
A(µ, v) ≤ (|3|vβv)µ−1|(µ− 1)!|vA(1, v).

Since dJ1 = d tA =
∑γ1
j=0 αjx

j , we have A(1, v) ≤ βv.
The aim of this proof is to estimate

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

=
∣∣∣∣
dµ

µ!
Jµ

∣∣∣∣
v

≤ 1
|µ!|v

A(µ, v).

Since |3|v ≥ 1 for v |∞ and since |µ|v ≥ 1, we have an estimate

1
|µ!|v

A(µ, v) ≤ (|3|vβv)µ
1
|µ|v

≤ (|3|vβv)µ.

Therefore

G∞(m) ≤
∏

v|∞
max

µ=0,...,m
(1, (|3|vβv)µ) =

(∏

v|∞
max(1, (|3|vβv))

)m
.

This implies that there exists a finite constant C, depending only on A, but
independent of m, such that G∞(m) ≤ Cm.
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If (EQ) is a G-operator, Lemmas 2.1 and 2.2 assert that there exists a
finite constant C such that

exp(deg(dmJm)) ≤ Cm, G∞(m) ≤ Cm, G0(m) ≤ Cm

for m = 0, 1, . . .
The fact that “a geometric property holds together with an arithmetic

property” is one of the most important features of G-operators; here a geo-
metric property means exp(deg(dmJm)) ≤ Cm, and an arithmetic property
means G∞(m) ≤ Cm and G0(m) ≤ Cm.

This fact will be worked out effectively in §3.
The next proposition is due to Chudnovsky–Chudnovsky. We will use it

for our proofs of Corollaries C and D.
We note again that a G-function is defined as a local object (a power

series solution); nevertheless Proposition 2.3 shows that it involves a G-
operator which is defined as a global object.

Proposition 2.3 ([C]). Let m = (f1, . . . , fn) be a vector solution of
(EQ). If all fi are G-functions, and if they are linearly independent over
C(x), then (EQ) is a G-operator.

See [C] and [A] for the proof.

2.3. Some known results. We recall a variant of Liouville’s inequality,
which is stated in function-theoretic terms.

The following Proposition 2.4 is a special case of [O, Theorem IV(ii)],
and it is an extended version of a special case of Shidlovskĭı’s main lemma
([Sh, Chapter 3, §5, Lemma 8]).

We remark that it is possible to obtain weaker estimations about some
of our results, however Proposition 2.4 brings us sharper results. See [N2].

Proposition 2.4 (Shidlovskĭı–Osgood’s inequality [O]). Let D be a sim-
ply connected domain in C, and suppose that D does not contain singular
points of A in (EQ). Assume that a vector solution m := (f1, . . . , fn) of
(EQ) is analytic on D, and f1, . . . , fn are linearly independent over C(x).
Then there exists a constant c <∞, independent of N and D, such that

∑

t∈D
max

(
ordx=t

n∑

i=1

Pifi − (n− 1), 0
)
≤ nN + c

for any N ∈ N and any P1, . . . , Pn ∈ K[x] with maxi=1,...,n degPi < N .
In particular , if V is a finite set ⊂ D, then there exists a constant c < ∞
satisfying

∑

ζ∈V

(
ordx=ζ

n∑

i=1

Pifi

)
≤ nN + (n− 1)#V + c.

See Theorem IV in [O] for the details.
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The following is the so-called Siegel lemma, which is due to Bombieri [B].

Proposition 2.5 (Siegel’s lemma [B]). Let DK be the discriminant
of K, and γ := 4d2dK

K |DK |1/2. Let M,N ∈ N with M < N and ai,j ∈ K
for i = 1, . . . ,M , j = 1, . . . , N . Then there exists a non-trivial solution
x = (x1, . . . , xN ) ∈ KN \ {0} of the system

N∑

j=1

ai,jxj = 0 for i = 1, . . . ,M,

which satisfies

h(x) ≤ 1
N −M

M∑

i=1

∑

v∈MK

max
j=1,...,N

log |ai,j |v +
M

N −M log(2Nγ) + log γ.

See [B] for the proof.

3. An inequality. The aim of this section is to show a fundamental
inequality (Lemma 3.4 below) which will be used in the proofs of our results.
The idea of the proof is to consider Padé approximations of m in (EQ) using
Siegel’s lemma, and combine them with two product formulas, the product
formula in a number field and Jensen’s formula.

According to §2, we may say the following: Padé approximations and
Jensen’s formula are function-theoretic (i.e., geometric), while Siegel’s lem-
ma and the product formula in a number field are arithmetic. We recall §2:
“a geometric property holds together with an arithmetic property”. There-
fore they can be combined into an inequality. That is Lemma 3.4.

We need long calculations in this section, but each calculation is simple.

3.1. Padé approximations. In this subsection, we will consider Padé ap-
proximations at several points and estimate coefficients of the Padé polyno-
mials by Siegel’s lemma.

Let φ be a column vector of infinitely differentiable functions: φ ∈ (C∞)n.
For A in (EQ), we put

(
d

dx
+ tA

)0

φ := φ,

(
d

dx
+ tA

)1

φ :=
d

dx
φ+ tAφ,

(
d

dx
+ tA

)s
φ :=

(
d

dx
+ tA

)(
d

dx
+ tA

)s−1

φ for s = 1, 2, . . .

Lemma 3.1. Let m be a vector solution of (EQ), and suppose that
φ ∈ (C∞)n. Then for s = 0, 1, . . . we have

(3.1)
(
d

dx

)s
( tφm) =

t((
d

dx
+ tA

)s
φ

)
m.
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Proof. Since (d/dx)m = Am, we obtain (3.1) from

d

dx
( tφm) =

(
d

dx
tφ

)
m+ tφAm =

t((
d

dx
+ tA

)
φ

)
m.

Lemma 3.2. Suppose that φ ∈ (C∞)n. Then for s = 0, 1, . . . we have

(3.2)
1
s!

(
d

dx
+ tA

)s
φ =

∑

µ+ν=s
µ,ν≥0

1
µ!ν!

((
d

dx
+ tA

)µ
I

)((
d

dx

)ν
φ

)
.

Here I is the identity matrix.

Proof. For s = 0, the left side of (3.2) is φ, and the right side is Iφ = φ.
For s = 1, the left side of (3.2) is (d/dx)φ + tAφ, and the right side is
I(d/dx)φ+ tAIφ. Thus we have (3.2) for s = 0 and s = 1.

We use induction on s. Assume that (3.2) holds for a given s. Then
(
d

dx
+ tA

)s+1

φ =
(
d

dx
+ tA

)(
d

dx
+ tA

)s
φ

=
(
d

dx
+ tA

) ∑

µ+ν=s
µ,ν≥0

s!
µ!ν!

((
d

dx
+ tA

)µ
I

)((
d

dx

)ν
φ

)

=
∑

µ+ν=s

s!
µ!ν!

(
d

dx

(
d

dx
+ tA

)µ
I

)((
d

dx

)ν
φ

)

+
s!
µ!ν!

((
d

dx
+ tA

)µ
I

)(
d

dx

)ν+1

φ

+
s!
µ!ν!

tA

((
d

dx
+ tA

)µ
I

)(
d

dx

)ν
φ

=
∑

µ+ν=s

s!
µ!ν!

((
d

dx
+ tA

)µ+1

I

)((
d

dx

)ν
φ

)

+
s!
µ!ν!

((
d

dx
+ tA

)µ
I

)((
d

dx

)ν+1

φ

)

=
∑

µ+ν=s+1

(s+ 1)!
µ!ν!

((
d

dx
+ tA

)µ
I

)((
d

dx

)ν
φ

)
.

Here we used the following simple formula: if A is a Q-algebra and
{ai}i, {bj}j ⊂ A, then by induction

∑

i+j=k
i,j≥0

k!
i!j!

(ai+1bj + aibj+1) =
∑

i+j=k+1
i,j≥0

(k + 1)!
i!j!

aibj .
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Now, let N be a parameter in N, take P1, . . . , Pn ∈ K[x] with maxi degPi
< N as Padé polynomials and put

φ := t(P1, . . . , Pn) =
t(N−1∑

j=0

a1,jx
j , . . . ,

N−1∑

j=0

an,jx
j
)
.

We also let αζ ∈ Z≥0 be parameters, and we assume that

ordx=ζ
tφm ≥ αζ ,

that is, for s = 0, 1, . . . , αζ − 1,
(

1
s!

(
d

dx

)s
( tφm)

)

|x=ζ
= 0.

Here, m is a vector solution in (EQ), D is as in Theorem A, and we sup-
pose that ζ in D ∩ K satisfies the following: there exist κζ ∈ C \ {0} and
θ1, . . . , θn ∈ K such that

m|x=ζ = κζ
t(θ1, . . . , θn).

Moreover we assume that ζ is not a pole of
(
d

dx
+ tA

)µ
I

for µ = 0, 1, . . . The last assumption holds if d(ζ) 6= 0 by Lemma 2.1.
Now, since m is a solution of (EQ), by Lemma 3.1, the condition

(
1
s!

(
d

dx

)s
( tφm)

)

|x=ζ
= 0

is equivalent to (
1
s!

t((
d

dx
+ tA

)s
φ

)
m

)

|x=ζ
= 0,

and also to
∑

µ+ν=s
µ,ν≥0

( t( 1
µ!

((
d

dx
+ tA

)µ
I

)
1
ν!

(
d

dx

)ν
φ

)
m

)

|x=ζ
= 0

by Lemma 3.2. Clearly, the latter is equivalent to
∑

µ+ν=s
µ,ν≥0

( t( 1
µ!

((
d

dx
+ tA

)µ
I

)
1
ν!

(
d

dx

)ν
φ

)
κ−1
ζ m

)

|x=ζ
= 0.

We put

(αi,j(µ))i,j=1,...,n :=
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ
∈Mn(K).
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Since ζ is not a pole, we have
((

1
µ!

(
d

dx
+ tA

)µ
I

)(
1
ν!

(
d

dx

)ν
φ

))

|x=ζ

=
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

(
1
ν!

(
d

dx

)ν
φ

)

|x=ζ
,

that is,

(αi,j(µ))i,j=1,...,n




∑N−1
j=0

(
j
ν

)
ζj−νa1,j

...∑N−1
j=0

(
j
ν

)
ζj−νan,j




=




∑N−1
j=0

∑n
k=1 α1,k(µ)

(
j
ν

)
ζj−νak,j

...∑N−1
j=0

∑n
k=1 αn,k(µ)

(
j
ν

)
ζj−νak,j


 .

Hence
t( t(( 1

µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

(
1
ν!

(
d

dx

)ν
φ

)

|x=ζ

)
(κ−1
ζ )m|x=ζ

)

=
n∑

i=1

n∑

k=1

N−1∑

j=0

θiαi,k(µ)
(
j

ν

)
ζj−νak,j .

Therefore

(3.3)
∑

µ+ν=s
µ,ν≥0

( t( 1
µ!

((
d

dx
+ tA

)µ
I

)
1
ν!

(
d

dx

)ν
φ

)
κ−1
ζ m

)

|x=ζ

=
n∑

k=1

N−1∑

j=0

( n∑

i=1

∑

µ+ν=s
µ,ν≥0

θiαi,k(µ)
(
j

ν

)
ζj−ν

)
ak,j ,

where
(
j
ν

)
= 0 if j < ν.

We regard (3.3) as linear combinations ak,j . Each coefficient of ak,j is

(3.4)
n∑

i=1

∑

µ+ν=s
µ,ν≥0

θiαi,k(µ)
(
j

ν

)
ζj−ν .

We will find an upper bound of (3.4) for each k = 1, . . . , n and j = 0, . . .
. . . , N − 1.

We consider two cases.
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Case v -∞: We have

|(3.4)|v ≤ max
i,k=1,...,n
j=0,...,N−1
µ+ν=s
µ,ν≥0

|θi|v|αi,k(µ)|v
∣∣∣∣
(
j

ν

)∣∣∣∣
v

|ζj−ν |v.

Since
∣∣(j
µ

)∣∣
v
≤ 1, we obtain

∏

v-∞
|(3.4)|v ≤

∏

v-∞
max

i=1,...,n
|θi|v

∏

v-∞
max
µ≤s

i,j=1,...,n

|αi,j(µ)|v
∏

v-∞
max(1, |ζ|v)N−1.

Case v | ∞: We have

|(3.4)|v ≤ max
i,k=1,...,n
j=0,...,N−1
µ+ν=s
µ,ν≥0

|n(s+ 1)|v|θi|v|αi,k(µ)|v
∣∣∣∣
(
j

ν

)∣∣∣∣
v

|ζj−ν |v.

As
∣∣(j
µ

)∣∣
v
≤ |2j |v, we obtain

∏

v|∞
|(3.4)|v

≤ 2N−1n(s+ 1)
∏

v-∞
max

i=1,...,n
|θi|v

∏

v-∞
max
µ≤s

i,j=1,...,n

|αi,j(µ)|v
∏

v-∞
max(1, |ζ|v)N−1.

In (2.5), we established that
∏

v-∞

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

≤ G0(µ),
∏

v|∞

∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

≤ G∞(µ),

and by Lemma 2.1,

deg
dµ

µ!

(
d

dx
+ tA

)µ
I ≤ µγ1.

Since d(ζ) 6= 0, for v -∞ we have
∣∣∣∣
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

∣∣∣∣
v

≤
∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

max(1, |ζ|v)µγ1 max(1, |1/d(ζ)|v)µ.

Therefore
∏

v-∞
max
µ≤s
|αi,j(µ)|v =

∏

v-∞
max
µ≤s

∣∣∣∣
(

1
µ!

(
d

dx
+ tA

)µ
I

)

x=ζ

∣∣∣∣
v

≤ G0(s)
∏

v-∞
max(1, |ζ|sγ1

v )
∏

v-∞
max(1, |1/d(ζ)|sv).
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For v | ∞, we have
∣∣∣∣
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

∣∣∣∣
v

≤ |µγ1 + 1|v
∣∣∣∣
dµ

µ!

(
d

dx
+ tA

)µ
I

∣∣∣∣
v

max(1, |ζ|v)µγ1 max(1, |1/d(ζ)|v)µ.

Therefore
∏

v|∞
max
µ≤s
|αi,j(µ)|v =

∏

v|∞
max
µ≤s

∣∣∣∣
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

∣∣∣∣
v

≤ (sγ1 + 1)G∞(s)
∏

v|∞
max(1, |ζ|sγ1

v )
∏

v|∞
max(1, |1/d(ζ)|sv).

To summarize the above calculations, we arrive at the following: Let D
be as in Theorem A, let ζ ∈ K ∩D with d(ζ) 6= 0, and αζ ∈ Z≥0. Suppose
that m is a vector solution of (EQ), analytic on D.

Moreover suppose that there exist κζ ∈ C \ {0} and θ1, . . . , θn ∈ K such
that

m|x=ζ = κζ
t(θ1, . . . , θn).

We consider

φ =
t(N−1∑

j=0

a1,jx
j , . . . ,

N−1∑

j=0

an,jx
j
)

with parameters ak,j , k = 1, . . . , n, j = 0, . . . , N − 1. Then the system
(

1
s!

(
d

dx

)s
( tφm)

)

|x=ζ
= 0, s = 0, 1, . . . , αζ − 1,

multiplied by κ−1
ζ is equivalent to

the right side of (3.3) = 0, s = 0, 1, . . . , αζ − 1.

These are linear equations in ak,j over K. The coefficient of ak,j equals (3.4)
and satisfies

∏

v-∞
|(3.4)|v ≤ G0(αζ − 1)

∏

v-∞
max
i
|θi|v

∏

v-∞
max(1, |ζ|v)N−1+αζγ1

×
∏

v-∞
max(1, |1/d(ζ)|v)αζ−1,

and
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∏

v|∞
|(3.4)|v ≤ ((αζ − 1)γ1 + 1)2N−1nαζG∞(αζ − 1)

∏

v|∞
max
i
|θi|v

×
∏

v|∞
max(1, |ζ|v)N−1+αζγ1

∏

v|∞
max(1, |1/d(ζ)|v)αζ−1.

We note that θ1, . . . , θn are independent of N,αζ , and G0, G∞, γ1 are inde-
pendent of ζ.

To combine them into one inequality, we have

(3.5)
∏

v∈MK

|(3.4)|v

≤ ((αζ − 1)γ1 + 1)2N−1nαζG0(αζ − 1)G∞(αζ − 1)

×
( ∏

v∈MK

max
i
|θi|v

)
H(ζ)N−1+(αζ−1)γ1H(1/d(ζ))αζ−1.

We will apply the above argument to Siegel’s lemma.
Let ζ0, . . . , ζl be l + 1 distinct elements in D ∩ K with d(ζt) 6= 0 such

that m is analytic at x = ζt for t = 0, . . . , l. Moreover for t = 0, . . . , l, we
assume that there exist κt ∈ C \ {0} and θ1,t, . . . , θn,t ∈ K such that

m|x=ζt = κt
t(θ1,t, . . . , θn,t).

Now let φ be as above, and let α0, . . . , αl in Z≥0 be given. We consider the
condition

ordx=ζt(
tφm) ≥ αt for t = 0, . . . , l.

These inequalities are equivalent to the homogeneous linear equations
over K:

(3.6) (κ−1
t )
(

1
s!

(
d

dx

)s
( tφm)

)

|x=ζt

= 0 for s = 0, . . . , αt−1, t = 0, . . . , l.

Here, the number of equations is
∑l
t=0 αt, and the number of unknowns

(i.e., the coefficients of xi in φ for i = 0, . . . , N − 1) is nN .
Now recall Siegel’s lemma of §2.
From (3.5), the value corresponding to

∑M
i=1

∑
v∈MK

maxj log |ai,j |v in
Siegel’s lemma is
l∑

t=0

αt

(
logG0(αt − 1) + logG∞(αt − 1) +

∑

v∈MK

log max
i
|θi,t|v

+ (N − 1 + (αt − 1)γ1)
∑

v∈MK

log+ |ζt|v + (αt − 1)
∑

v∈MK

log+ |1/d(ζt)|v

+ (N − 1) log 2 + log((αt − 1)γ1 + 1) + logn+ logαt
)
.
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Since h(a) = h(1/a) for a ∈ K \ {0}, applying (3.6) in Siegel’s lemma, we
obtain:

Lemma 3.3. Let l be a given non-negative integer , and let ζ0, . . . , ζl be
l+ 1 distinct elements in D ∩K with d(ζ0) 6= 0, . . . , d(ζl) 6= 0. Suppose that
there exist κt ∈ C \ {0} and θ1,t, . . . , θn,t ∈ K such that

m|x=ζt = κt
t(θ1,t, . . . , θn,t) for t = 0, . . . , l.

Let α0, . . . , αl ∈ Z≥0, and let δ be a positive number with

(n− δ)N =
l∑

t=0

αt.

Then for any N ∈ N, there exists a non-trivial φ ∈ (K[x])n \ {0} with
deg φ < N such that

ordx=ζt(
tφm) ≥ αt for t = 0, . . . , l

and

h(φ) ≤ 1
δN

l∑

t=0

αt

(
logG0(αt − 1) + logG∞(αt − 1) + (N − 1) log 2(3.7)

+ (N − 1 + (αt − 1)γ1)h(ζt) + (αt − 1)h(d(ζt))

+
∑

v∈MK

log max
i
|θi,t|v + log(((αt − 1)γ1 + 1)nαt)

)

+
n− δ
δ

log(2nNγ) + log γ.

Here γ is defined in Siegel’s lemma.

3.2. Jensen’s formula. In this subsection, we recall the classical Jensen
formula ([L2, p. 162]). We will then combine it with Lemma 3.3 in the last
subsection.

Let R > 0 and ε > 0 be given. For ζ ∈ C, we put ∆(ζ,R) := {z ∈ C |
|z−ζ| ≤ R}. Let g be a meromorphic function on ∆(0, R+ε). Then Jensen’s
formula reads:

−
∑

a∈∆(0,R)
a6=0

ordx=a(g) log
R

|a| −λ logR− log |cλ|+
1

2π

2π�

0

log |g(Re
√−1 θ)| dθ= 0

for g(z) = cλz
λ + cλ+1z

λ+1 + . . . , cλ 6= 0, λ ∈ Z.
Now let {αi}i be the set of zeros and poles of g(z) on ∆(0, R). Put

f(z) := g(z − ζ). Then f is a meromorphic function on ∆(ζ,R + ε) with
f(z) = cλ(z − ζ)λ + cλ+1(z − ζ)λ+1 + . . . , cλ 6= 0, and {αi + ζ}i is the set
of zeros and poles of f(z) on ∆(ζ,R).
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Putting βi := αi + ζ, we have by Jensen’s formula

−
∑

βi 6=ζ
ordz=βi(f(z)) log

R

|βi − ζ|
− λ logR− log |cλ|

+
1

2π

2π�

0

log |f(Re
√−1 θ + ζ)| dθ = 0.

We note that log(R/|βi − ζ|) ≥ 0 because R ≥ |αi| = |βi − ζ|.
If f(z) is analytic (i.e., has no poles) on ∆(ζ,R+ ε), then for any subset

Z ⊂ {βi} we have

(3.8) −
∑

a∈Z
a6=ζ

(logz=a f(z)) log
R

|a− ζ| − λ logR− log |cλ|

+
1

2π

2π�

0

log |f(Re
√−1 θ + ζ)| dθ ≥ 0,

where f(z) = cλ(z − ζ)λ + cλ+1(z − ζ)λ+1 + . . . , λ ≥ 0, cλ 6= 0.
Now we consider tφm for φ as in Lemma 3.3. We suppose that ζ0 belongs

to D. We choose R satisfying ∆(ζ0, R) ⊂ D and assume that ζ0, . . . , ζl ∈
∆(ζ0, R) ∩K. We put

βt := ordx=ζt(
tφm) for t = 0, . . . , l.

Obviously, βt ≥ αt for t = 0, . . . , l.
If βt =∞, then tφm is 0 on a neighborhood of ζt, and thus tφm is 0 on

D by the uniqueness theorem. This m does not satisfy the assumptions of
Theorem A.

Set ζ := ζ0 and put

ψ0 := κ−1
0

(
1

x− ζ

)β0

.

Since ordx=ζ(ψ0
tφm) = 0 and ψ0

tφm 6= 0, by (3.8) we have

−
l∑

t=1

βt log
R

|ζt−ζ|
−log |ψ0

tφm|x=ζ |+
1

2π

2π�

0

log |ψ0
tφm|x=Re

√−1 θ+ζ | dθ≥ 0,

where we assume that R satisfies ∆(ζ,R) ⊂ D.
Now, we will find an upper bound of

1
2π

2π�

0

log |ψ0
tφm|x=Re

√−1 θ+ζ | dθ.

Since

|ψ0
tφm| =

∣∣∣∣κ
−1
0

(
1

x− ζ

)β0
tφm

∣∣∣∣,
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we have

1
2π

2π�

0

log |ψ0
tφm|x=Re

√−1 θ+ζ | dθ

=
1

2π

2π�

0

log |κ−1
0

tφm|x=Re
√−1 θ+ζ | dθ − β0 logR.

From now on, let Tv ∈ R (v ∈MK) be such that

|φ|v ≤ Tv.
Using the usual absolute valuations | . . . |, for v = id = 1 we obtain

|φ| = |φ|dK/d1
1 ≤ T dK/d1

1 .

Hence

max
i,j
|ai,j | ≤ T dK/d1

1 for φ =
t(N−1∑

j=0

a1,jx
j , . . . ,

N−1∑

j=0

an,jx
j
)
.

We put m = t(f1(x), . . . , fn(x)) in D. Since

tφm =
n∑

i=1

N−1∑

j=0

ai,jx
jfi(x),

we have

|κ−1
0

tφm|x=Re
√−1 θ+ζ | ≤

n∑

i=1

N−1∑

j=0

|ai,j |(R+|ζ|)j|κ−1
0 | max

i=1,...,n
0≤θ≤2π

|fi(Re
√−1θ+ζ)|.

Now set
M(R, ζ) := |κ−1

0 | max
i=1,...,n
0≤θ≤2π

|fi(Re
√−1θ + ζ)|.

Then

1
2π

2π�

0

log |κ−1
0

tφm|x=Re
√−1 θ+ζ | dθ

≤ dK
d1

log T1 + log max(1, (R+ |ζ|)N−1) + log nN + logM(R, ζ).

We note that M(R, ζ) is independent of N .
By (3.8), we conclude that

(3.9) − β0 logR−
l∑

t=1

βt log
R

|ζt − ζ|
− log |ψ0

tφm|x=ζ |

+
dK
d1

log T1 + log max(1, (R+ |ζ|)N−1) + log nN + logM(R, ζ) ≥ 0.
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3.3. Product formula in the number field. In this subsection, we will find
upper bounds of

∑

v∈M0
K

log |ψ0
tφm|x=ζ |v and

∑

σ∈M1
K

dσ
dK

log |σ(ψ0
tφm|x=ζ)|.

Here σ(a) is the image of a ∈ K under σ.
Now, since β0 = ordx=ζ( tφm), we have

(
κ−1

0

β0!

(
d

dx

)β0

( tφm)
)

|x=ζ
= (ψ0

tφm)|x=ζ .

From Lemmas 3.1 and 3.2, we have

κ−1
0

β0!

(
d

dx

)β0

( tφm) =
t( ∑

µ+ν=β0
µ,ν≥0

(
1
µ!

(
d

dx
+ tA

)µ
I

)(
1
ν!

(
d

dx

)ν
φ

))
κ−1

0 m.

We recall that |φ|v ≤ Tv and deg φ < N .
We note that

(3.10)
1
ν!

(
d

dx

)ν
φ =

t(N−1∑

j=0

(
j

ν

)
a1,jx

j , . . . ,
N−1∑

j=0

(
j

ν

)
an,jx

j

)
.

From Lemma 2.1, let Aj(µ) ∈Mn(K) be such that

A(µ) :=
dµ

µ!

(
d

dx
+ tA

)µ
I =

µγ1∑

j=0

Aj(µ)xj ∈Mn(K[x]).

Since d(ζ) 6= 0, we have
(

1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ
=
A(µ)|x=ζ

d(ζ)µ
,

and

(3.11)
(
κ−1

0

β0!

(
d

dx

)β0

( tφm)
)

|x=ζ

=
∑

µ+ν=β0
µ,ν≥0

t(( 1
µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

(
1
ν!

(
d

dx

)ν
φ

)

|x=ζ

)
κ−1

0 m|x=ζ .

We consider two cases.
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Case v -∞: We have

|(ψ0
tφm)|x=ζ |v =

∣∣∣∣
(
κ−1

0

β0!

(
d

dx

)β0

( tφm)
)

|x=ζ

∣∣∣∣
v

≤ max
µ=0,...,β0

∣∣∣∣
(
dµ

µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

∣∣∣∣
v

max
µ=0,...,β0

∣∣∣∣
1

d(ζ)µ

∣∣∣∣
v

× max
ν=0,...,β0

∣∣∣∣
(

1
ν!

(
d

dx

)ν
φ

)

|x=ζ

∣∣∣∣
v

|κ−1
0 m|x=ζ |v.

Here |κ−1
0 m|x=ζ |v := maxi |θi,0|v. From Lemma 2.1, since

(3.12) deg
dµ

µ!

(
d

dx
+ tA

)
I ≤ β0γ1, deg

1
ν!

(
d

dx

)v
φ ≤ N − 1

for µ, ν ≤ β0, we have

∏

v-∞
|(ψ0

tφm)|x=ζ |v ≤ G0(β0)
∏

v-∞
max

(
1,
∣∣∣∣

1
d(ζ)

∣∣∣∣
β0

v

)∏

v-∞
Tv
∏

v-∞
|κ−1

0 m|x=ζ |v

×
∏

v-∞
max(1, |ζ|v)N−1+β0γ1 .

We rewrite the last inequality as
∑

v-∞
log |(ψ0

tφm)|x=ζ |v ≤ logG0(β0) + β0

∑

v-∞
log+

∣∣∣∣
1

d(ζ)

∣∣∣∣
v

(3.13)

+
∑

v-∞
log Tv +

∑

v-∞
log |κ−1

0 m|x=ζ |v

+ (N − 1 + β0γ1)
∑

v-∞
log+ |ζ|v.

Case v | ∞: Note that
(
dµ

µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ
,

(
1
ν!

(
d

dx

)ν
φ

)

|x=ζ
, κ−1

0 m|x=ζ

are n× n-, n× 1-, 1× n-matrices respectively, with entries in K. By (3.11),

|(ψ0
tφm)|x=ζ |v =

∣∣∣∣
(
κ−1

0

β0!

(
d

dx

)β0

( tφm)
)

|x=ζ

∣∣∣∣
v

≤ |β0 + 1|v|n2|v
(

max
µ≤β0

∣∣∣∣
1

d(ζ)µ

∣∣∣∣
v

)(
max
µ≤β0

∣∣∣∣
(
dµ

µ!

(
d

dx
+ tA

)µ
I

)

|x=ζ

∣∣∣∣
v

)

×
(

max
ν≤β0

∣∣∣∣
(

1
ν!

(
d

dx

)ν
φ

)

|x=ζ

∣∣∣∣
v

)
|κ−1

0 m|x=ζ |v.
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By (3.12), we obtain

(3.14)
∑

v∈M1
K

log |(ψ0
tφm)|x=ζ |

≤ β0

∑

v∈M1
K

log+ |1/d(ζ)|v + logG1(β0) +
∑

v∈M1
K

log Tv

+
∑

v∈M1
K

log |κ−1
0 m|x=ζ |v +

∑

v∈M1
K

log |(β0γ1 + 1)N(β0 + 1)n2|v

+ (N − 1 + β0γ1)
∑

v∈M1
K

log+ |ζ|v + (N − 1) log 2,

by (3.10) since
(
j
ν

)
≤ 2N−1.

Since (ψ0
tφm)|x=ζ ∈ K \ {0}, the product formula reads

(3.15) log |(ψ0
tφm)|x=ζ |1 +

∑

v∈M1
K

log |(ψ0
tφm)|x=ζ |v

+
∑

v∈M0
K

log |(ψ0
tφm)|x=ζ |v = 0.

In the next subsection, we will use the last equation together with the
estimates obtained in this subsection.

3.4. A fundamental inequality. Multiplying (3.9) by d1/dK , and com-
bining it with (3.13)–(3.15), we obtain

β0 logRd1/dK +
l∑

t=1

βt log
Rd1/dK

|ζt − ζ|1

≤
∑

v∈MK

log Tv +
d1

dK
(log+(R+ |ζ|)N−1 + lognN + logM(R, ζ))

+ logG0(β0) + logG1(β0) + β0

∑

v∈MK

v 6=id

log+
∣∣∣∣

1
d(ζ)

∣∣∣∣
v

+
∑

v∈MK

v 6=id

log |κ−1
0 m|x=ζ |v + (N − 1 + β0γ1)

∑

v∈MK

v 6=id

log+ |ζ|v

+ (N − 1) log 2 +
∑

v∈M1
K

log |(β0γ1 + 1)N(β0 + 1)n2|v.

Applying Lemma 3.3 to the last inequality, since the Tv can be supposed
to satisfy

∑
v∈MK

log Tv = h(φ) and by (3.7), we obtain the long inequality :
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(3.16) β0 logRd1/dK +
l∑

t=1

βt log
Rd1/dK

|ζt − ζ|1

≤ 1
δN

l∑

t=0

αt

(
logG0(αt − 1) + logG∞(αt − 1) + (N − 1) log 2

+ (N − 1 + (αt − 1)γ1)h(ζt) + (αt − 1)h(d(ζt))

+
∑

v∈MK

log max
i
|θi,t|v + log(((αt − 1)γ1 + 1)nαt)

)

+
n− δ
δ

log(2nNγ) + log γ

+
d1

dK
(log+((R+ |ζ|)N−1) + log(nN) + logM(R, ζ))

+ logG0(β0) + logG1(β0) + β0

∑

v∈MK

v 6=1

log+ |1/d(ζ)|v

+
∑

v∈MK

v 6=1

log |κ−1
0 m|x=ζ |v + (N − 1 + β0γ1)

∑

v∈MK

v 6=1

log+ |ζ|v

+ (N − 1) log 2 +
∑

v∈M1
K

log |(β0γ1 + 1)N(β0 + 1)n2|v.

We remark that (3.16) holds in the following sense: for any N = 1, 2, . . .
and any α0, . . . , αl with

∑l
t=0 αt = (n − δ)N , there exist β0, . . . , βl ∈ Z≥0

such that

βt ≥ αt for t = 0, . . . , l,
l∑

t=0

βt ≤ nN + c(l + 1)

and (3.16) holds.
Here the inequality

∑l
t=0 βt ≤ nN + c(l + 1) comes from Shidlovskĭı–

Osgood’s inequality of §2 and c is a finite constant depending only on m.
Now, we assume that (EQ) is a G-operator, and thus we assume that

there exists a constant C <∞, depending only on A, such that G0(µ) ≤ Cµ
for µ = 0, 1, . . .

From §2, for a given a ≥ 0 and N ∈ N, there exist C0, C∞, C1 such that

logG0(aN)
N

≤ aC0,
logG∞(aN)

N
≤ aC∞,

logG1(aN)
N

≤ aC1.

Let a0, . . . , al ∈ R≥0 and b0, . . . , bl ∈ R≥0 satisfy

αt = atN, βt = btN.
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We assume that R+ |ζ| < 1. We note that θi,t and M(R, ζ) are independent
of N .

Dividing the long inequality (3.16) by N , and letting N → ∞, from
R+ |ζ| < 1 we have
l∑

t=0

bt logRd1/dk +
l∑

t=1

bt log
1

|ζt − ζ|1

≤ 1
δ

l∑

t=0

at((C0 + C∞)at + log 2 + (1 + atγ1)h(ζt) + ath(d(ζt)) + ε)

+ 2ε+ (C0 + C1)b0 + b0h(d(ζ0)) + ε+ (1 + b0γ1)h(ζ0) + log 2 + ε

for any positive ε > 0.
Since deg d ≤ γ1, there exists γ2 such that h(d(ζ)) ≤ γ1h(ζ) + γ2 for any

ζ ∈ K (e.g., see [Se, p. 15]).
Consequently, we arrive at:

Lemma 3.4 (The fundamental inequality). Let D be as in Theorem A
and let m be an analytic vector solution of (EQ) satisfying the assumptions
in Theorem A. Assume that ζ0, . . . , ζl ∈ D ∩ K are such that there exists
κt ∈ C \ {0} with κtm(ζt) ∈ Kn. Assume that d(ζt) 6= 0, t = 0, . . . , l.
Let R be a positive number with R + |ζ0| < 1 and assume that ζ1, . . . , ζl ∈
∆(ζ0, R) ⊂ D. Then under the assumptions of Theorem A, for any δ > 0
with δ < n and for any a0, . . . , at ∈ R≥0 with

∑l
t=0 at = n − δ, there exist

b0, . . . , bl ∈ R≥0 with bt ≥ at for t = 0, . . . , l satisfying the following : For
any positive ε > 0,

l∑

t=0

bt ≤ n+ ε

and

(3.17)
l∑

t=0

bt logRd1/dK +
l∑

t=1

bt log
1

|ζt − ζ0|1

≤ 1
δ

l∑

t=0

at((1 + 2atγ1)h(ζt) + at(C0 + C∞ + γ2) + log 2 + ε)

+ (1 + 2b0γ1)h(ζ0) + b0(C0 + C1 + γ2) + log 2 + ε.

Here γ1, γ2, C0, C1, C∞ are finite constants depending only on A.

Remark. The condition R+ |ζ| < 1 is not essential for two reasons. One
can assume without loss of generality that |ζ| < 1/2, because the definition
of G-operators is independent of the choice of coordinates. Moreover large
R’s make only slight changes in (3.17).
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4. Proofs

4.1. Proof of Theorem A. First, we will show an ineffective version, and
next we prove the effectiveness.

We use Lemma 3.4. Put l := 1, fix ζ0 and put a0 := 0. Dividing (3.17)
by h(ζ1), we have

(b0 + b1) logRd1/dK

h(ζ1)
+ b1

log(1/|ζ0 − ζ1|1)
h(ζ1)

≤ 1
δ
a1

(
(1 + 2a1γ1) +

a1(C0 + C∞ + γ2) + log 2 + ε

h(ζ1)

)

+
(1 + 2b0γ1)h(ζ0) + b0(C0 + C1 + γ2) + log 2 + ε

h(ζ1)
.

If h(ζ1) is much larger than n, h(ζ0), R, C0, C1, C∞, γ1 and γ2, we obtain

(4.1) −ε+ b1
log(1/|ζ0 − ζ1|v)

h(ζ1)
≤ a1

δ
((1 + 2a1γ1) + ε) + ε.

We can assume that log(1/|ζ1 − ζ0|1) > 0 because if |ζ1 − ζ0|1 ≥ 1 we need
to do nothing. Since b1 ≥ a1, (4.1) implies that

a1
log(1/|ζ1 − ζ0|1)

h(ζ1)
≤ a1

δ
((1 + 2a1γ1) + ε) + 2ε.

We assume that a1 > 0 and divide the last inequality by a1 to obtain

log(1/|ζ1 − ζ0|1)
h(ζ1)

≤ 1
δ

((1 + 2a1γ1) + ε) +
2ε
a1
.

Now, let ε1 > 0. We put a1 := ε1, and thus ε1 = a1 = a0 + a1 = n− δ.
We can assume that ε ≤ ε2

1; consequently,

log(1/|ζ1 − ζ0|1)
h(ζ1)

≤ 1
n− ε1

(1 + ε1(2γ1 + ε1)) + 2ε1.

Therefore, for any given small ε2 > 0, if h(ζ1) is large, we have

log(1/|ζ1 − ζ0|1)
h(ζ1)

≤ 1
n

+ ε2,

that is,
1

|ζ1 − ζ0|1
≤ H(ζ1)1/n+ε2 .

Because we just need to consider the case of |ζ1 − ζ0| < 1, we can assume
that |ζ1 − ζ0|1 = |ζ1 − ζ0|d1/dK ≤ |ζ1 − ζ0|1/dK . Therefore we conclude that
the ineffective version of Theorem A holds.
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Now we show the effectiveness. From Lemma 3.4, we can assume that
b0+b1 ≤ n+ε1. Here we can assume that ε = ε2

1. Since γ1 ≥ 1, the inequality

1
n− ε1

(1 + ε1(2γ1 + 1)) + 2ε1 ≤
1
n

+ ε2

holds if we put ε1(2γ1 + 1) = ε2/4 for small ε1.
We have to find a sufficient condition (which involves ε2) for the following

three inequalities to hold:

−ε ≤ (b0 + b1) logRd1/dK

h(ζ1)
,

a1(C0 + C∞ + γ2) + log 2 + ε

h(ζ1)
≤ ε,

(1 + 2b0γ1)h(ζ0) + b0(C0 + C1 + γ2) + log 2 + ε

h(ζ1)
≤ ε.

It is easy to verify that there exist c1, c2 > 0 such that these three inequalities
hold if

h(ζ1) ≥ c1h(ζ0) + c2
ε2

2
,

where c1 and c2 are obtained from n, R, C0, C1, C∞, γ1 and γ2, that is,
they are effective constants depending only on A and R.

4.2. Proof of Theorem B. One can say that Theorem A is a Liouville
inequality for G-functions on fixed targets. In this subsection, we consider a
variant of Liouville’s inequality on moving targets. Here we use Lemma 3.4
as well.

We consider only the cases where ζ0, . . . , ζl are close to each other in the
topology of | . . . |1. We replace the index 0 of ζ0 in Lemma 3.4 with another
index i, that is, we consider Lemma 3.4 with ζi (resp. ∆(ζi, R)) in place of
ζ0 (resp. ∆(ζ0, R)). Under the notations of Lemma 3.4, we have

l∑

t=0

bt logRd1/dK +
l∑

t=0
t6=i

bt log
1

|ζt − ζi|1

≤ 1
δ

l∑

t=0

at((1 + 2atγ1)h(ζt) + at(C0 + C∞ + γ2) + log 2 + ε)

+ (1 + 2biγ1)h(ζi) + bi(C0 + C1 + γ2) + log 2 + ε.

Now let Q be a large real number and assume that h(ζt) ≤ Q for t =
0, . . . , l. We also suppose that |ζt−ζi|1 ≤ 1. Since 0 ≤ at ≤ bt for t = 0, . . . , l
and since

∑l
t=0 bt ≤ n+ ε, the following inequality holds if Q is sufficiently

large:
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− ε+
l∑

t=0
t6=i

at
log(1/|ζt − ζi|1)

Q

≤ 1
δ

l∑

t=0

at

(
(1 + 2atγ1)

h(ζt)
Q

+ ε

)
+ (1 + 2btγ1)

h(ζi)
Q

+ ε.

Now we put at := (n− δ)/(l + 1) for t = 0, 1, . . . , l.
Because bt ≥ 0 and

∑l
t=0 bt ≤ n + ε, there exists i0 such that bi0 ≤

(n+ ε)/(l + 1). Since h(ζt)/Q ≤ 1, we have

n− δ
l + 1

l∑

t=0
t6=i0

log(1/|ζt − ζi0 |1)
Q

≤ 1
δ

(
(n− δ)(1 + ε) +

2(n− δ)2γ1

l + 1

)
+
(

1 +
2(n+ ε)γ1

l + 1

)
+ 2ε.

We put
M := min

t=0,...,l
t6=i0

log(1/|ζt − ζi0 |1)

and δ := n/2, and thus we have

n

2
· l

l + 1
· M
Q
≤ 2 + 3ε+

(3n+ 2ε)γ1

l + 1
.

Therefore there exists L, which depends only on ε, n, γ1, such that if l ≥ L,
then

n

2
· M
Q
≤ 2 + 4ε, that is, M ≤ 4 + 8ε

n
Q.

We conclude the following: if h(ζt) ≤ Q for t = 0, . . . , l, and if

min
t=0,...,l
t6=i0

log(1/|ζt − ζi0 |1) = M >
4 + 8ε
n

Q

then l < L. In particular, if

min
i0=0,...,l

min
t=0,...,l
t6=i0

log(1/|ζt − ζi0 |1) >
4 + 8ε
n

Q

then l < L. Therefore if

max
i=0,...,l
t=0,...,l
i6=t

log |ζi − ζt|1 < −
4 + ε1

n
Q

then l < L. Here ε1 := 8ε. Consequently, we obtain:
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Theorem E. Suppose that B is an arbitrary large number. Under the
assumptions of Theorem A, let Ds be an arbitrary closed disk with radius
B−4(1+ε)/n/2 (in the topology | . . . |1) with Ds ⊂ D. Then there exists L such
that the number of ζ’s which have the following properties is at most L+ 1:

ζ ∈ Ds ∩K, H(ζ) ≤ B and there exists κζ ∈ C \ {0}
such that κζm(ζ) ∈ Kn.

Here L depends only on ε, n, γ1 (independent of B and the choice of the
center of Ds).

Now, we give a proof of Theorem B.

Proof of Theorem B. We have to consider two cases: | . . . |1 = | . . . |1/[K:Q ]

and | . . . |1 = | . . . |2/[K:Q ]. We only consider the second case. The first case
is similar.

Let R be the radius of D, the closed disk ⊂ C in Theorem B. It is
easy to see that D is covered by 8R2B4(1+ε)[K:Q ]/n small disks with radius
B−4(1+ε)[K:Q ]/(2n)/2. In each of the small disks the number of ζ’s satisfying
the conditions of Theorem E is at most L+ 1. Thus the number of ζ’s in D
satisfying the conditions of Theorem E is at most (L+1)8R2B4(1+ε)[K:Q ]/n.
Therefore we obtain

lim
B→∞

log #{ζ ∈ SK | H(ζ) ≤ B}
logB

≤ 4(1 + ε)
n

[K : Q ].

Since the last estimate holds for any ε, we get the conclusion of Theo-
rem B.

4.3. Proof of Corollaries C and D. Let m = t(y1, . . . , yn) be a vector
solution of (EQ). We denote by mN the vector whose components are all
monomials in y1, . . . , yn with degree N . For example, if m = t(y1, y2), then
m1 = m, m2 = t(y2

1 , y1y2, y
2
2), and so on.

Put N ′ :=
(
n+N
n

)
. From [Sh, Lemma 18, p. 118], there exists an N ′×N ′-

matrix AN whose components are linear combinations of components of A
in (EQ) over Z, such that mN satisfies

(EQN )
d

dx
mN = ANmN .

Therefore one can take d in Theorem A to be a common denominator of
the components of AN .

If there exists κζ ∈ C \ {0} such that κζm(ζ) ∈ Kn then κNζ mN (ζ) ∈
KN ′ , and thus

{ζ ∈ K | there exists κζ ∈ C \ {0} such that κζm(ζ) ∈ Kn}
⊂ {ζ ∈ K | there exists κ ∈ C \ {0} such that κmN (ζ) ∈ KN ′}.
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Under the assumptions of Corollaries C and D, the elements of mN

are linearly independent over C(x) and from Proposition 2.3, (EQN ) is a
G-operator.

Applying Theorems A and B to (EQN ) for large N , we obtain Corollaries
C and D.
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