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1. Introduction. A quadratic extension of a cyclotomic field, which
is non-abelian Galois over the rational number field Q, is called a quasi-
cyclotomic field. All quasi-cyclotomic fields are described explicitly in [8]
following the work in [I] and [3]. Actually for any cyclotomic field Q((,) we
construct a canonical Z/2Z-basis of the quotient space of {a € Q*/Q*? |
Q(Cn, V@) /Q is Galois} modulo the subspace {a € Q*/Q*? | Q(¢u, vVa)/Q
is abelian}. The minimal quasi-cyclotomic field containing the square root
of a special element of the basis is called a primary quasi-cyclotomic field.
L. S. Yin and C. Zhang [7] have studied the arithmetic of any quasi-cyclo-
tomic field. In this paper we determine all irreducible representations of pri-
mary quasi-cyclotomic fields. Our methods enable one to determine the irre-
ducible representations of an arbitrary quasi-cyclotomic field. We also com-
pute the Artin conductors of the representations and the Artin L-functions
for a class of quasi-cyclotomic fields. They correspond to a series of nor-
malized newforms of weight one by Deligne-Serre’s theorem [6, Th. 2|. We
describe these modular forms explicitly.

First we recall the construction of primary quasi-cyclotomic fields. Let
S be the set consisting of —1 and all prime numbers. For p € S, we put
p = 4,8,p and set p* = —1,2, (—1)(1’_1)/2]) if p=—1,2 and an odd prime
number, respectively. For prime numbers p < ¢, we define

(p-1)/2(a-1)/2 5, ZQ+J7T

Upq = H H ]p—i—z ((Z7]) 7é (070)7 D> 2)

sin
=0

and
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- sin § (ql_l[)/Q sin ]27; sin 234q ™
T gnm 4+l J 21"
sin g 57 2sin Sp=m - sin L - sin S5
For p < q € S, we put
Vq* lfp:_la
Upg ifp=2or p=¢g=1mod 4,
Upg =14 VP Vpg ifp=1, ¢=3mod4,

V- vpq ifp=3, ¢g=1mod 4,
VPq - vpg if p=¢q=3mod 4.

The canonical Z/2Z-basis of the quotient space mentioned above is a
subset of {up, | p < g€ S}. Forp < g€ Slet K =Q((pq) be the cyclotomic
field of conductor pq and let K=K (\/Upq)- Then K is the smallest quasi-
cyclotomic fields containing ,/up,. We call these fields K primary quasi-
cyclotomic fields. Let G = Gal(K/Q) and G = Gal(K /Q). We always denote
by ¢ the unique non-trivial element of Gal(K/K). If (p,q) = (—1,2), then
the group G is generated by two elements o_1 and o9, where 0_1((g) = Cgl
and 02(¢s) = 3. If p= —1 and ¢q # 2, or if p > 2, then G is generated by
two elements 0, and o4, where 0,(¢y) = 7, 0p((y) = (g and 04((p) = G,

04(Cq) = Cg, with a, b being generators of (Z/pZ)* and (Z/qZ)* respectively.
If p =2, then G is generated by three elements o_1, 09 and o4, where o_1,
o2 act on (g as above and on (, trivially, and o, acts on ¢, as above and on
(g trivially. N

Next we describe the group G by generators and relations. An element
o € G has two lifts in G. By [0l Sect. 3] the action of the two lifts on /T,
has the form o, /ipg or Fa,/Uye/v/—1 with a > 0. We fix the lift & of
o to be the one with a positive sign. Then the other lift of o is oe. The
group G is generated by €, 0, and ¢, (and o_; if p = 2). Clearly € commutes
with the other generators. In addition, we have 0,0, = 040pc (and o_1
commutes with o2 and 7, if p = 2). For an element g of a group, we denote
by |g| the order of g in the group. Let log_; : {£1} — Z/2Z be the unique
isomorphism. For an odd prime p and an integer a with p { a, let ( ) be the

a

quadratic residue symbol. We also define (5) = (_—) = 1 for any a. Then
we have (see [0, Th. 3|)

o q" - P
|Up|— 1+ log_; ; |Up‘ and |‘7q|— 1+log_; ; |Uq|a

with the exception that |o3| = 2|oa| when (p,q) = (—1,2). If p = 2, we have
furthermore |d_1| = |o—1|. Thus we have completely determined the group
G by generators and relations.
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2. Abelian subgroup of index 2. In this section we construct a special
abelian subgroup of G of index 2 and determine its structure. We consider
the following three cases separately:

Case A: |0p| = |op| and |og| = |og];

Case B: |0p| = 2|0p|, |04] = |og| or |0y = |0y, |q| = 2l|og];

Case C: |o,| = 2|op| and |g,| = 2|0

All the three cases may happen: Case A if and only if (%) = (%) =1

Case B if and only if (%) # (%) or (p,q) = (—1,2); Case C if and only if
Py () = _
( q ) - ( p ) = -1 _
In Case A, we define the subgroup N of G to be
(5_1,&2,&'3,@ ifp = 2,
(0p,0,€) if p # 2.
It is easy to see that the subgroup N is abelian of index 2 in G and is a

direct sum of the cyclic groups generated by the above elements. Thus we
have

(A2.1)

Z)22.87)((q—1)/2)ZdZ)2Z if p=—1,
(A2.2) N2 ZRLOZ]2ZOZ)((q—1)/2)Z D Z/2Z if p =2,
Z/(p-1Z&BZ)(q—1)/2ZSZL/2Z  ifp> 2.
In Case B, we define the subgroup N of G to be
<5_1,52,E§> if p=2,
(B2.1) N = (0p,02) if p# 2 and |5,| = 2|0y,
<51335q> if |op| = 2|op].
Again N is abelian and has index 2 in G. In addition, we have
L)27.® 7.)2Z if (p.q) = (-1,2),
Z2L.® L[(q—1)Z ifp=-—1,q>2,
222 S L)2Z0Z)(q—1)Z if p=2,
Z/(p—1VZ®Z/)(qg—1)Z if p> 2.
In Case C, p,q are both odd prime numbers. Eet va(p — 1) denote the
power of 2 in p — 1. We define the subgroup N of G to be

N — (02,0¢) ifva(p—1) <wa(g—1),
<5p,5§> if vo(p—1) > v2(q—1).

(B2.2) N

I

(C2.1)

Then N is an abelian subgroup of G. When vy(p — 1) < va(q — 1), we have

el 1ed (p—1)-2(¢—-1)
NI = 1En G TR




62 S. Bae et al.

thus [é : N] =2 and N is a normal subgroup of G. We have the same result
when va(p — 1) > va(q — 1). Although the subgroup <512,,5q> is always an
abelian subgroup of G of index 2, when vs (p—1) > va(g—1) we are not able

to get all irreducible representations of G from this subgroup. So we define
N in two cases.

Next we determine the structure of the subgroup NV in Case C. We con-
sider the case va(p — 1) < v2(g — 1) in detail. Let d = ged((p — 1)/2,q — 1),
s=(p—1)/2d and t = (¢—1)/d. Choose u,v € Z such that us+ vt = 1. We
have the relations

@ t=1, @) V2=c=51"1

Let M be the free abelian group generated by two words «, . Let

alz(p_l)av ﬂlzz%la_(q_l)ﬁ7

and let M; be the subgroup of M generated by «q, 31. Then M; is the kernel

of the homomorphism
M — N, al—>E§, B oy
So we have N = M /M. Define the matrix

g [Pl -1)/2
0 1—gq .

Then (a1, 81) = (o, B) - A. We determine the structure of M by considering
the standard form of A. Define

u v 1 2tv — 1
P= € SLe(Z), = € SLa(Z).
(—t s> 2(2), @ <—1 —2tv+2> 2(Z)

d
B =PAQ = 0
0 —2s(¢g—1)
is the standard form of A. Let

(r,1) = (e, B)P™" and (71, 1) = (01, $1)Q.

Then (7i,p1) = (1,0)B, M = Z7 & Zp and My = Zdr & Z2s(q — 1)u. We
thus have

Then

N=M/M 2Z/dZ ®7Z/2s(q — 1)Z.
By abuse of notation, we also write

(r,1) = (32,5, P~ = (525, 5, 2'5Y).

Then 7, u are of order d,2s(q — 1) respectively, and N is a direct sum of (1)
and (u). We have o7 = 7%u~" and 6, = 7°p5. When va(p — 1) > va(q — 1),
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we get the structure of IV in the same way. So in Case C we have

N {Z/dZ@Z/%(q—l)Z if va(p—1) <wa(qg—1),
Z)d7Z)2s'(p—1)Z if va(p—1) > wva(qg—1),

where d = ged((p — 1)/2,q—1), s = (p—1)/2d and d’ = ged(p—1, (¢ — 1)/2),

s'=(¢g—1)/2d.

Now we summarize our results in the following

(C2.2)

PROPOSITION 2.1. The abelian subgroup N of the group G of index 2
defined in (A2.1), (B2.1) and (C2.1) has the structure described in (A2.2),
(B2.2) and (C2.2) in Cases A, B and C, respectively. In particular, every
wrreducible representation ofCNJ has dimension 1 or 2.

3. 2-dimensional representations. We determine all irreducible rep-
resentations of G in this section. We will freely use some basic facts from
representation theory. For the details, see [5].

It is well-known that the 1-dimensional representations of G correspond
bijectively to those of the maximal abelian quotient G of G, which are Dirich-
let characters. So we construct the 2-dimensional irreducible representations
of G. From the dimension formula for all irreducible representations, we see
that G has |G|/4 irreducible representations of dimension 2, up to isomor-
phism. Let N be the subgroup of G defined in the previous section. Let
G = NUoN be the decomposition into cosets. If p: N — C* is a represen-
tation of NV, the induced representation p of p is a representation of G of di-
mension 2. The space of the representation pis V = Ind$(C) = (C[é] ®cin C
with basis e =1® 1 and es = ¢ ® 1. The group homomorphism

p: G — GL(V) ~ GLy(C)
is given by

(3.1) ﬁ(’&):( plo) — ploo) ) V5 e G,

p(o715) plo~'50)

where p(0) = 0 if 0 ¢ N. The representation p is irreducible if and only if

p % p” for every 7 € G\ N, where p” is the conjugate representation of p

defined by
1

p"(x) =p(t~ zT), Vae N.
Since N is abelian, we only need to check p 2 p?.

Now we begin to construct all 2-dimensional irreducible representations
of G. As in the previous section, we consider the three cases separately. In
addition, we consider the case when p and ¢ are odd prime numbers in detail,
and only state the results when p = —1 or 2.



64 S. Bae et al.

3.1. Case A. Assume p > 2. In this case we have N = (G, 53,5} and
N=2Z/(p—1DZ®Z/((q—1)/2)Z & Z)2Z.
Every irreducible representation of N can be written as p;; : N — C* with
pije(@p) = C1r Pk =C10, pign(e) = (1",
where 0 < i <p—1,0<j < (¢—1)/2 and k = 0,1. Since G = N UGN

and i (5p) = pijk(€)pijr(p) = (=1)*pijk(3p), we have
Pk & pijk & k=1

Write p;; = pij1. The representation p;; : G — GL2(C) induced from p;; is
given by
. i, 0 . 0 ¢’ -
(A31) (@) = 7" L], PGy = L) pile) =1,
0 =y 1 0
where I is the identity matrix of degree 2. Since
o (B0 N (A
pij(0,) = ( : and  p;j(o,) = | ™ 2 |
0 p211 0 qu—l
we see that the representations p;; with0 <i < (p—1)/2, 0<j < (¢ —1)/2
are irreducible and are not isomorphic to each other, by considering the
values of the characters of these representations at 512, and Eg. The number
of these representations is % . % = %. So they are all the irreducible

representations of G of dimension 2. N
Similarly, when p = —1, all irreducible representations of G of dimen-
sion 2 are p; with 0 < j < (¢ — 1)/2, where

2j
(A3.2) pilo_1) = ((1) 01> . pilog) = (? qu—1> , ple) =—1,

and when p = 2, all irreducible representations of G of dimension 2 are Pij
with 0 <i<1and 0<j < (¢—1)/2, where p;j(¢) = —I and

. e Loy o (o
(A3.3) pijo-1) = (=1)'1, pij(02) = . Pij(og) = .
0 —1 10
3.2. Case B. Assume p > 2 and |5 | = 2|0y|. Then N = (7;,,52), and
N=2Z/p-1V)Z®7Z/(q—1)Z.
Any irreducible representation of N has the form p;; : N — C*, where

pij(0p) =1 pij(07) = Cé_l, pij(e) = pz-j(&(?)(q‘”” = (-1),
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and 0 <t <p—1, 0< 5 < qg—1.1It is easy to check that
p?%pij < j=1mod 2.

The representation p;; : G — GL2(C) induced from p;; with odd j is given
by

(B3.1) ﬁij(gp):<;01 _2 ) ﬁ“‘(&Q):((l] Cq()l)‘

p—1

. Gl 0 . G, 0
mﬂﬁ)=<i; % and  py;(d7) = %1 i

p—1 q—1

Since

we see that the representations p;; with 0 <i < (p—1)/2and 0 < j < ¢—1,
2 t j are irreducible and are not isomorphic to each other. The number of
these representations is |G|/4. So they are all the irreducible representations
of G of dimension 2.

Similarly, when (p, q) = (—1,2), there is only one irreducible representa-
tion pg of dimension 2 defined by

(83.2) 50(5’1)2((1) _01> ﬁo(5z)=<(1) _01).

When p = —1 and ¢ > 2, all irreducible representations of dimension 2
are p; with 0 < j < ¢ —1, 21 j, where p; is defined by

J
(B3.3) @(al):(; _°1>, Wq):(? gqo—l).

When p = 2, all irreducible representations of dimension 2 are p;; with
0<i<land0<j<gqg—1,2¢1j, where p;; is defined by

| j
(B3.4)  p(G-1) = (-1)'I, ﬁm(52)=:(é fﬁ)’ ﬁ”(5Q)::<2 QSJ>'

When |7,| = 2|0,|, all irreducible representations of dimension 2 are p;;
with0 <i<p—1, 24iand 0 < j < (¢—1)/2, where p;; is defined by

_ 0 ¢ s 7 0
(B3.5) ﬁij(ap) = (1 gpo 1) ) Pij(aq) = ( qo ! _Cg_1> .

3.3. Case C. Assume va(p — 1) <wa(qg—1). Let

p—1 p—1 g—1
d gcd< 5 4 ), S 57 t 7 us + vt
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2v | ~u

2s =t _ =20,
ogand p=o0,""-0,.

as before. Here ¢ must be even and v odd. Let 7 = Eps
Then N = <5§,5q> = (7, ) and
N>2Z/dZ®Z)2s(q — 1)Z.

Any irreducible representation p;; : N — C* is of the form

2s(q—1)i dj
pij(T) = o= Qp q1 )(g—1) pij(p) = <2sq 1~ C(J D(g—1)°

Fromgg:T p~tand o, = 7Vu%, we have

B i i B otvit i A
pi(05) = G2 pig(Tg) = Gt pigle) = pig(@3) PV = (—1),
It is easy to show -
p?f ¥ pij & j=1mod2.

The representation p;; G — GL2(C) induced from p;; with odd j is given

by A
0 N i 0
pij(T) = ( d l) o pigp) = ( B :
0 Cd 0 T 52s(g—1)

Here in the first equality we used the fact that ¢ is even, and in the second
equality we used the fact that u is odd. Furthermore, we have

0 C2suz 7 22tvi—|ij O
(C3.1)  pij(op) = (1 0 ) ;o pij(og) = ( ([(1)_ ) B 2tm’+j> :
2(¢g—-1)

By considering the values of the character of p;; at 7 and u?, we see that
all the representations p;; with 0 < i < dand 0 < j < s(g—1),21j
are irreducible and are not isomorphic to each other. The number of these
representations is d - s(¢ —1)/2 = |G|/4. So they are all the irreducible
representations of G of dimension 2.

Similarly, if va(p — 1) > v2(q — 1), we let

—1 -1 —1
d’zgcd( —1q2>, s’:pT, t':L, u's' + o't = 1.

Then all the irreducible representations of G of dimension 2 are pi; with
0<i<d and0<j<t(p—1),2¢y7, where p;; is defined by

s C23u7,+j 0 s 0 CQt/q)/’L J
(C32)  pij(0p) = ( 2(p01 25/ i+j i =\ ")
CQ (p—1)

Let R2(é) be the set of all irreducible representations, up to isomorphism,
of GG of dimension 2. To summarize, we have proved the following

THEOREM 3.1. All 2-dimensional irreducible representations of G are
induced from representations of N. In detail, we have:
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In Case A
{pj10<j<(qg—1)/2} if p=-1,
R¥(G) = {pij|1=0,1,0<j < (¢-1)/2} if p=2,
{pij 10<i<(p—1)/2,0<j<(¢-1)/2} ifp>2,
where pj, pi; and p;; are defined in (A3.2), (A3.3) and (A3.1) respectively.
In Case B

{Po} if (p,q) = (=1,2),
R*(G) =14 {pij |i=0,1,0<j < q—1,2¢j} if p=2,

{pij 10<i<p-1,214,0<j<(q=1)/2} if |op] =20y,
{pij 10<i<(p=1)/2,0<j<q—1,21j} otherwise,
where po, pj, pij, Pij and pij are defined in (B3.2), (B3.3), (B3.4), (B3.5)
and (B3.1) respectively.
In Case C
kG = [P0 101 <4 0S5 <aa-1),245) i valp=1) <val-1),
{pij|0<i<d,0<j<t(p—1),21j} otherwise,
where p;; and pi; are defined in (C3.1) and (C3.2) respectively.

4. The Frobenius maps. This section is a preparation for the next
two sections where we will compute the Artin conductors of representations
and the Artin L-functions of some quasi-cyclotomic fields K. For a prime
number ¢, we say that ¢ is ramified (resp. inert, splitting) in the relative
quadratic extension K /K if the prime ideals of K over ¢ are ramified (resp
inert, bphttlng) in K. For a prime number ¢ which is unramified in K /K,
let I, (resp. I) be the inert group of £ in the extension K/Q (resp. K/Q).
Let Fry be the Frobenius automorphism of ¢ in G/, and FI'g the Frobenius
automorphism of £ in G / fg associated to some prime ideal over /.

To compute the Artin conductors of representations, we need to construct
a uniformizer in the completion of K at a prime ideal, in particular at a prime
ideal over 2. Generally we are not able to get such a uniformizer, but we can
do it in the case p = —1. In addition, to calculate the Artin L-functions of
representations, we need to know Fry, in particular for £ = 2, and so we need
to know the decomposition of 2 in K. For odd p < q € S, we calculated some
examples by computer which suggest that 2 is always unramified in K. But
we are not able to show this. Furthermore, we do not know when 2 splits in
K /K and when 2 is inert in K /K. But when p = —1, we can solve these
problems (see below). So in this paper we only compute the Artin conductors
and Artin L-functions of representations in the case p = —1.
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From now on, we always assume that p = —1, so K = Q({44) and K=
K (3/q%). In this section we determine Fr; by Fry for £ = 2. In [6], Sect. 5] the
decomposition of some odd prime numbers in K /K was determined. Now

we determine the decomposition of 2 in K /K. The result below is a more
explicit reformulation of Theorem 2 in [7].

PRrROPOSITION 4.1. If g = 2, then 2 is ramified in I~(/K If q is odd, then
2 is unramified in K /K if and only if (%) =1, and in this case 2 splits in

I?/K if ¢ =1 mod 16, and is inert in I?/K otherwise.

Proof. We first consider the case ¢ = 2. The unique prime ideal of K
over 2 is the principal ideal generated by w9 = 1 — (3. Since the ramification
degree of 2 in K/Q is 4 and /2 = m(m2+2(s)(s, we deduce that 2 is ramified
in K /K if and only if 22 = /2 mod 7T§ is not solvable in the ring O of
integers of K by [7, Th. 2(1)], which is equivalent to (1 + %Cg){g not being
a square modulo 7§. Since 2 = umj for some unit u, we have

<1 + 2C8>C8 = (g = (1 — m2) mod wg’,
T2

hence (1 + %{8)@ is not a square modulo 73. So 2 is ramified in R’/K

Now we assume that ¢ is odd. Let mo = 1 — (4. Since the ramification
degree of 2 in K is 2, we see that 2 is unramified in K /K if and only if
22 = /¢F mod 7} is solvable in O (see [7, Th. 2(1)]). Furthermore, 2 splits
in IN(/K if and only if 22 = \/¢F mod 73 is solvable in Ox. The explicit
computation of the Gauss sum gives

q—1
ﬁzZ(‘;)cg:Hz 3
a=1

(5)=1
Let @ = Ygao1 G 8= Xaymr Gy and ¥ = Eay 20)1 e B4
where in the summations a,b run over 1,...,q— 1. Then oo = 3? — 2+, which

together with the equality 2 = 75 — 73 gives
Vit =1+20% -4y =1+m33% —m33° — 4y

= (1+mB)? = m3 (B + 5%) + m3(8 —7)

= (1+ mf)” — w3 (e + B) + m3(B + ) mod 73.
Since (oq = —Cq*(qfl)/Q = —Cé, where t is the inverse of 2 in (Z/qZ)*, we
see that 8 = Z(%):l(—l)“g}“ = Z(%):l C;‘imod 2. So if (%) = 1 we have
a =  mod 2 and thus 2 is unramified in K /K, and if (%) = —1 we have
a+pB= Zg;i (¢ = —1 mod 2 and thus 2 is ramified in K/K.
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Now we assume (%) = 1. Then /¢ mod 73 is a square if and only if

7o | B + 7. We consider 2(3 + ). Since a = f mod 2, we have
208+7) =206+ 3> —a=ala+1) mod 4.

From /¢* = 14 2a, we see that a(a+1) = (¢* — 1)/4. Since 8 |¢* — 1 under
the assumption (%) =1, we have 8+~ = (¢* —1)/8 mod 2. So ma | B+ v if
and only if ma | (¢* — 1)/8, that is, 2| (¢* — 1)/8. The proof is complete. m

Now we assume that 2 is unramified in K /K. Let Fry € G be such that
Fro(Cs) = 1 and Fro((y) = C§~ It is a Frobenius element of 2 in G modulo Is.
We have Fry = 012)2 for some by € Z with 2| by as (7) = 1. Thus Frg = 02 or

Fry = 5325. We need to determine Fro completely. Since (%) =1, we have

Va* = (1+ma)® + 758 + 7) mod 3.
Write u = 1+ maa for simplicity. Since \/¢* = u% mod 73, we see (/q* — u)/2

€ Oj. Let p be the prime ideal of K over 2 associated to Frs. By the defi-
n1t1on we have

- 4/ k% 4/ % 2 4/ %
2 2 2
On the other hand, since 522(\4/q*) = (—=1)/2¥/g* and 522 (u) = u as 2| b,

we have ,
o (VT =\ _ ()Y —u
a 2 2
and

e (YT 8) - LU
0, ¢ 5 = 5 .
So if 2|by/2 we have Fry = 532 if and only if w3 | 8 + 7 (that is, 2 splits in
K/K), and if 2 { by /2 we have Fry = 552 if and only if 79 f B4 (that is, 2 is
inert in K /K). In the case ¢ = 3 mod 4, we can always assume that 2 1 by /2,
since if 4 | be, we may replace by by ba + (¢ — 1). In the case ¢ = 1 mod 4, we
have 2| by /2 iff 2(2=1/4 = 1 mod ¢ iff ¢ has the form A% 4 64B2 for A, B € Z,
by Exercise 28 in Chap. 5 of [4]. So we get the following result:

PROPOSITION 4.2. Assume that 2 is unramified in f(/K Let Fro = 012)2.

Then 2|by. If ¢ = 3 mod 4, we always assume by = 2 mod 4. Let Py be the
set of prime numbers of the form A? + 64B% with A, B € Z. Then
B {a‘gz ifq& Py, 164¢" — 1, or g € Py, 16]¢* — 1,
oy ifq€e Py, 164¢* —1, orq & Py, 16| ¢* — 1.
The following lemma is useful in the computation of Artin L-functions.
LEMMA 4.3. We have € € I, if and only if £ is ramified in I~(/K
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Proof. The canonical projection G — G ~ G/(¢) induces a surjective
homomorphism I, — RL which 1mphes the 1somorphlsm I /{e) N I & I,
Thus ¢ is ramified in K /K iff |I;| = 2|I,| iff [T, N ()| =2 iff e € I;. w

5. The conductors of representations. In this section we compute
the Artin conductors of all 2-dimensional irreducible representations of G in
the case p = —1. First we recall the definition of the Artin conductor. For
details, see |2, Chap. 6].

The notations are as before. Let £ be a prime number in Q, and choose
a prime ideal p in K over £. Let Gy = G(K,/Qq) be the corresponding
decomposition subgroup. Let v be the normalized valuation in K, p- Fori >0,
define the ramification groups

é&i ={oceGy|v(o(z)—x)>iforal xe Of(p}'

The group é&o is the inertia subgroup of ég. Let 7 be a uniformizer in K o
Then for ¢ > 0,

Gpi= {0 € Gy|v(o(r) —7)>i}.

For a representation p of G with character x and representation space V', let

F060) = 10,0 = Y125 (x(1)  x(@)

where X(éf,i) = |é€7i|_1 Zse@[ ~x(s). We have f(x,¢) = 0if p is unramified

over £, ie. V = VGeo. The Artin conductor of the representation p is defined

as
p) = Hgf(x,é)‘
¢

From the result in the previous section, we know that ¢ is unramified
in K/Q if ¢ # 2,q. Thus to compute the conductor f(x), we only need
to calculate f(x,2) and f(x,q). We consider the cases ¢ = 2 and ¢ odd
separately.

5.1. Case ¢ = 2. In the case (p,q) = (—1,2), there is only one 2-
dimensional irreducible representation pg of G. Let Xo be the character of py.
Since only 2 is ramified in K, we only need to calculate f(Xo,2).

As in the previous section, let mo = 1 — (3. Let © be a prime ideal in
K over 2 and let v be the normahzed valuation in K From the proof of
Proposition 4.1, we see that v/2/72 = 1 — 73 mod 73. Thus

o(%-1) =o( 2 1) +o(Lr1) =oimy =2

7r2 T2 T
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We have v({l/ﬁ/m—l) =v(v/2/ma+1) = 1. So 7 = v/2/m2—1 is a uniformizer
of K. The group G is generated by o0_; and o2, and 7_1(v2) = v/2 and
52(v2) = v2/y/—1. Clearly G2 = G. Furthermore,

o(F () — ) _”(121 - 16_@(8) —v(—HCS{*/i) _9,

g ) )
v(oa(m) —m) =0 — =v| — V2) =2,
(72(7) =) ( 116 1-G 1— (s
v(e(m) —m) =v(=2(r+1)) =8.
Thus Go,1 = Ga0 = G and Gog =+ = Go7 = (¢). By an easy computation
we get Xo(G2,0) = Xo(G21) = -+ = Xo(G2;7) = 0, and Xo(G2,n) = 2 for

n > 8. So we obtain

~ 1
(5.1) f(X0,2)=2+2+;-2:6=T1.

5.2. Case of ¢ odd. To compute (Y, q), we consider the cases (_71) =1
and (771) = —1 separately. Let p be a prime ideal in K over q. Let v be the
normalized valuation in I?p.

5.2.1. Assume (_71) = 1. Then ¢ is unramified in I?/K but ramified

in K/Q. We see 1 = 1 — (, is a uniformizer of IN(K,. Now all 2-dimensional
irreducible representations of G' are as in Case A. Let x; be the character
of p;. It is easy to see that G40 = (). Notice that ¢ ¢ G .

Let 1 #£0 € é%o and 0((q) = (7, 1 <a < g—1. We have
v@ET —m) =v(¢ — ¢ = vl - = L.

Thus éq,n = {1} for n > 1. By an easy computation we get )Zj(é%o) =0
and X;(Ggn) =2 for n > 1. We obtain

(5.2) F(ia) =2.

5.2.2. Assume (771) = —1. Then g is ramified both in IN(/K and in K/Q,
and all 2-dimensional irreducible representations are as in Case B. Let X;
be the character of p;. Since v(1 — ¢;) = 2 and v({/—q) = $(2(¢ — 1)) =
(g —1)/2, we see that m = /—¢/(1 — (,)(73/* is a uniformizer of ¢ in K.
It is obvious that éq70 = (g4). Notice that in this case € € éq,0~
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Let 17&565’%0 and ((q) = (7, 1 <a < g—1. We have
v(ET —m) +v(Ger — ) = v(eT — ) + v(—o7 — 1) = v(oT? — 7?)
_ (Hv=e v
T\ =32 T (1=
B RO Tl
— o(r?) + v< T >
a\ (= ) (-3)/2
:m(l - <q> (24) )

Let t = v(1 — (%)(Zf:_ol C;)(q_?’)ﬂ). We claim that ¢ = 0. Otherwise ¢t > 0.
Since

a—1

(Z @(q—s)m _ a2 _ { Lmod (1-¢))  if (g) =1,

par —1mod (1—-¢,) if (5) =—1,

we always have a = 1 mod ¢ and thus a = 1, which contradicts the assump-
tion that a > 1. This shows the claim. Thus v(om — 7) = v(ger — ) = 1,
as v(om —m+oem —m) = v(2mw) = 1. So we get éq,n = {1} for n > 1. By an

easy computation, x;(Ggo0) = 0 and x;(Ggn) = 2 for n > 1. We obtain
(53) F(Rira) =2
Next we compute f(X;,2). We consider the cases (2) =1 and (%) =-1

~ q
separately. Let p be a prime ideal in K over 2. Let v be the normalized

valuation in K.

5.2.3. Assume (%) = 1. Then 2 is unramified in I?/K but ramified
in K/Q, and m = 1 — {4 is a uniformizer in IN(K). It is easy to see that
Ga,0 = (0-1). Notice that in this case € ¢ G29. We have

v(Eam—m) = vl — () =v(2) =2
Thus 6270 = 6271 = (6_1) and ég’n = {1} for n > 1. By an easy computa-
tion, %j(Ggyo) = )Zj(GQJ) =1 and S(Jj(Ggm) = 2 for n > 1. We obtain
(5.4) f®2)=1+1=2.

5.2.4. Assume (%) = —1. Now 2 is ramified both in I?/K and in

K/Q. As in the previous section, let my = 1 — {4, a = Z(g)zl ¢y and
q
08 = Z(g)zl Cg4» where the summations are over 1 < a < ¢ — 1. From
q

the previous section we have

(5.5) Va* = (14 mp)% 4 75 mod 3.
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Let u = 14 m. We claim that m = ({/¢* + p)/m2 is a uniformizer in I?p.
In fact, since

v(Va" + ) +o(Vq" = 1) =v(Vg* = i) = v(r3) =6
and o((JT + ) + (YT — 1) = oY) = 4, we must have
v(Va A+ ) = (Vg - ) =3,
and thus v((v/¢* + p)/m2) = 1.
It is obvious that Gao = {1,¢,5_1,0_1¢}. Since &_1(¥/¢*) = ¥/¢* and

g_1e(V/q*) = —/q*, we have

Va& + 14 mf W+1+W26>
L _

T2 T2

v(F_m —7) = v <a

_ 4/ 4k 1 4/ % 1 _
= v<01 ¢l VTt > (since o_10 = )
T2 9

4/ % 4/ %
= U<1/q_><—;11 - \{{2—41> =o(Yq* +1).
To compute it, we first claim that mp { 8. Otherwise, 2|5 as 8 € Q((,).
From the previous section, we have /¢* = 1 4+ 2a and o + 8 = 1 mod 2,
thus /¢* = -1+ 28 = —1 mod 4 and so ¢* = 1 mod 8. This contradicts
the assumption (%) = —1. We have shown the claim. Thus v(3) = 0. Since
v(Vg* + 1+ mf) =3, we have v(¥/q*+1) =2, s0 v(o_17m —7) = 2.
We now compute v(o_jem — 7). We have

VT LB <*/(T*+1+7r25>

T2 T2

_ _W+1 W'i_l _ 4/ %
”( -G -G )‘”(ﬁ+<‘*)'

V(G _1em —7) = v (5_

Observe that

”(W+C4)+U(W—C4)Zv(\/q7+1):v<2W) =4,

2
since 2 1 (v/¢* + 1)/2. Furthermore, since
(Ve + ) + (Va = Q) = v(2/a) = 4,

we must have v(v/g* + (1) = v(Vq" — () = 2, so v(o_j1em —7) = 2. In
addition, we have

view — ) :U<_W+1+W2ﬁ - W+1+W2ﬁ> =2.

9 2
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By the discussion above we have 6270 = C~¥2,1 and ég}n = {1} for n > 1.
By an easy computation, X;(G20) = X;(G2,1) = 0 and x;(Gap) = 2 for
n > 2. We obtain

(5.6) f(Xj,2) =2+2=4

5.3. Global conductors. By the equalities (5.1)—(5.6) above, we get
the following

THEOREM 5.1. In the case q = 2, the conductor of the unique 2-dimen-
sional irreducible representation py of G is equal to f(pg) = 27. In the case
that q is odd, all the 2-dimensional irreducible representations p; of G have

the conductor §(p;) = 22(1+10g71(§))q2'

6. The Artin L-functions. In this section we compute the Artin L-
functions of the quasi-cyclotomic fields K = Q(Caq, V%)

The L-functions associated to the 1-dimensional representations of G
are the well-known Dirichlet L-functions. So we compute the L-functions
associated to the 2-dimensional irreducible representations of G. Let ¢ : G —
GL(V) be a 2-dimensional irreducible representation. The Artin L-function
L(p, s) associated to ¢ is defined as the product

L(@?‘S): H L@(‘Pas)a

£ prime

where the local factors are defined as Ly(p,s) = det(1 — go(l*:rg)ﬁ_swjf)_l.
Now we begin to compute them. First we notice that if ¢ is ramified in

K/K, then VIt = 0 and Ly(¢, s) = 1, which is due to the facts that e € I

by Lemma 4.3 and ¢(¢) = —I for any irreducible representation ¢ of G by
Theorem 3.1.

6.1. Case ¢ = 2. By Section 3, there is only one 2-dimensional repre-
sentation pg in this case, which is defined by

o~ 1 0 - 0 -1
g_1) = ) g92) = .
po(0-1) <O _1> po(02) (1 0)
Since 2 is ramified in K /K, we have La(pp, s) = 1. Assume that £ is an odd

prime number.
If /=7 mod 8, then Fry = 0_1 and thus Fr; =5 _1 or 6_1e. In any case

we have
~ 10y, .\ —25\—1
Ly(po,s) =det| I + 0 A =1 -0
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If /=5 mod 8, then Fry = o9 and thus Fw‘rg = 09 or o9c. We have
oy 0 -1 —s - —2s5\—1
Ly(po,s) =det| I + Lo 14 =1+

If £ = 3 mod 8, then Fry = o_109 and thus FN‘rg = g_109 Or 0_102¢. We

have
1 0\/0 -1 -1
Le(po,s) = det | I + ) =(1—-0%)7t
e(po, s) e< (0 —1><1 0> ) ( )

If =1 mod 8, then Fr, =1 and thus Frg =1 or &. In this case we must
determine Fry completely. Since Fry(v/2) = ((75) mod g for the prime ideal
g of K over ¢ associated to Fry, we have Fry = 1 if 2¢-1/4 = 1 mod ¢, and
Frp = e if 2-D/4 = —1 mod /. As in the previous section, we find that for
¢ =1mod 8, 2=1D/4 =1 mod ¢ if and only if £ € Py. So we have

(1—-¢7%)72 ifl e P,
(14 ¢7%)72  otherwise.

Liis) = {
We get the Artin L-function in the case (p,q) = (—1,2) as follows:

(6.1) L(po, s) = H (1— 5—28)—1 ) H (1 +€—25)_1

{=3or7mod8 {=5mod 8
x [Ja—e*)—2- [T «a+e?
LePy {=1mod 8, {ZPy

6.2. Case of ¢ odd. In this case, all 2-dimensional irreducible rep-
resentations of G are p; with 0 < j < ¢ —1,2|j if ¢ = 1 mod 4, and
0<j<q—1,217if ¢ =3 mod 4, where p; is defined by

. 1 0 o 0 gjl) _
(o_1) = , i(0g) = 4 , i(e)=—1.
pi(0-1) <0 _1> P;(0q) <1 0 p;(€)
We first determine the local factors L(pj, s) for £ # 2, q. For such £ we have
Ve = V. Let Frp = o“ 10 , which is equivalent to £ = (—1)* mod 4 and
¢ = g* mod ¢, where g is the primitive root mod ¢ associated to oq- It is

easy to compute that

0 )"
ﬁj(&“gw:(l q01> =

) .
Sham if 2| by,

3 (be+1)
bo 0 “2e-) if 2 by.
Gy 0



76 S. Bae et al.

Furthermore,
(1= Gyt ifar=0,2|b,
_ #Jbe p—2s . _
det(T — ; (355 )0%) = =G5t if ap =0, 21 by,
or ap =1, 2|bﬁ7
1+ ¢l o2 if ag =1, 21by
and
(1+ ¢y 0)? ifag=0,2|by,
_ ]bl’ 2s . _
det(I + p; (34500 = 1—=¢ 5t if ag =0, 21 by,
or CLZ:17 2|bfv
1+§Jbe£ 2s if(lg:LZTbZ‘
So we get

L(pj,s) = (1= ¢ 072~

if ¢ =1 mod 4 and ¢ = ¢ mod ¢ with 2 1 by, and also if £ = 3 mod 4 and
¢ = g” mod q with 2| by, while

Lo(pj,s) = (1+ ¢ 027!

if £ =3 mod 4 and ¢ = ¢” mod ¢ with 2t by.

To compute the local factors when ¢ = 1 mod 4 and ¢ = ¢* mod ¢ with

2| by we must determine P~‘r4 completely. Since (g) = 1, we have (3) =1

and (%) = 1. Let ay € Z be such that o2 = ¢* mod ¢. From abf(ﬁ) =
(—=1)2/2 ¥q%, we see that Fr, = ol if () = (—1 )2e/2 and Fr, = ohee if
(%) = (—=1)%/>+1 S0 when £ = 1 mod 4 and ¢ = ¢” mod ¢ with 2| b, we
have

fa- cgz’;; W7 =
Lf(pjv 3) = ] -9 s bz/2+1

Next we compute the local factors La(p;, s) and Lg(pj,s). When (%) =

—1, we know from the previous section that 2 is ramified in K /K. So
Lo(pj,s) = 1 in this case. Now we assume (%) = 1. Since Iy = (0_1) and
2 is unramified in K/K, we have Iy = (5_1) or Iy = (5_1¢). The matri-
ces I + pj(o_1) and I + pj(c—1€) have rank 1, thus V%2 has dimension 1.
Write Fro = 0b2 with 2|by. As in the previous section, we always assume

bo =2 mod 4 1f q = 3 mod 4. Recall that P is the set of all prime numbers of

the form A2 + 64B? with A, B € Z. Since p; (51272) = %?;71)1, by Lemma 4.3
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we have

.b o
1-— 5(271)2 S ifq¢g Py, 16t¢" —1,0r q € Py, 16| ¢* — 1,

Lg(ﬁj,s) = .
b — : * *
1—1—@(;_1)28 ifqge Py, 16|q¢* —1,0r q € Py, 16 | ¢* — 1.

When ¢ = 3 mod 4, we know that g is ramified in K /K. So Ly(pj,s) =1
for odd j in this case. Assume ¢ = 1 mod 4. Since I; = (o4) and ¢ is
unramified in K /K, we have I~q = (g4) or I = (04¢). Thus via =0 it 7 #0,
and Vs has dimension 1 if 7 =0. N

The Frobenius map Fry of ¢ in G modulo I is the identity map. So Fr, = 1
or €. In [7, Sect. 5] we have shown that ¢ splits in K/K if q = 1 mod 8,
and is inert if ¢ = 5 mod 8. So Fros = 1if ¢ = 1 mod 8, and Fro = ¢ if
q = 5 mod 8. Thus we get

1 it j #0,
Ly(pj,s) =< 1—q° ifj=0,¢g=1mod S,
1+¢ % ifj=0,q¢=5mod 8.
We have computed all the local factors, obtaining

(62)  L(js) = (1 —ugllz y27) 7 (1 = (=)0 1g )~
< I =gl

fEl,Q‘fb[ or€—3 2|bg
jbe p)— ib —s\—
< I a+gre ™ T Q-wg )2
553,2“)@ 671,2|bg
where ug = 1if ¢ € Py, 16 { ¢* — 1 or ¢ € Py, 16]¢* — 1, and uy = —1
otherwise; dg; = 0 if j # 0 and dgg = 1; and up = (OZZ)(—l)bL’/Q. In the above
products, “=” denotes congruence modulo 4.

THEOREM 6.1. Except for the Dirichlet L-functions, all Artin L-func-
tions of the Galois extension K/Q are explicitly given by (6.1) in the case
q =2 and by (6.2) in the case of q odd, where in (6.2) 0 <j<qg—1, 2|7 if
g=1mod4and0<j<qg—1,217 if ¢=3 mod 4.

6.3. A formula. Let (;z(s) and (k(s) be the Dedekind zeta functions of

K and K respectively. By Artin’s formula for the decomposition of Dedekind
zeta functions, we have

BT T 2o

p; £ prime

where p; runs over all 2-dimensional irreducible representations of G. When
q = 2, there is only one 2-dimensional irreducible representation of G. So the
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square of (6.1) gives the formula. When ¢ is odd, by computing Hﬁj L(pj, s),
we get the following

COROLLARY 6.2. For a prime number £ # q, let

fo= A
©7 ged(brg— 1)
be the order of £ mod q and let
—1
g¢ = ged(be, g — 1) = L=
fe

If ¢ =1 mod 4, then
Cz(s)
Ck (s)

= (1 —uf2 Py - (- ig=2 I (1S~
=1, 2{by or€=3
X H (1 — wfte=Tes) =200,
ZEI,leg
and if ¢ = 3 mod 4, then

Zf(gz; _ (1 + u(]}”zQ—fzS)—gz H (1+ g—fes>—2ge H(l _ g—2fes)—gz
K (=1, 2fb, (=3
x [ (+ufetesy=2,

EELQ“J(

where ug and uy are as above.

6.4. The corresponding modular forms. All the 2-dimensional ir-
reducible representations of G in the case p = —1 are monomial. It is easy
to see that they are odd. By Deligne-Serre’s theorem [6, Th. 2|, these Artin
L-functions above are equal to the L-functions of some normalized new-
forms of weight one, which allows one to determine a newform of weight one
from a 2-dimensional irreducible odd representation of GG. More precisely,
the irreducible representation p; of conductor N corresponds to a normal-
ized newform f;(z) of weight one on IH(NN) with nebentype ¢; = det(p;),
which has a Fourier expansion at infinity

o0
=Y, q= e,

n=1
where agj ) — 1 and the other coefficients an are equal to those of the L-
function L(¢;,s) = > »" 4 ayn~®. In this subsection we describe these mod-
ular forms explicitly. Since these newforms are eigenfunctions of Hecke op-
erators, to determine all a%j )it is enough to determine aéj ) for all primes /.
When g = 2, we get one normalized newform fo(z) of weight 1 on Ip(27)

with nebentype ¢g : (Z/8Z)* — C*, where ¢p(0_1) = —1 and ¢g(o2) = 1.
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By (6.1), we directly see that for primes ¢ the coefficients ag)) of the newform
are given by
0 if{=2or/¢=3,57mod 8,
) ={2 ifren,
—2 if¢/=1mod 8 but { & Fp.
When ¢ is odd, we get (¢ — 1)/2 normalized newforms f;(z) of weight 1 on

1+log_1(2) 2 : . * * . = —
I'n(4 a’q”) with nebentype ¢; : (Z/4qZ)* — C*, where ¢j(o_1) = —1

and ¢;(0y) = —()_;. By (6.2) we directly see that for primes ¢ # ¢ the
coefficients of the newforms are given by
. ugGyl_y, i =2,
a)’ = 2ugC§?;_1) if /=1 mod 4 and 2| by,

0 otherwise,
and

; 0 if j 0,

o) —
“ (D)= it j = o,

where 0 < j < g—1,2|jifg=1mod 4, and 0 < j < qg—1,2¢jif
g = 3 mod 4; by is defined by ¢ = ¢g” mod ¢ for a primitive root ¢ modulo g;
Up = (%)(—1)*’“2 for an integer ay such that a? = ¢* mod /; and

1 ifqgég Py, 16tqg"—1orqe Py, 16|¢* —1,
Uy, =
1 —1 ifq¢ Py, 16|¢* —1or q € Py, 164 q* — 1.
Here P, is the set of all primes of the form A? + 64B? with A, B € Z.
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