Artin L-functions and modular forms associated to quasi-cyclotomic fields

by

SUNGHAN BAE (Daejeon), YONG HU (Beijing),
and LINSHENG YIN (Beijing)

1. Introduction. A quadratic extension of a cyclotomic field, which is non-abelian Galois over the rational number field \mathbb{Q}, is called a quasi-cyclotomic field. All quasi-cyclotomic fields are described explicitly in [8] following the work in [1] and [3]. Actually for any cyclotomic field $\mathbb{Q}(\zeta_n)$ we construct a canonical $\mathbb{Z}/2\mathbb{Z}$-basis of the quotient space of $\{\alpha \in \mathbb{Q}^*/\mathbb{Q}^{*2} \mid \mathbb{Q}(\zeta_n, \sqrt{\alpha})/\mathbb{Q} \text{ is Galois}\}$ modulo the subspace $\{\alpha \in \mathbb{Q}^*/\mathbb{Q}^{*2} \mid \mathbb{Q}(\zeta_n, \sqrt{\alpha})/\mathbb{Q} \text{ is abelian}\}$. The minimal quasi-cyclotomic field containing the square root of a special element of the basis is called a primary quasi-cyclotomic field. L. S. Yin and C. Zhang [7] have studied the arithmetic of any quasi-cyclotomic field. In this paper we determine all irreducible representations of primary quasi-cyclotomic fields. Our methods enable one to determine the irreducible representations of an arbitrary quasi-cyclotomic field. We also compute the Artin conductors of the representations and the Artin L-functions for a class of quasi-cyclotomic fields. They correspond to a series of normalized newforms of weight one by Deligne–Serre’s theorem [6, Th. 2]. We describe these modular forms explicitly.

First we recall the construction of primary quasi-cyclotomic fields. Let S be the set consisting of -1 and all prime numbers. For $p \in S$, we put $\bar{p} = 4, 8, p$ and set $p^* = -1, 2, (-1)^{(p-1)/2}p$ if $p = -1, 2$ and an odd prime number, respectively. For prime numbers $p < q$, we define

$$v_{pq} = \prod_{i=0}^{(p-1)/2} \prod_{j=0}^{(q-1)/2} \frac{\sin \frac{iq+i\pi}{pq}}{\sin \frac{jp+j\pi}{pq}} \quad ((i, j) \neq (0, 0), \ p > 2)$$

and

2010 Mathematics Subject Classification: 11R42, 11F30, 11F80, 11R21.

Key words and phrases: Galois representation, Artin L-function, modular form of weight one.
We also define \(\sqrt{G} \) by generators and relations. An element \(G \) has the form \(\sqrt{pq} \), and let \(K = \mathbb{Q}(\sqrt{pq}) \) be the cyclotomic field of conductor \(\sqrt{pq} \) and let \(\tilde{K} = K(\sqrt{u_{pq}}) \). Then \(\tilde{K} \) is the smallest quasi-cyclotomic fields containing \(\sqrt{u_{pq}} \). We call these fields \(\tilde{K} \) primary quasi-cyclotomic fields. Let \(G = \text{Gal}(\mathbb{K}/\mathbb{Q}) \) and \(\tilde{G} = \text{Gal}(\tilde{K}/\mathbb{Q}) \). We always denote by \(\varepsilon \) the unique non-trivial element of \(\text{Gal}(\tilde{K}/\mathbb{K}) \). If \((p, q) = (1, 2)\), then the group \(G \) is generated by two elements \(\sigma_{-1} \) and \(\sigma_2 \), where \(\sigma_{-1}(\zeta_8) = \zeta_8^{-1} \) and \(\sigma_2(\zeta_8) = \zeta_8^5 \). If \(p = 1 \) and \(q \neq 2 \), or if \(p > 2 \), then \(G \) is generated by two elements \(\sigma_p \) and \(\sigma_q \), where \(\sigma_p(\zeta_q) = \zeta_8^q \), \(\sigma_p(\zeta_q) = \zeta_q \), and \(\sigma_q(\zeta_p) = \zeta_q \), \(\sigma_q(\zeta_p) = \zeta_q \), with \(a, b \) being generators of \((\mathbb{Z}/p\mathbb{Z})^* \) and \((\mathbb{Z}/q\mathbb{Z})^* \) respectively.

Next we describe the group \(\tilde{G} \) by generators and relations. An element \(\sigma \in G \) has two lifts in \(\tilde{G} \). By \[6\] Sect. 3 the action of the two lifts on \(\sqrt{u_{pq}} \) has the form \(\pm \alpha \sqrt{u_{pq}} \) or \(\pm \alpha \sqrt{u_{pq}}/\sqrt{-1} \) with \(\alpha > 0 \). We fix the lift \(\tilde{\sigma} \) of \(\sigma \) to be the one with a positive sign. Then the other lift of \(\sigma \) is \(\tilde{\sigma} \varepsilon \). The group \(\tilde{G} \) is generated by \(\varepsilon, \tilde{\sigma}_p \) and \(\tilde{\sigma}_q \) (and \(\tilde{\sigma}_{-1} \) if \(p = 2 \)). Clearly \(\varepsilon \) commutes with the other generators. In addition, we have \(\tilde{\sigma}_p \tilde{\sigma}_q = \tilde{\sigma}_q \tilde{\sigma}_p \varepsilon \) (and \(\tilde{\sigma}_{-1} \) commutes with \(\tilde{\sigma}_2 \) and \(\tilde{\sigma}_q \) if \(p = 2 \)). For an element \(g \) of a group, we denote by \(|g| \) the order of \(g \) in the group. Let \(\log_{-1} : \{ \pm 1 \} \to \mathbb{Z}/2\mathbb{Z} \) be the unique isomorphism. For an odd prime \(p \) and an integer \(a \) with \(p \nmid a \), let \(\left(\frac{a}{p} \right) \) be the quadratic residue symbol. We also define \(\left(\frac{a}{2} \right) = \left(\frac{a}{-1} \right) = 1 \) for any \(a \). Then we have (see \[6\] Th. 3)

\[
|\tilde{\sigma}_p| = \left(1 + \log_{-1} \left(\frac{q^*}{p} \right) \right) |\sigma_p| \quad \text{and} \quad |\tilde{\sigma}_q| = \left(1 + \log_{-1} \left(\frac{p^*}{q} \right) \right) |\sigma_q|,
\]

with the exception that \(|\tilde{\sigma}_2| = 2 |\sigma_2| \) when \((p, q) = (1, 2)\). If \(p = 2 \), we have furthermore \(|\tilde{\sigma}_{-1}| = |\sigma_{-1}| \). Thus we have completely determined the group \(\tilde{G} \) by generators and relations.
2. Abelian subgroup of index 2. In this section we construct a special abelian subgroup of \tilde{G} of index 2 and determine its structure. We consider the following three cases separately:

Case A: $|\tilde{\sigma}_p| = |\sigma_p|$ and $|\tilde{\sigma}_q| = |\sigma_q|$;
Case B: $|\tilde{\sigma}_p| = 2|\sigma_p|$, $|\tilde{\sigma}_q| = |\sigma_q|$ or $|\tilde{\sigma}_p| = |\sigma_p|$, $|\tilde{\sigma}_q| = 2|\sigma_q|$;
Case C: $|\tilde{\sigma}_p| = 2|\sigma_p|$ and $|\tilde{\sigma}_q| = 2|\sigma_q|$.

All the three cases may happen: Case A if and only if $\left(\frac{p^*}{q}\right) = \left(\frac{q^*}{p}\right) = 1$;
Case B if and only if $\left(\frac{p^*}{q}\right) \neq \left(\frac{q^*}{p}\right)$ or $(p, q) = (-1, 2)$; Case C if and only if $\left(\frac{p^*}{q}\right) = \left(\frac{q^*}{p}\right) = -1$.

In Case A, we define the subgroup N of \tilde{G} to be

$$N = \begin{cases} \langle \tilde{\sigma}_-1, \tilde{\sigma}_2, \tilde{\sigma}_q^2, \varepsilon \rangle & \text{if } p = 2, \\ \langle \tilde{\sigma}_p, \tilde{\sigma}_q^2, \varepsilon \rangle & \text{if } p \neq 2. \end{cases}$$

It is easy to see that the subgroup N is abelian of index 2 in \tilde{G} and is a direct sum of the cyclic groups generated by the above elements. Thus we have

$$N \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/((q - 1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p = -1, \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/((q - 1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p = 2, \\ \mathbb{Z}/(p - 1)\mathbb{Z} \oplus \mathbb{Z}/((q - 1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p > 2. \end{cases}$$

In Case B, we define the subgroup N of \tilde{G} to be

$$N = \begin{cases} \langle \tilde{\sigma}_-1, \tilde{\sigma}_2, \tilde{\sigma}_q^2 \rangle & \text{if } p = 2, \\ \langle \tilde{\sigma}_p, \tilde{\sigma}_q^2 \rangle & \text{if } p \neq 2 \text{ and } |\tilde{\sigma}_q| = 2|\sigma_q|, \\ \langle \tilde{\sigma}_p^2, \tilde{\sigma}_q \rangle & \text{if } |\tilde{\sigma}_p| = 2|\sigma_p|. \end{cases}$$

Again N is abelian and has index 2 in \tilde{G}. In addition, we have

$$N \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } (p, q) = (-1, 2), \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/(q - 1)\mathbb{Z} & \text{if } p = -1, q > 2, \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/(q - 1)\mathbb{Z} & \text{if } p = 2, \\ \mathbb{Z}/(p - 1)\mathbb{Z} \oplus \mathbb{Z}/(q - 1)\mathbb{Z} & \text{if } p > 2. \end{cases}$$

In Case C, p, q are both odd prime numbers. Let $v_2(p - 1)$ denote the power of 2 in $p - 1$. We define the subgroup N of \tilde{G} to be

$$N = \begin{cases} \langle \tilde{\sigma}_p^2, \tilde{\sigma}_q \rangle & \text{if } v_2(p - 1) \leq v_2(q - 1), \\ \langle \tilde{\sigma}_p, \tilde{\sigma}_q^2 \rangle & \text{if } v_2(p - 1) > v_2(q - 1). \end{cases}$$

Then N is an abelian subgroup of \tilde{G}. When $v_2(p - 1) \leq v_2(q - 1)$, we have

$$|N| = \frac{|\tilde{\sigma}_p^2| \cdot |\tilde{\sigma}_q|}{|\langle \tilde{\sigma}_p^2 \rangle \cap \langle \tilde{\sigma}_q \rangle|} = \frac{(p - 1) \cdot 2(q - 1)}{2},$$
thus $[\widetilde{G} : N] = 2$ and N is a normal subgroup of \widetilde{G}. We have the same result when $v_2(p-1) > v_2(q-1)$. Although the subgroup $\langle \tilde{\sigma}_p^2, \tilde{\sigma}_q \rangle$ is always an abelian subgroup of \widetilde{G} of index 2, when $v_2(p-1) > v_2(q-1)$ we are not able to get all irreducible representations of \widetilde{G} from this subgroup. So we define N in two cases.

Next we determine the structure of the subgroup N in Case C. We consider the case $v_2(p-1) \leq v_2(q-1)$ in detail. Let $d = \text{gcd}((p-1)/2, q-1)$, $s = (p-1)/2d$ and $t = (q-1)/d$. Choose $u, v \in \mathbb{Z}$ such that $us + vt = 1$. We have the relations

$$\tilde{\sigma}_p^{p-1} = 1, \quad (\tilde{\sigma}_p^{2})^{(p-1)/2} = \varepsilon = \tilde{\sigma}_q^{-1}.$$

Let M be the free abelian group generated by two words α, β. Let

$$\alpha_1 = (p-1)\alpha, \quad \beta_1 = \frac{p-1}{2} \alpha - (q-1)\beta,$$

and let M_1 be the subgroup of M generated by α_1, β_1. Then M_1 is the kernel of the homomorphism

$$M \to N, \quad \alpha \mapsto \tilde{\sigma}_p^2, \quad \beta \mapsto \tilde{\sigma}_q.$$

So we have $N \cong M/M_1$. Define the matrix

$$A = \begin{pmatrix} p-1 & (p-1)/2 \\ 0 & 1 - q \end{pmatrix}.$$

Then $(\alpha_1, \beta_1) = (\alpha, \beta) \cdot A$. We determine the structure of M_1 by considering the standard form of A. Define

$$P = \begin{pmatrix} u & v \\ -t & s \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \quad Q = \begin{pmatrix} 1 & 2tv - 1 \\ -1 & -2tv + 2 \end{pmatrix} \in \text{SL}_2(\mathbb{Z}).$$

Then

$$B = PAQ = \begin{pmatrix} d & 0 \\ 0 & -2s(q-1) \end{pmatrix}$$

is the standard form of A. Let

$$(\tau, \mu) = (\alpha, \beta)P^{-1} \quad \text{and} \quad (\tau_1, \mu_1) = (\alpha_1, \beta_1)Q.$$

Then $(\tau_1, \mu_1) = (\tau, \mu)B$, $M = \mathbb{Z}\tau \oplus \mathbb{Z}\mu$ and $M_1 = \mathbb{Z}d\tau \oplus \mathbb{Z}2s(q-1)\mu$. We thus have

$$N \cong M/M_1 \cong \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z}.$$

By abuse of notation, we also write

$$(\tau, \mu) = (\tilde{\sigma}_p^2, \tilde{\sigma}_q)P^{-1} = (\tilde{\sigma}_p^{2s}, \tilde{\sigma}_q^{2t}, \tilde{\sigma}_q^{-2v}, \tilde{\sigma}_q^{-u}).$$

Then τ, μ are of order $d, 2s(q-1)$ respectively, and N is a direct sum of $\langle \tau \rangle$ and $\langle \mu \rangle$. We have $\tilde{\sigma}_p^2 = \tau^v \mu^{-t}$ and $\tilde{\sigma}_q = \tau^v \mu^s$. When $v_2(p-1) > v_2(q-1)$,
we get the structure of N in the same way. So in Case C we have
\[(C2.2) \quad N \cong \begin{cases} \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z} & \text{if } v_2(p-1) \leq v_2(q-1), \\ \mathbb{Z}/d'\mathbb{Z} \oplus \mathbb{Z}/2s'(p-1)\mathbb{Z} & \text{if } v_2(p-1) > v_2(q-1), \end{cases}\]
where $d = \gcd((p-1)/2, q-1)$, $s = (p-1)/2d$ and $d' = \gcd(p-1, (q-1)/2)$, $s' = (q-1)/2d'$.

Now we summarize our results in the following

Proposition 2.1. The abelian subgroup N of the group \tilde{G} of index 2 defined in (A2.1), (B2.1) and (C2.1) has the structure described in (A2.2), (B2.2) and (C2.2) in Cases A, B and C, respectively. In particular, every irreducible representation of \tilde{G} has dimension 1 or 2.

3. 2-dimensional representations.

We determine all irreducible representations of \tilde{G} in this section. We will freely use some basic facts from representation theory. For the details, see [5].

It is well-known that the 1-dimensional representations of \tilde{G} correspond bijectively to those of the maximal abelian quotient G of \tilde{G}, which are Dirichlet characters. So we construct the 2-dimensional irreducible representations of \tilde{G}. From the dimension formula for all irreducible representations, we see that \tilde{G} has $|G|/4$ irreducible representations of dimension 2, up to isomorphism. Let N be the subgroup of \tilde{G} defined in the previous section. Let $\tilde{G} = N \cup \sigma N$ be the decomposition into cosets. If $\rho : N \to \mathbb{C}^*$ is a representation of N, the induced representation $\tilde{\rho}$ of ρ is a representation of \tilde{G} of dimension 2. The space of the representation $\tilde{\rho}$ is $V = \text{Ind}_N^\tilde{G}(\mathbb{C}) = \mathbb{C}[\tilde{G}] \otimes_{\mathbb{C}[N]} \mathbb{C}$ with basis $e_1 = 1 \otimes 1$ and $e_2 = \sigma \otimes 1$. The group homomorphism
\[
\tilde{\rho} : \tilde{G} \to \text{GL}(V) \simeq \text{GL}_2(\mathbb{C})
\]
is given by
\[(3.1) \quad \tilde{\rho}(\tilde{\sigma}) = \begin{pmatrix} \rho(\tilde{\sigma}) & \rho(\tilde{\sigma}\sigma) \\ \rho(\sigma^{-1}\tilde{\sigma}) & \rho(\sigma^{-1}\tilde{\sigma}\sigma) \end{pmatrix}, \quad \forall \tilde{\sigma} \in \tilde{G},
\]
where $\rho(\tilde{\sigma}) = 0$ if $\tilde{\sigma} \notin N$. The representation $\tilde{\rho}$ is irreducible if and only if $\rho \not\cong \rho^\tau$ for every $\tau \in \tilde{G} \setminus N$, where ρ^τ is the conjugate representation of ρ defined by
\[
\rho^\tau(x) = \rho(x^{-1}x\tau), \quad \forall x \in N.
\]
Since N is abelian, we only need to check $\rho \not\cong \rho^\sigma$.

Now we begin to construct all 2-dimensional irreducible representations of \tilde{G}. As in the previous section, we consider the three cases separately. In addition, we consider the case when p and q are odd prime numbers in detail, and only state the results when $p = -1$ or 2.
3.1. Case A. Assume \(p > 2 \). In this case we have \(N = \langle \sigma_p, \sigma^2_q, \varepsilon \rangle \) and
\[N \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/((q-1)/2)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}. \]
Every irreducible representation of \(N \) can be written as \(\rho_{ijk} : N \to \mathbb{C}^* \) with
\[\rho_{ijk}(\sigma_p) = \zeta_{p-1}^i, \quad \rho_{ijk}(\sigma^2_q) = \zeta_{q-1}^{2j}, \quad \rho_{ijk}(\varepsilon) = (-1)^k, \]
where \(0 \leq i < p-1, 0 \leq j < (q-1)/2 \) and \(k = 0, 1 \). Since \(\tilde{G} = N \cup \sigma_qN \) and \(\rho^q_{ijk}(\sigma_p) = \rho_{ijk}(\varepsilon)\rho_{ijk}(\sigma_p) = (-1)^k\rho_{ijk}(\sigma_p) \), we have
\[\rho^q_{ijk} \neq \rho_{ijk} \iff k = 1. \]
Write \(\rho_{ij} = \rho_{ij1} \). The representation \(\tilde{\rho}_{ij} : \tilde{G} \to \text{GL}_2(\mathbb{C}) \) induced from \(\rho_{ij} \) is given by
\[(A3.1) \quad \tilde{\rho}_{ij}(\sigma_p) = \begin{pmatrix} \zeta_{p-1}^i & 0 \\ 0 & -\zeta_{p-1}^i \end{pmatrix}, \quad \tilde{\rho}_{ij}(\sigma_q) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j} \\ 1 & 0 \end{pmatrix}, \quad \tilde{\rho}_{ij}(\varepsilon) = -I, \]
where \(I \) is the identity matrix of degree 2. Since
\[\tilde{\rho}_{ij}(\sigma^2_p) = \begin{pmatrix} \zeta_{p-1}^{2i} & 0 \\ 0 & \zeta_{p-1}^{2i} \end{pmatrix} \quad \text{and} \quad \tilde{\rho}_{ij}(\sigma^2_q) = \begin{pmatrix} \zeta_{q-1}^{2j} & 0 \\ 0 & \zeta_{q-1}^{2j} \end{pmatrix}, \]
we see that the representations \(\tilde{\rho}_{ij} \) with \(0 \leq i < (p-1)/2, 0 \leq j < (q-1)/2 \) are irreducible and are not isomorphic to each other, by considering the values of the characters of these representations at \(\sigma^2_p \) and \(\sigma^2_q \). The number of these representations is \(\frac{p-1}{2} \cdot \frac{q-1}{2} = \frac{|G|}{4} \). So they are all the irreducible representations of \(\tilde{G} \) of dimension 2.

Similarly, when \(p = -1 \), all irreducible representations of \(\tilde{G} \) of dimension 2 are \(\tilde{\rho}_j \) with \(0 \leq j < (q-1)/2 \), where
\[(A3.2) \quad \tilde{\rho}_j(\sigma_{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tilde{\rho}_j(\sigma_q) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j} \\ 1 & 0 \end{pmatrix}, \quad \tilde{\rho}(\varepsilon) = -I, \]
and when \(p = 2 \), all irreducible representations of \(\tilde{G} \) of dimension 2 are \(\tilde{\rho}_{ij} \) with \(0 \leq i \leq 1 \) and \(0 \leq j < (q-1)/2 \), where \(\tilde{\rho}_{ij}(\varepsilon) = -I \) and
\[(A3.3) \quad \tilde{\rho}_{ij}(\sigma_{-1}) = (-1)^iI, \quad \tilde{\rho}_{ij}(\sigma_2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tilde{\rho}_{ij}(\sigma_q) = \begin{pmatrix} 0 & \zeta_{q-1}^{2j} \\ 1 & 0 \end{pmatrix}. \]

3.2. Case B. Assume \(p > 2 \) and \(|\sigma_q| = 2|\sigma_q| \). Then \(N = \langle \sigma_p, \sigma^2_q, \sigma_q \rangle \), and
\[N \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z}. \]
Any irreducible representation of \(N \) has the form \(\rho_{ij} : N \to \mathbb{C}^* \), where
\[\rho_{ij}(\sigma_p) = \zeta_{p-1}^i, \quad \rho_{ij}(\sigma^2_q) = \zeta_{q-1}^j, \quad \rho_{ij}(\varepsilon) = \rho_{ij}(\sigma_q^{(q-1)/2}) = (-1)^j, \]
and $0 \leq i < p - 1$, $0 \leq j < q - 1$. It is easy to check that
\[\tilde{\rho}_{ij} \not\sim \rho_{ij} \iff j \equiv 1 \mod 2. \]

The representation $\tilde{\rho}_{ij} : \tilde{G} \to \text{GL}_2(\mathbb{C})$ induced from ρ_{ij} with odd j is given by
\[
(B3.1) \quad \tilde{\rho}_{ij}(\tilde{\sigma}_p) = \left(\begin{array}{cc} \zeta_p^{i-1} & 0 \\ 0 & -\zeta_p^{-i} \end{array} \right), \quad \tilde{\rho}_{ij}(\tilde{\sigma}_q) = \left(\begin{array}{cc} 0 & \zeta_q^j \\ 1 & 0 \end{array} \right).
\]

Since
\[
\tilde{\rho}_{ij}(\tilde{\sigma}_p^2) = \left(\begin{array}{cc} \zeta_p^{2i} & 0 \\ 0 & \zeta_p^{-2i} \end{array} \right) \quad \text{and} \quad \tilde{\rho}_{ij}(\tilde{\sigma}_q^2) = \left(\begin{array}{cc} \zeta_q^j & 0 \\ 0 & \zeta_q^{-j} \end{array} \right),
\]
we see that the representations $\tilde{\rho}_{ij}$ with $0 \leq i < (p - 1)/2$ and $0 \leq j < q - 1$, $2 \nmid j$ are irreducible and are not isomorphic to each other. The number of these representations is $|G|/4$. So they are all the irreducible representations of \tilde{G} of dimension 2.

Similarly, when $(p, q) = (-1, 2)$, there is only one irreducible representation $\tilde{\rho}_0$ of dimension 2 defined by
\[
(B3.2) \quad \tilde{\rho}_0(\tilde{\sigma}_-1) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \quad \tilde{\rho}_0(\tilde{\sigma}_2) = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right).
\]

When $p = -1$ and $q > 2$, all irreducible representations of dimension 2 are $\hat{\rho}_j$ with $0 \leq j < q - 1$, $2 \nmid j$, where $\hat{\rho}_j$ is defined by
\[
(B3.3) \quad \hat{\rho}_j(\hat{\sigma}_-1) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \quad \hat{\rho}_j(\hat{\sigma}_q) = \left(\begin{array}{cc} 0 & \zeta_q^j \\ 1 & 0 \end{array} \right).
\]

When $p = 2$, all irreducible representations of dimension 2 are $\hat{\rho}_{ij}$ with $0 \leq i \leq 1$ and $0 \leq j < q - 1$, $2 \nmid j$, where $\hat{\rho}_{ij}$ is defined by
\[
(B3.4) \quad \hat{\rho}_{ij}(\hat{\sigma}_-1) = (-1)^i I, \quad \hat{\rho}_{ij}(\hat{\sigma}_2) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \quad \hat{\rho}_{ij}(\hat{\sigma}_q) = \left(\begin{array}{cc} 0 & \zeta_q^j \\ 1 & 0 \end{array} \right).
\]

When $|\tilde{\sigma}_p| = 2|\sigma_p|$, all irreducible representations of dimension 2 are $\hat{\rho}_{ij}$ with $0 \leq i < p - 1$, $2 \nmid i$ and $0 \leq j < (q - 1)/2$, where $\hat{\rho}_{ij}$ is defined by
\[
(B3.5) \quad \hat{\rho}_{ij}(\hat{\sigma}_p) = \left(\begin{array}{cc} \zeta_p^i & 0 \\ 1 & 0 \end{array} \right), \quad \hat{\rho}_{ij}(\hat{\sigma}_q) = \left(\begin{array}{cc} \zeta_q^j & 0 \\ 0 & -\zeta_q^{-j} \end{array} \right).
\]

3.3. Case C.
Assume $v_2(p - 1) \leq v_2(q - 1)$. Let
\[
d = \gcd\left(\frac{p - 1}{2}, q - 1\right), \quad s = \frac{p - 1}{2d}, \quad t = \frac{q - 1}{d}, \quad us + vt = 1.
\]
as before. Here \(t \) must be even and \(u \) odd. Let \(\tau = \tilde{\sigma}^{2s} \cdot \tilde{\sigma}^t \) and \(\mu = \tilde{\sigma}^{-2v} \cdot \tilde{\sigma}^u \). Then \(N = \langle \tilde{\sigma}_p^2, \tilde{\sigma}_q \rangle = \langle \tau, \mu \rangle \) and

\[
N \cong \mathbb{Z}/d\mathbb{Z} \oplus \mathbb{Z}/2s(q-1)\mathbb{Z}.
\]

Any irreducible representation \(\rho_{ij} : N \to \mathbb{C}^* \) is of the form

\[
\rho_{ij}(\tau) = \zeta_d^i = \zeta_{2s(q-1)}^{2s(q-1) i}, \quad \rho_{ij}(\mu) = \zeta_d^j = \zeta_{2s(q-1)}^{2s(q-1) j}.
\]

From \(\tilde{\sigma}_p^2 = \tau^u \mu^{-t} \) and \(\tilde{\sigma}_q = \tau^v \mu^s \), we have

\[
\rho_{ij}(\tilde{\sigma}_p^2) = \zeta_{2s(q-1)}^{2su-i-j}, \quad \rho_{ij}(\tilde{\sigma}_q) = \zeta_{2s(q-1)}^{2tv+i-j}, \quad \rho_{ij}(\varepsilon) = \rho_{ij}(\tilde{\sigma}_p^2)^{(p-1)/2} = (-1)^j.
\]

It is easy to show

\[
\tilde{\rho}_{ij} \neq \rho_{ij} \iff j \equiv 1 \mod 2.
\]

The representation \(\tilde{\rho}_{ij} : \tilde{G} \to \text{GL}_2(\mathbb{C}) \) induced from \(\rho_{ij} \) with odd \(j \) is given by

\[
\tilde{\rho}_{ij}(\tau) = \begin{pmatrix} \zeta_d^i & 0 \\ 0 & \zeta_d^i \end{pmatrix}, \quad \tilde{\rho}_{ij}(\mu) = \begin{pmatrix} \zeta_{2s(q-1)}^j & 0 \\ 0 & -\zeta_{2s(q-1)}^j \end{pmatrix}.
\]

Here in the first equality we used the fact that \(t \) is even, and in the second equality we used the fact that \(u \) is odd. Furthermore, we have

\[
(C3.1) \quad \tilde{\rho}_{ij}(\tilde{\sigma}_p) = \begin{pmatrix} 0 & \zeta_{2s(q-1)}^{2su-i-j} \\ 1 & 0 \end{pmatrix}, \quad \tilde{\rho}_{ij}(\tilde{\sigma}_q) = \begin{pmatrix} \zeta_{2s(q-1)}^{2tv+i-j} & 0 \\ 0 & -\zeta_{2s(q-1)}^{2tv+i-j} \end{pmatrix}.
\]

By considering the values of the character of \(\tilde{\rho}_{ij} \) at \(\tau \) and \(\mu^2 \), we see that all the representations \(\tilde{\rho}_{ij} \) with \(0 \leq i < d \) and \(0 \leq j < s(q-1) \), \(2 \nmid j \) are irreducible and are not isomorphic to each other. The number of these representations is \(d \cdot s(q-1)/2 = |G|/4 \). So they are all the irreducible representations of \(\tilde{G} \) of dimension 2.

Similarly, if \(v_2(p-1) > v_2(q-1) \), we let

\[
d' = \gcd\left(p-1, \frac{q-1}{2}\right), \quad s' = p-1 \quad d', \quad t' = q-1 \quad 2d', \quad u's' + v't' = 1.
\]

Then all the irreducible representations of \(\tilde{G} \) of dimension 2 are \(\tilde{\rho}_{ij} \) with \(0 \leq i < d' \) and \(0 \leq j < t'(p-1) \), \(2 \nmid j \), where \(\tilde{\rho}_{ij} \) is defined by

\[
(C3.2) \quad \tilde{\rho}_{ij}(\tilde{\sigma}_p) = \begin{pmatrix} \zeta_{2s'(q-1)}^{2su'i+j} & 0 \\ -\zeta_{2s'(q-1)}^{2s'u'i+j} & 1 \end{pmatrix}, \quad \tilde{\rho}_{ij}(\tilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{2s'(q-1)}^{2tv'i+j} \\ 1 & 0 \end{pmatrix}.
\]

Let \(R^2(\tilde{G}) \) be the set of all irreducible representations, up to isomorphism, of \(\tilde{G} \) of dimension 2. To summarize, we have proved the following

Theorem 3.1. All 2-dimensional irreducible representations of \(\tilde{G} \) are induced from representations of \(N \). In detail, we have:
In Case A

\[R^2(\tilde{G}) = \begin{cases}
\{\tilde{\rho}_j \mid 0 \leq j < (q - 1)/2\} & \text{if } p = -1, \\
\{\tilde{\rho}_{ij} \mid i = 0,1, 0 \leq j < (q - 1)/2\} & \text{if } p = 2, \\
\{\tilde{\rho}_{ij} \mid 0 \leq i < (p-1)/2, 0 \leq j < (q - 1)/2\} & \text{if } p > 2,
\end{cases} \]

where \(\tilde{\rho}_j\), \(\tilde{\rho}_{ij}\) and \(\tilde{\rho}_{ij}\) are defined in (A3.2), (A3.3) and (A3.1) respectively.

In Case B

\[R^2(\tilde{G}) = \begin{cases}
\{\bar{\rho}_0\} & \text{if } (p,q) = (-1,2), \\
\{\bar{\rho}_j \mid 0 \leq j < q-1, 2 \nmid j\} & \text{if } p = -1, q > 2, \\
\{\bar{\rho}_{ij} \mid i = 0,1, 0 \leq j < q-1, 2 \nmid j\} & \text{if } p = 2, \\
\{\bar{\rho}_{ij} \mid 0 \leq i < p-1, 2 \nmid i, 0 \leq j < (q-1)/2\} & \text{if } |\bar{\sigma}_p| = 2|\sigma_p|, \\
\{\bar{\rho}_{ij} \mid 0 \leq i < (p-1)/2, 0 \leq j < q-1, 2 \nmid j\} & \text{otherwise},
\end{cases} \]

where \(\bar{\rho}_0\), \(\bar{\rho}_j\), \(\bar{\rho}_{ij}\) and \(\bar{\rho}_{ij}\) are defined in (B3.2), (B3.3), (B3.4), (B3.5) and (B3.1) respectively.

In Case C

\[R^2(\tilde{G}) = \begin{cases}
\{\tilde{\rho}_{ij} \mid 0 \leq i < d, 0 \leq j < s(q-1), 2 \nmid j\} & \text{if } v_2(p-1) \leq v_2(q-1), \\
\{\tilde{\rho}_{ij} \mid 0 \leq i < d', 0 \leq j < t'(p-1), 2 \nmid j\} & \text{otherwise},
\end{cases} \]

where \(\tilde{\rho}_{ij}\) and \(\tilde{\rho}_{ij}\) are defined in (C3.1) and (C3.2) respectively.

4. The Frobenius maps. This section is a preparation for the next two sections where we will compute the Artin conductors of representations and the Artin L-functions of some quasi-cyclotomic fields \(\tilde{K}\). For a prime number \(\ell\), we say that \(\ell\) is ramified (resp. inert, splitting) in the relative quadratic extension \(\tilde{K}/K\) if the prime ideals of \(K\) over \(\ell\) are ramified (resp. inert, splitting) in \(\tilde{K}\). For a prime number \(\ell\) which is unramified in \(\tilde{K}/K\), let \(I_\ell\) (resp. \(\tilde{I}_\ell\)) be the inert group of \(\ell\) in the extension \(K/Q\) (resp. \(\tilde{K}/Q\)). Let \(\text{Fr}_\ell\) be the Frobenius automorphism of \(\ell\) in \(G/I_\ell\), and \(\tilde{\text{Fr}}_\ell\) the Frobenius automorphism of \(\ell\) in \(\tilde{G}/\tilde{I}_\ell\) associated to some prime ideal over \(\ell\).

To compute the Artin conductors of representations, we need to construct a uniformizer in the completion of \(\tilde{K}\) at a prime ideal, in particular at a prime ideal over 2. Generally we are not able to get such a uniformizer, but we can do it in the case \(p = -1\). In addition, to calculate the Artin L-functions of representations, we need to know \(\tilde{\text{Fr}}_\ell\), in particular for \(\ell = 2\), and so we need to know the decomposition of 2 in \(\tilde{K}\). For odd \(p < q \in S\), we calculated some examples by computer which suggest that 2 is always unramified in \(\tilde{K}\). But we are not able to show this. Furthermore, we do not know when 2 splits in \(\tilde{K}/K\) and when 2 is inert in \(\tilde{K}/K\). But when \(p = -1\), we can solve these problems (see below). So in this paper we only compute the Artin conductors and Artin L-functions of representations in the case \(p = -1\).
From now on, we always assume that \(p = -1 \), so \(K = \mathbb{Q}(\zeta_{4q}) \) and \(\tilde{K} = K(\sqrt[4]{q^*}) \). In this section we determine \(\tilde{F}_{\tau \ell} \) by \(F_{\tau \ell} \) for \(\ell = 2 \). In [6, Sect. 5] the decomposition of some odd prime numbers in \(\tilde{K}/K \) was determined. Now we determine the decomposition of 2 in \(\tilde{K}/K \). The result below is a more explicit reformulation of Theorem 2 in [7].

Proposition 4.1. If \(q = 2 \), then 2 is ramified in \(\tilde{K}/K \). If \(q \) is odd, then 2 is unramified in \(\tilde{K}/K \) if and only if \((\frac{2}{q}) = 1 \), and in this case 2 splits in \(\tilde{K}/K \) if \(q^* \equiv 1 \mod 16 \), and is inert in \(\tilde{K}/K \) otherwise.

Proof. We first consider the case \(q = 2 \). The unique prime ideal of \(K \) over 2 is the principal ideal generated by \(\pi_2 = 1 - \zeta_8 \). Since the ramification degree of 2 in \(K/\mathbb{Q} \) is 4 and \(\sqrt{2} = \pi_2(\pi_2 + 2\zeta_8)\zeta_8 \), we deduce that 2 is ramified in \(\tilde{K}/K \) if and only if \(x^2 \equiv \sqrt{2} \mod \pi_2^3 \) is not solvable in the ring \(\mathcal{O}_K \) of integers of \(K \) by [7, Th. 2(1)], which is equivalent to \((1 + \frac{2}{\pi_2} \zeta_8) \zeta_8 \) not being a square modulo \(\pi_2^6 \). Since \(2 = u\pi_2^4 \) for some unit \(u \), we have

\[
\left(1 + \frac{2}{\pi_2} \zeta_8\right) \zeta_8 \equiv \zeta_8 \equiv (1 - \pi_2) \mod \pi_2^3,
\]

hence \((1 + \frac{2}{\pi_2} \zeta_8) \zeta_8 \) is not a square modulo \(\pi_2^3 \). So 2 is ramified in \(\tilde{K}/K \).

Now we assume that \(q \) is odd. Let \(\pi_2 = 1 - \zeta_4 \). Since the ramification degree of 2 in \(K \) is 2, we see that 2 is unramified in \(\tilde{K}/K \) if and only if \(x^2 \equiv \sqrt{q^*} \mod \pi_2^4 \) is solvable in \(\mathcal{O}_K \) (see [7, Th. 2(1)]). Furthermore, 2 splits in \(\tilde{K}/K \) if and only if \(x^2 \equiv \sqrt{q^*} \mod \pi_2^5 \) is solvable in \(\mathcal{O}_K \). The explicit computation of the Gauss sum gives

\[
\sqrt{q^*} = \sum_{a=1}^{a-1} \left(\frac{a}{q}\right) \zeta_q^a = 1 + 2 \sum_{\left(\frac{a}{q}\right) = 1} \zeta_q^a.
\]

Let \(\alpha = \sum_{\left(\frac{a}{q}\right) = 1} \zeta_q^a \), \(\beta = \sum_{\left(\frac{a}{q}\right) = 1} \zeta_q^a \), and \(\gamma = \sum_{\left(\frac{a}{q}\right) = 1} \sum_{\left(\frac{b}{q}\right) = 1, a < b} \zeta_q^{a+b} \), where in the summations \(\alpha, \beta \) run over \(1, \ldots, q-1 \). Then \(\alpha = \beta^2 - 2\gamma \), which together with the equality \(2 = \pi_2^2 - \pi_2^3 \) gives

\[
\sqrt{q^*} = 1 + 2\beta^2 - 4\gamma = 1 + \pi_2^2\beta^2 - \pi_2^3\beta^2 - 4\gamma \\
\equiv (1 + \pi_2\beta)^2 - \pi_2^3(\beta + \beta^2) + \pi_2^4(\beta - \gamma) \\
\equiv (1 + \pi_2\beta)^2 - \pi_2^3(\alpha + \beta) + \pi_2^4(\beta + \gamma) \mod \pi_2^5.
\]

Since \(\zeta_{2q} = -\zeta_q^{-(q-1)/2} = -\zeta_q^t \), where \(t \) is the inverse of 2 in \((\mathbb{Z}/q\mathbb{Z})^* \), we see that \(\beta = \sum_{\left(\frac{a}{q}\right) = 1} (-1)^a \zeta_q^{ta} = \sum_{\left(\frac{a}{q}\right) = 1} \zeta_q^a \mod 2 \). So if \(\left(\frac{q}{2}\right) = 1 \) we have \(\alpha \equiv \beta \mod 2 \) and thus 2 is unramified in \(\tilde{K}/K \), and if \(\left(\frac{q}{2}\right) = -1 \) we have \(\alpha + \beta \equiv \sum_{a=1}^{q-1} \zeta_q^a = -1 \mod 2 \) and thus 2 is ramified in \(\tilde{K}/K \).
Now we assume \((\frac{2}{q}) = 1\). Then \(\sqrt{q^*} \mod \pi_2^5\) is a square if and only if \(\pi_2 | \beta + \gamma\). We consider \(2(\beta + \gamma)\). Since \(\alpha \equiv \beta \mod 2\), we have
\[
2(\beta + \gamma) = 2\beta + \beta^2 - \alpha \equiv \alpha(\alpha + 1) \mod 4.
\]
From \(\sqrt{q^*} = 1 + 2\alpha\), we see that \(\alpha(\alpha + 1) = (q^* - 1)/4\). Since \(8 | q^* - 1\) under the assumption \((\frac{2}{q}) = 1\), we have \(\beta + \gamma \equiv (q^* - 1)/8 \mod 2\). So \(\pi_2 | \beta + \gamma\) if and only if \(\pi_2 | (q^* - 1)/8\), that is, \(2 | (q^* - 1)/8\). The proof is complete.

Now we assume that \(2\) is unramified in \(\tilde{K}/K\). Let \(\text{Fr}_2 \in G\) be such that \(\text{Fr}_2(\zeta_4) = 1\) and \(\text{Fr}_2(\zeta_q) = \zeta_q^2\). It is a Frobenius element of \(2\) in \(G\) modulo \(I_2\). We have \(\text{Fr}_2 = \sigma_2^{b_2}\) for some \(b_2 \in \mathbb{Z}\) with \(2 | b_2\) as \((\frac{2}{q}) = 1\). Thus \(\tilde{\text{Fr}}_2 = \tilde{\sigma}_2^{b_2}\) or \(\tilde{\text{Fr}}_2 = \tilde{\sigma}_2^{b_2} \varepsilon\). We need to determine \(\tilde{\text{Fr}}_2\) completely. Since \((\frac{2}{q}) = 1\), we have
\[
\sqrt{q^*} \equiv (1 + \pi_2^2\alpha)^2 + \pi_2^4(\beta + \gamma) \mod \pi_2^5.
\]
Write \(u = 1 + \pi_2\alpha\) for simplicity. Since \(\sqrt{q^*} \equiv u^2 \mod \pi_2^4\), we see \((\sqrt{q^*} - u)/2 \in O_{\tilde{K}}\). Let \(\wp\) be the prime ideal of \(\tilde{K}\) over \(2\) associated to \(\text{Fr}_2\). By the definition, we have
\[
\tilde{\text{Fr}}_2 \left(\frac{\sqrt{q^*} - u}{2}\right) \equiv \left(\frac{\sqrt{q^*} - u}{2}\right)^2 \equiv (\beta + \gamma) + \frac{\sqrt{q^*} - u}{2} \mod \wp.
\]
On the other hand, since \(\tilde{\sigma}_2^{b_2}(\sqrt{q^*}) = (-1)^{b_2/2}\sqrt{q^*}\) and \(\tilde{\sigma}_2^{b_2}(u) = u\) as \(2 | b_2\), we have
\[
\tilde{\sigma}_2^{b_2} \left(\frac{\sqrt{q^*} - u}{2}\right) = \frac{(-1)^{b_2/2}\sqrt{q^*} - u}{2}
\]
and
\[
\tilde{\sigma}_2^{b_2} \varepsilon \left(\frac{\sqrt{q^*} - u}{2}\right) = \frac{(-1)^{b_2/2+1}\sqrt{q^*} - u}{2}.
\]
So if \(2 | b_2/2\) we have \(\tilde{\text{Fr}}_2 = \tilde{\sigma}_2^{b_2}\) if and only if \(\pi_2 | \beta + \gamma\) (that is, \(2\) splits in \(\tilde{K}/K\)), and if \(2 \nmid b_2/2\) we have \(\tilde{\text{Fr}}_2 = \tilde{\sigma}_2^{b_2}\) if and only if \(\pi_2 \nmid \beta + \gamma\) (that is, \(2\) is inert in \(\tilde{K}/K\)). In the case \(q \equiv 3 \mod 4\), we can always assume that \(2 \nmid b_2/2\), since if \(4 | b_2\), we may replace \(b_2\) by \(b_2 + (q - 1)\). In the case \(q \equiv 1 \mod 4\), we have \(2 | b_2/2\) iff \(2^{(q-1)/4} \equiv 1 \mod q\) iff \(q\) has the form \(A^2 + 64B^2\) for \(A, B \in \mathbb{Z}\), by Exercise 28 in Chap. 5 of [4]. So we get the following result:

Proposition 4.2. Assume that \(2\) is unramified in \(\tilde{K}/K\). Let \(\text{Fr}_2 = \sigma_2^{b_2}\). Then \(2 | b_2\). If \(q \equiv 3 \mod 4\), we always assume \(b_2 \equiv 2 \mod 4\). Let \(P_0\) be the set of prime numbers of the form \(A^2 + 64B^2\) with \(A, B \in \mathbb{Z}\). Then
\[
\tilde{\text{Fr}}_2 = \begin{cases}
\tilde{\sigma}_2^{b_2} & \text{if } q \not\in P_0, \ 16 \nmid q^* - 1, \text{ or } q \in P_0, \ 16 | q^* - 1, \\
\tilde{\sigma}_2^{b_2} \varepsilon & \text{if } q \in P_0, \ 16 | q^* - 1, \text{ or } q \not\in P_0, \ 16 | q^* - 1.
\end{cases}
\]

The following lemma is useful in the computation of Artin L-functions.

Lemma 4.3. We have \(\varepsilon \in I_\ell\) if and only if \(\ell\) is ramified in \(\tilde{K}/K\).
Proof. The canonical projection $\tilde{G} \to G \simeq \hat{G}$ induces a surjective homomorphism $\tilde{I}_\ell \to I_\ell$ which implies the isomorphism $\tilde{I}_\ell/\langle \varepsilon \rangle \cap \tilde{I}_\ell \cong I_\ell$. Thus ℓ is ramified in K/K iff $|\tilde{I}_\ell| = 2|I_\ell|$ iff $|\tilde{I}_\ell \cap \langle \varepsilon \rangle| = 2$ iff $\varepsilon \in \tilde{I}_\ell$.

5. The conductors of representations. In this section we compute the Artin conductors of all 2-dimensional irreducible representations of \hat{G} in the case $p = -1$. First we recall the definition of the Artin conductor. For details, see [2, Chap. 6].

The notations are as before. Let ℓ be a prime number in \mathbb{Q}, and choose a prime ideal \mathfrak{p} in \tilde{K} over ℓ. Let $\tilde{G}_\ell = \tilde{G}(\tilde{K}_\mathfrak{p}/\mathbb{Q}_\ell)$ be the corresponding decomposition subgroup. Let v be the normalized valuation in $\tilde{K}_\mathfrak{p}$. For $i \geq 0$, define the ramification groups

$$\tilde{G}_{\ell,i} = \{ \sigma \in \tilde{G}_\ell \mid v(\sigma(x) - x) > i \text{ for all } x \in O_{\tilde{K}_\mathfrak{p}} \}.$$

The group $\tilde{G}_{\ell,0}$ is the inertia subgroup of \tilde{G}_ℓ. Let π be a uniformizer in $\tilde{K}_\mathfrak{p}$. Then for $i > 0$,

$$\tilde{G}_{\ell,i} = \{ \sigma \in \tilde{G}_\ell \mid v(\sigma(\pi) - \pi) > i \}.$$

For a representation ρ of \tilde{G} with character χ and representation space V, let

$$f(\chi, \ell) = f(\rho, \ell) = \sum_{i=0}^{\infty} \frac{|\tilde{G}_{\ell,i}|}{|\tilde{G}_{\ell,0}|} (\chi(1) - \chi(\tilde{G}_{\ell,i})),$$

where $\chi(\tilde{G}_{\ell,i}) = |\tilde{G}_{\ell,i}|^{-1} \sum_{s \in \tilde{G}_{\ell,i}} \chi(s)$. We have $f(\chi, \ell) = 0$ if ρ is unramified over ℓ, i.e. $V = V^{\tilde{G}_{\ell,0}}$. The Artin conductor of the representation ρ is defined as

$$f(\chi) = f(\rho) = \prod_{\ell} \ell^{f(\chi, \ell)}.$$

From the result in the previous section, we know that ℓ is unramified in \tilde{K}/\mathbb{Q} if $\ell \neq 2, q$. Thus to compute the conductor $f(\chi)$, we only need to calculate $f(\chi, 2)$ and $f(\chi, q)$. We consider the cases $q = 2$ and q odd separately.

5.1. Case $q = 2$. In the case $(p, q) = (-1, 2)$, there is only one 2-dimensional irreducible representation $\tilde{\rho}_0$ of \hat{G}. Let $\tilde{\chi}_0$ be the character of $\tilde{\rho}_0$. Since only 2 is ramified in \tilde{K}, we only need to calculate $f(\tilde{\chi}_0, 2)$.

As in the previous section, let $\pi_2 = 1 - \zeta_8$. Let \mathfrak{p} be a prime ideal in \tilde{K} over 2 and let v be the normalized valuation in $\tilde{K}_\mathfrak{p}$. From the proof of Proposition 4.1, we see that $\sqrt{2}/\pi_2^2 \equiv 1 - \pi_2 \pmod{\pi_2^3}$. Thus

$$v\left(\frac{\sqrt{2}}{\pi_2^2} - 1\right) = v\left(\frac{\sqrt{2}}{\pi_2} - 1\right) + v\left(\frac{\sqrt{2}}{\pi_2} + 1\right) = v(\pi_2) = 2.$$
We have $v(\sqrt{2}/\pi_2 - 1) = v(\sqrt{2}/\pi_2 + 1) = 1$. So $\pi = \sqrt{2}/\pi_2 - 1$ is a uniformizer of \tilde{K}_{φ}. The group \tilde{G} is generated by $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$, and $\tilde{\sigma}_1(\sqrt{2}) = \sqrt{2}$ and $\tilde{\sigma}_2(\sqrt{2}) = \sqrt{2}/\sqrt{-1}$. Clearly $G_{2,0} = \tilde{G}$. Furthermore,

\[
v(\tilde{\sigma}_1(\pi) - \pi) = v\left(\frac{\sqrt{2}}{1 - \zeta_8^{-1}} - \frac{\sqrt{2}}{1 - \zeta_8}\right) = v\left(-\frac{1 + \zeta_8}{1 - \zeta_8}\right) = 2,
v(\tilde{\sigma}_2(\pi) - \pi) = v\left(\frac{\sqrt{2}/\sqrt{-1}}{1 + \zeta_8} - \frac{\sqrt{2}}{1 - \zeta_8}\right) = v\left(-\frac{1 - \zeta_8^3}{1 - \zeta_8}\right) = 2,
v(\varepsilon(\pi) - \pi) = v(-2(\pi + 1)) = 8.
\]

Thus $G_{2,1} = G_{2,0} = \tilde{G}$ and $G_{2,2} = \cdots = G_{2,7} = \langle \varepsilon \rangle$. By an easy computation we get $\tilde{\chi}_0(G_{2,0}) = \tilde{\chi}_0(G_{2,1}) = \cdots = \tilde{\chi}_0(G_{2,7}) = 0$, and $\tilde{\chi}_0(G_{2,n}) = 2$ for $n \geq 8$. So we obtain

\[(5.1) \quad f(\tilde{\chi}_0, 2) = 2 + 2 + \frac{1}{4} \cdot 2 \cdot 6 = 7.\]

5.2. Case of q odd. To compute $f(\chi, q)$, we consider the cases $(\frac{-1}{q}) = 1$ and $(\frac{-1}{q}) = -1$ separately. Let φ be a prime ideal in \tilde{K} over q. Let v be the normalized valuation in \tilde{K}_{φ}.

5.2.1. Assume $(\frac{-1}{q}) = 1$. Then q is unramified in \tilde{K}/K but ramified in K/Q. We see $\pi = 1 - \zeta_q$ is a uniformizer of \tilde{K}_{φ}. Now all 2-dimensional irreducible representations of \tilde{G} are as in Case A. Let $\tilde{\chi}_j$ be the character of $\tilde{\rho}_j$. It is easy to see that $\tilde{G}_{q,0} = \langle \tilde{\sigma}_q \rangle$. Notice that $\varepsilon \notin \tilde{G}_{q,0}$.

Let $1 \neq \tilde{\sigma} \in \tilde{G}_{q,0}$ and $\tilde{\sigma}(\zeta_q) = \zeta_q^a$, $1 < a \leq q - 1$. We have

\[v(\tilde{\sigma}\pi - \pi) = v(\zeta_q - \zeta_q^a) = v(1 - \zeta_q^{a-1}) = 1.\]

Thus $\tilde{G}_{q,n} = \{1\}$ for $n \geq 1$. By an easy computation we get $\tilde{\chi}_j(\tilde{G}_{q,0}) = 0$ and $\tilde{\chi}_j(\tilde{G}_{q,n}) = 2$ for $n \geq 1$. We obtain

\[(5.2) \quad f(\tilde{\chi}_j, q) = 2.\]

5.2.2. Assume $(\frac{-1}{q}) = -1$. Then q is ramified both in \tilde{K}/K and in K/Q, and all 2-dimensional irreducible representations are as in Case B. Let $\tilde{\chi}_j$ be the character of $\tilde{\rho}_j$. Since $v(1 - \zeta_q) = 2$ and $v(\sqrt{-q}) = \frac{1}{4}(2(q - 1)) = (q - 1)/2$, we see that $\pi = \sqrt{-q}/(1 - \zeta_q(q-3)/4$ is a uniformizer of q in \tilde{K}. It is obvious that $\tilde{G}_{q,0} = \langle \tilde{\sigma}_q \rangle$. Notice that in this case $\varepsilon \in \tilde{G}_{q,0}$.
Let \(1 \neq \bar{\sigma} \in \tilde{G}_{q,0} \) and \(\bar{\sigma}(\zeta_q) = \zeta_q^a, 1 < a \leq q - 1 \). We have

\[
v(\bar{\sigma}\pi - \pi) + v(\bar{\sigma}\varepsilon\pi - \pi) = v(\bar{\sigma}\pi - \pi) + v(-\bar{\sigma}\pi - \pi) = v(\bar{\sigma}\pi^2 - \pi^2)
\]

\[
= v\left(\frac{\left(\frac{a}{q}\right)\sqrt{-q}}{(1 - \zeta_q^a)(q-3)/2} - \frac{\sqrt{-q}}{(1 - \zeta_q)(q-3)/2} \right)
\]

\[
= v(\pi^2) + v\left(1 - \left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_q^i \right) \right) \frac{(q-3)/2}{(q-3)/2}
\]

\[
= 2 + v\left(1 - \left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_q^i \right) \right) \frac{(q-3)/2}{(q-3)/2}.
\]

Let \(t = v\left(1 - \left(\frac{a}{q}\right)\left(\sum_{i=0}^{a-1} \zeta_q^i \right) \right) \frac{(q-3)/2}{(q-3)/2} \). We claim that \(t = 0 \). Otherwise \(t > 0 \). Since

\[
\left(\sum_{i=0}^{a-1} \zeta_q^i \right) \frac{(q-3)/2}{(q-3)/2} \equiv 1 \mod (1 - \zeta_q) \quad \text{if} \quad \left(\frac{a}{q}\right) = 1,
\]

\[
\left(\sum_{i=0}^{a-1} \zeta_q^i \right) \frac{(q-3)/2}{(q-3)/2} \equiv -1 \mod (1 - \zeta_q) \quad \text{if} \quad \left(\frac{a}{q}\right) = -1,
\]

we always have \(a \equiv 1 \mod q \) and thus \(a = 1 \), which contradicts the assumption that \(a > 1 \). This shows the claim. Thus \(v(\bar{\sigma}\pi - \pi) = v(\bar{\sigma}\varepsilon\pi - \pi) = 1 \), as \(v(\bar{\sigma}\pi - \pi + \bar{\sigma}\varepsilon\pi - \pi) = v(2\pi) = 1 \). So we get \(\tilde{G}_{q,n} = \{1\} \) for \(n \geq 1 \). By an easy computation, \(\tilde{\chi}_j(\tilde{G}_{q,0}) = 0 \) and \(\tilde{\chi}_j(\tilde{G}_{q,n}) = 2 \) for \(n \geq 1 \). We obtain

\[
f(\tilde{\chi}_j, q) = 2.
\]

Next we compute \(f(\tilde{\chi}_j, 2) \). We consider the cases \(\left(\frac{2}{q}\right) = 1 \) and \(\left(\frac{2}{q}\right) = -1 \) separately. Let \(\wp \) be a prime ideal in \(\tilde{K} \) over 2. Let \(v \) be the normalized valuation in \(\tilde{K}_\wp \).

5.2.3. Assume \(\left(\frac{2}{q}\right) = 1 \). Then 2 is unramified in \(\tilde{K}/K \) but ramified in \(K'/Q \), and \(\pi = 1 - \zeta_4 \) is a uniformizer in \(\tilde{K}_\wp \). It is easy to see that \(\tilde{G}_{2,0} = \langle \bar{\sigma}_1 \rangle \). Notice that in this case \(\varepsilon \notin \tilde{G}_{2,0} \). We have

\[
v(\bar{\sigma}_1 - \pi) = v(\zeta_4 - \zeta_4^{-1}) = v(2) = 2.
\]

Thus \(\tilde{G}_{2,0} = \tilde{G}_{2,1} = \langle \bar{\sigma}_1 \rangle \) and \(\tilde{G}_{2,n} = \{1\} \) for \(n > 1 \). By an easy computation, \(\tilde{\chi}_j(\tilde{G}_{2,0}) = \tilde{\chi}_j(\tilde{G}_{2,1}) = 1 \) and \(\tilde{\chi}_j(\tilde{G}_{2,n}) = 2 \) for \(n > 1 \). We obtain

\[
f(\tilde{\chi}_j, 2) = 1 + 1 = 2.
\]

5.2.4. Assume \(\left(\frac{2}{q}\right) = -1 \). Now 2 is ramified both in \(\tilde{K}/K \) and in \(K'/Q \). As in the previous section, let \(\pi_2 = 1 - \zeta_4, \alpha = \sum_{\left(\frac{a}{q}\right)=1} \zeta_q^a \) and \(\beta = \sum_{\left(\frac{a}{q}\right)=1} \zeta_2^a \), where the summations are over \(1 \leq a \leq q - 1 \). From the previous section we have

\[
\sqrt{q^\pi} \equiv (1 + \pi_2\beta)^2 + \pi_2^3 \mod \pi_2^4.
\]
Let $\mu = 1 + \pi_2 \beta$. We claim that $\pi = (\sqrt[q]{q^*} + \mu)/\pi_2$ is a uniformizer in \tilde{K}_0. In fact, since

$$v(\sqrt[q]{q^*} + \mu) + v(\sqrt[q]{q^*} - \mu) = v(\sqrt[q]{q^*} - \mu^2) = v(\pi_2^3) = 6$$

and $v((\sqrt[q]{q^*} + \mu) + (\sqrt[q]{q^*} - \mu)) = v(2\sqrt[q]{q^*}) = 4$, we must have

$$v(\sqrt[q]{q^*} + \mu) = v(\sqrt[q]{q^*} - \mu) = 3,$$

and thus $v((\sqrt[q]{q^*} + \mu)/\pi_2) = 1$.

It is obvious that $\tilde{G}_{2,0} = \{1, \varepsilon, \tilde{\sigma}_1, \tilde{\sigma}_1 \varepsilon\}$. Since $\tilde{\sigma}_1(\sqrt[q]{q^*}) = \sqrt[q]{q^*}$ and $\tilde{\sigma}_1 \varepsilon(\sqrt[q]{q^*}) = -\sqrt[q]{q^*}$, we have

$$v(\tilde{\sigma}_1 - \pi - \pi) = v\left(\tilde{\sigma}_1 - \frac{\sqrt[q]{q^*} + 1 + \pi_2 \beta}{\pi_2} - \frac{\sqrt[q]{q^*} + 1 + \pi_2 \beta}{\pi_2}\right)$$

$$= v\left(\tilde{\sigma}_1 - \frac{\sqrt[q]{q^*} + 1}{\pi_2} - \frac{\sqrt[q]{q^*} + 1}{\pi_2}\right)$$

(since $\tilde{\sigma}_1 \beta = \beta$)

$$= v\left(\frac{\sqrt[q]{q^*} + 1}{1 - \zeta_4} - \frac{\sqrt[q]{q^*} + 1}{1 - \zeta_4}\right) = v(\sqrt[q]{q^*} + 1).$$

To compute it, we first claim that $\pi_2 \nmid \beta$. Otherwise, $2 | \beta$ as $\beta \in \mathbb{Q}(\zeta_q)$. From the previous section, we have $\sqrt[q]{q^*} = 1 + 2\alpha$ and $\alpha + \beta \equiv 1 \mod 2$, thus $\sqrt[q]{q^*} \equiv -1 + 2\beta \equiv -1 \mod 4$ and so $q^* \equiv 1 \mod 8$. This contradicts the assumption $(\frac{2}{q}) = -1$. We have shown the claim. Thus $v(\beta) = 0$. Since $v(\sqrt[q]{q^*} + 1 + \pi_2 \beta) = 3$, we have $v(\sqrt[q]{q^*} + 1) = 2$, so $v(\tilde{\sigma}_1 - \pi - \pi) = 2$.

We now compute $v(\tilde{\sigma}_1 \varepsilon \pi - \pi)$. We have

$$v(\tilde{\sigma}_1 \varepsilon \pi - \pi) = v\left(\tilde{\sigma}_1 \varepsilon - \frac{\sqrt[q]{q^*} + 1 + \pi_2 \beta}{\pi_2} - \frac{\sqrt[q]{q^*} + 1 + \pi_2 \beta}{\pi_2}\right)$$

$$= v\left(-\sqrt[q]{q^*} + 1 - \sqrt[q]{q^*} + 1\right) = v(\sqrt[q]{q^*} + \zeta_4).$$

Observe that

$$v(\sqrt[q]{q^*} + \zeta_4) + v(\sqrt[q]{q^*} - \zeta_4) = v(\sqrt[q]{q^*} + 1) = v\left(\frac{2 \sqrt[q]{q^*} + 1}{2}\right) = 4,$$

since $\pi_2 \nmid (\sqrt[q]{q^*} + 1)/2$. Furthermore, since

$$v((\sqrt[q]{q^*} + \zeta_4) + (\sqrt[q]{q^*} - \zeta_4)) = v(2 \sqrt[q]{q^*}) = 4,$$

we must have $v(\sqrt[q]{q^*} + \zeta_4) = v(\sqrt[q]{q^*} - \zeta_4) = 2$, so $v(\tilde{\sigma}_1 \varepsilon \pi - \pi) = 2$. In addition, we have

$$v(\varepsilon \pi - \pi) = v\left(-\sqrt[q]{q^*} + 1 + \pi_2 \beta - \sqrt[q]{q^*} + 1 + \pi_2 \beta\right) = 2.$$
By the discussion above we have \(\tilde{G}_{2,0} = \tilde{G}_{2,1} \) and \(\tilde{G}_{2,n} = \{1\} \) for \(n > 1 \). By an easy computation, \(\tilde{\chi}_j(\tilde{G}_{2,0}) = \tilde{\chi}_j(\tilde{G}_{2,1}) = 0 \) and \(\tilde{\chi}_j(\tilde{G}_{2,n}) = 2 \) for \(n > 2 \). We obtain

(5.6) \quad f(\tilde{\chi}_j, 2) = 2 + 2 = 4.

5.3. Global conductors. By the equalities (5.1)–(5.6) above, we get the following

Theorem 5.1. In the case \(q = 2 \), the conductor of the unique 2-dimensional irreducible representation \(\tilde{\rho}_0 \) of \(\tilde{G} \) is equal to \(f(\tilde{\rho}_0) = 2^7 \). In the case that \(q \) is odd, all the 2-dimensional irreducible representations \(\tilde{\rho}_j \) of \(\tilde{G} \) have the conductor \(f(\tilde{\rho}_j) = 2^{2(1+\log_{-1}(\frac{2}{q}))}q^2 \).

6. The Artin \(L \)-functions. In this section we compute the Artin \(L \)-functions of the quasi-cyclotomic fields \(\tilde{K} = \mathbb{Q}(\zeta_{4q}, \sqrt[4]{q^*}) \).

The \(L \)-functions associated to the 1-dimensional representations of \(\tilde{G} \) are the well-known Dirichlet \(L \)-functions. So we compute the \(L \)-functions associated to the 2-dimensional irreducible representations of \(\tilde{G} \). Let \(\varphi : \tilde{G} \to \text{GL}(V) \) be a 2-dimensional irreducible representation. The Artin \(L \)-function \(L(\varphi, s) \) associated to \(\varphi \) is defined as the product

\[
L(\varphi, s) = \prod_{\ell \text{ prime}} L_{\ell}(\varphi, s),
\]

where the local factors are defined as \(L_{\ell}(\varphi, s) = \det(1 - \varphi(\tilde{\text{Fr}}_{\ell})\ell^{-s}|V^{\tilde{\ell}})^{-1} \). Now we begin to compute them. First we notice that if \(\ell \) is ramified in \(\tilde{K}/K \), then \(V^{\tilde{\ell}} = 0 \) and \(L_{\ell}(\varphi, s) = 1 \), which is due to the facts that \(\varepsilon \in \tilde{I}_{\ell} \) by Lemma 4.3 and \(\varphi(\varepsilon) = -I \) for any irreducible representation \(\varphi \) of \(\tilde{G} \) by Theorem 3.1.

6.1. Case \(q = 2 \). By Section 3, there is only one 2-dimensional representation \(\tilde{\rho}_0 \) in this case, which is defined by

\[
\tilde{\rho}_0(\tilde{\sigma}_1) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tilde{\rho}_0(\tilde{\sigma}_2) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

Since 2 is ramified in \(\tilde{K}/K \), we have \(L_2(\tilde{\rho}_0, s) = 1 \). Assume that \(\ell \) is an odd prime number.

If \(\ell \equiv 7 \mod 8 \), then \(\text{Fr}_\ell = \sigma_{-1} \) and thus \(\tilde{\text{Fr}}_{\ell} = \tilde{\sigma}_{-1} \) or \(\tilde{\sigma}_{-1} \varepsilon \). In any case we have

\[
L_{\ell}(\tilde{\rho}_0, s) = \det\left(I \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 - \ell^{-2s})^{-1}.
\]
We first determine the local factors \(\ell \equiv 5 \mod 8 \), then \(\text{Fr}_\ell = \sigma_2 \) and thus \(\tilde{\text{Fr}}_\ell = \tilde{\sigma}_2 \) or \(\tilde{\sigma}_2 \varepsilon \). We have

\[
L_\ell(\tilde{\rho}_0, s) = \det \left(I \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 + \ell^{-2s})^{-1}.
\]

If \(\ell \equiv 3 \mod 8 \), then \(\text{Fr}_\ell = \sigma_2 \) and thus \(\tilde{\text{Fr}}_\ell = \tilde{\sigma}_2 \) or \(\tilde{\sigma}_2 \varepsilon \). We have

\[
L_\ell(\tilde{\rho}_0, s) = \det \left(I \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ell^{-s} \right)^{-1} = (1 - \ell^{-2s})^{-1}.
\]

If \(\ell \equiv 1 \mod 8 \), then \(\text{Fr}_\ell = 1 \) and thus \(\tilde{\text{Fr}}_\ell = 1 \) or \(\varepsilon \). In this case we must determine \(\tilde{\text{Fr}}_\ell \) completely. Since \(\tilde{\text{Fr}}_\ell(\sqrt{2}) \equiv (\sqrt{2})^\ell \mod \varphi \) for the prime \(\varphi \) of \(K \) over \(\ell \) associated to \(\tilde{\text{Fr}}_\ell \), we have \(\tilde{\text{Fr}}_\ell = 1 \) if \(2^{(\ell-1)/4} \equiv 1 \mod \ell \), and \(\tilde{\text{Fr}}_\ell = \varepsilon \) if \(2^{(\ell-1)/4} \equiv -1 \mod \ell \). As in the previous section, we find that for \(\ell \equiv 1 \mod 8 \), \(2^{(\ell-1)/4} \equiv 1 \mod \ell \) if and only if \(\ell \in P_0 \). So we have

\[
L_\ell(\tilde{\rho}_0, s) = \begin{cases} (1 - \ell^{-s})^{-2} & \text{if } \ell \in P_0, \\ (1 + \ell^{-s})^{-2} & \text{otherwise.} \end{cases}
\]

We get the Artin L-function in the case \((p, q) = (-1, 2) \) as follows:

\[
L(\tilde{\rho}_0, s) = \prod_{\ell \equiv 3 \text{ or } 7 \mod 8} (1 - \ell^{-2s})^{-1} \cdot \prod_{\ell \equiv 5 \mod 8} (1 + \ell^{-2s})^{-1} \\
\times \prod_{\ell \in P_0} (1 - \ell^{-s})^{-2} \cdot \prod_{\ell \equiv 1 \mod 8, \ell \not\in P_0} (1 + \ell^{-s})^{-2}.
\]

6.2. Case of \(q \) odd. In this case, all 2-dimensional irreducible representations of \(\tilde{G} \) are \(\tilde{\rho}_j \) with \(0 \leq j < q - 1, 2 | j \) if \(q \equiv 1 \mod 4 \), and \(0 \leq j < q - 1, 2 \nmid j \) if \(q \equiv 3 \mod 4 \), where \(\tilde{\rho}_j \) is defined by

\[
\tilde{\rho}_j(\tilde{\sigma}_{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tilde{\rho}_j(\tilde{\sigma}_q) = \begin{pmatrix} 0 & \zeta_{q-1} \zeta_j \\ \zeta_{2(q-1)} & 0 \end{pmatrix}, \quad \tilde{\rho}_j(\varepsilon) = -I.
\]

We first determine the local factors \(L_\ell(\tilde{\rho}_j, s) \) for \(\ell \neq 2, q \). For such \(\ell \) we have \(V^{\text{Fr}_\ell} = V \). Let \(\text{Fr}_\ell = \sigma_{-1}^{-1} \sigma_q^{b_\ell} \), which is equivalent to \(\ell \equiv (-1)^a \ell \mod 4 \) and \(\ell \equiv g^{b_\ell} \mod q \), where \(g \) is the primitive root mod \(q \) associated to \(\sigma_q \). It is easy to compute that

\[
\tilde{\rho}_j(\tilde{\sigma}_q^{b_\ell}) = \begin{pmatrix} 0 & \zeta_j^{q-1} \\ 1 & 0 \end{pmatrix}^{b_\ell} = \begin{cases} \zeta_{2(q-1)}^{b_\ell} I & \text{if } 2 | b_\ell, \\ \begin{pmatrix} 0 & \zeta_j^{(b_\ell+1)} \\ \zeta_{2(q-1)} & 0 \end{pmatrix} & \text{if } 2 \nmid b_\ell. \end{cases}
\]
Furthermore,

$$\det(I - \tilde{\rho}_j(\tilde{\sigma}_{-1}^{a\ell} \tilde{\sigma}_{q}^{b\ell})^s) = \begin{cases}
(1 - \zeta_{2(q-1)}^{jb\ell} \ell^{-s})^2 & \text{if } a\ell = 0, 2 \mid b\ell, \\
1 - \zeta_{q-1}^{jb\ell} \ell^{-2s} & \text{if } a\ell = 0, 2 \not\mid b\ell, \\
1 + \zeta_{q-1}^{jb\ell} \ell^{-2s} & \text{if } a\ell = 1, 2 \mid b\ell,
\end{cases}$$

and

$$\det(I + \tilde{\rho}_j(\tilde{\sigma}_{-1}^{a\ell} \tilde{\sigma}_{q}^{b\ell})^s) = \begin{cases}
(1 + \zeta_{2(q-1)}^{jb\ell} \ell^{-s})^2 & \text{if } a\ell = 0, 2 \mid b\ell, \\
1 - \zeta_{q-1}^{jb\ell} \ell^{-2s} & \text{if } a\ell = 0, 2 \not\mid b\ell, \\
1 + \zeta_{q-1}^{jb\ell} \ell^{-2s} & \text{if } a\ell = 1, 2 \mid b\ell.
\end{cases}$$

So we get

$$L_\ell(\tilde{\rho}_j, s) = (1 - \zeta_{q-1}^{jb\ell} \ell^{-2s})^{-1}$$

if \(\ell \equiv 1 \mod 4\) and \(\ell \equiv g^{b\ell} \mod q\) with \(2 \not\mid b\ell\), and also if \(\ell \equiv 3 \mod 4\) and \(\ell \equiv g^{b\ell} \mod q\) with \(2 \mid b\ell\), while

$$L_\ell(\tilde{\rho}_j, s) = (1 + \zeta_{q-1}^{jb\ell} \ell^{-2s})^{-1}$$

if \(\ell \equiv 3 \mod 4\) and \(\ell \equiv g^{b\ell} \mod q\) with \(2 \not\mid b\ell\).

To compute the local factors when \(\ell \equiv 1 \mod 4\) and \(\ell \equiv g^{b\ell} \mod q\) with \(2 \mid b\ell\) we must determine \(\tilde{\mathrm{Fr}}_\ell\) completely. Since \((\frac{\ell}{q}) = 1\), we have \((\frac{q}{\ell}) = 1\) and \((\frac{q}{\ell^2}) = 1\). Let \(\alpha\ell \in \mathbb{Z}\) be such that \(\alpha\ell^2 \equiv q^* \mod \ell\). From \(\tilde{\sigma}_{q}^{b\ell} (\sqrt[4]{q^*}^z) = (-1)^{b\ell/2} \sqrt[4]{q^*}\), we see that \(\tilde{\mathrm{Fr}}_\ell = \tilde{\sigma}_{q}^{b\ell} \) if \((\frac{\alpha\ell}{\ell}) = (-1)^{b\ell/2}\), and \(\tilde{\mathrm{Fr}}_\ell = \tilde{\sigma}_{q}^{b\ell} \) if \((\frac{\alpha\ell}{\ell^2}) = (-1)^{b\ell/2+1}\). So when \(\ell \equiv 1 \mod 4\) and \(\ell \equiv g^{b\ell} \mod q\) with \(2 \mid b\ell\), we have

$$L_\ell(\tilde{\rho}_j, s) = \begin{cases}
(1 - \zeta_{2(q-1)}^{jb\ell} \ell^{-s})^{-2} & \text{if } (\frac{\alpha\ell}{\ell}) = (-1)^{b\ell/2}, \\
(1 + \zeta_{2(q-1)}^{jb\ell} \ell^{-s})^{-2} & \text{if } (\frac{\alpha\ell}{\ell^2}) = (-1)^{b\ell/2+1}.
\end{cases}$$

Next we compute the local factors \(L_2(\tilde{\rho}_j, s)\) and \(L_q(\tilde{\rho}_j, s)\). When \((\frac{2}{q}) = -1\), we know from the previous section that 2 is ramified in \(\tilde{K}/K\). So \(L_2(\tilde{\rho}_j, s) = 1\) in this case. Now we assume \((\frac{2}{q}) = 1\). Since \(I_2 = \langle \sigma_{-1} \rangle\) and 2 is unramified in \(\tilde{K}/K\), we have \(\tilde{I}_2 = \langle \tilde{\sigma}_{-1} \rangle\) or \(\tilde{I}_2 = \langle \tilde{\sigma}_{-1} \rangle\). The matrices \(I + \tilde{\rho}_j(\tilde{\sigma}_{-1})\) and \(I + \tilde{\rho}_j(\tilde{\sigma}_{-1})\) have rank 1, thus \(V^{I_2}\) has dimension 1. Write \(\mathrm{Fr}_2 = \sigma_{2}^{b_2}\) with \(2 \mid b_2\). As in the previous section, we always assume \(b_2 \equiv 2 \mod 4\) if \(q \equiv 3 \mod 4\). Recall that \(P_0\) is the set of all prime numbers of the form \(A^2 + 64B^2\) with \(A, B \in \mathbb{Z}\). Since \(\tilde{\rho}_j(\tilde{\sigma}_{2}^{b_2}) = \zeta_{2(q-1)}^{jb_2} \), by Lemma 4.3
we have

\[L_2(\tilde{\rho}_j, s) = \begin{cases}
1 - \zeta_{2(q-1)}^{jb_2} 2^{-s} & \text{if } q \notin P_0, \ 16 \mid q^* - 1, \text{ or } q \in P_0, \ 16 \mid q^* - 1, \\
1 + \zeta_{2(q-1)}^{jb_2} 2^{-s} & \text{if } q \in P_0, \ 16 \mid q^* - 1, \text{ or } q \notin P_0, \ 16 \mid q^* - 1.
\end{cases} \]

When \(q \equiv 3 \pmod{4} \), we know that \(q \) is ramified in \(\widetilde{K}/K \). So \(L_q(\tilde{\rho}_j, s) = 1 \) for odd \(j \) in this case. Assume \(q \equiv 1 \pmod{4} \). Since \(I_q = \langle \sigma_q \rangle \) and \(q \) is unramified in \(\widetilde{K}/K \), we have \(\tilde{I}_q = \langle \tilde{\sigma}_q \rangle \) or \(\tilde{I}_2 = \langle \tilde{\sigma}_q \varepsilon \rangle \). Thus \(V\tilde{I}_q = 0 \) if \(j \neq 0 \), and \(V\tilde{I}_q \) has dimension 1 if \(j = 0 \).

The Frobenius map \(\text{Fr}_q \) of \(q \) in \(G \) modulo \(I_q \) is the identity map. So \(\text{Fr}_q = 1 \) or \(\varepsilon \). In [7 Sect. 5] we have shown that \(q \) splits in \(\widetilde{K}/K \) if \(q \equiv 1 \pmod{8} \), and is inert if \(q \equiv 5 \pmod{8} \). So \(\text{Fr}_2 = 1 \) if \(q \equiv 1 \pmod{8} \), and \(\text{Fr}_2 = \varepsilon \) if \(q \equiv 5 \pmod{8} \). Thus we get

\[L_q(\tilde{\rho}_j, s) = \begin{cases}
1 & \text{if } j \neq 0, \\
1 - q^{-s} & \text{if } j = 0, \ q \equiv 1 \pmod{8}, \\
1 + q^{-s} & \text{if } j = 0, \ q \equiv 5 \pmod{8}.
\end{cases} \]

We have computed all the local factors, obtaining

\begin{equation}
(6.2) \quad L(\tilde{\rho}_j, s) = (1 - u_q\zeta_{2(q-1)}^{jb_2} 2^{-s})^{-1} (1 - (-1)^{(q-1)/4} q^{-s})^{-\delta_{0j}} \\
\times \prod_{\ell \equiv 1, 2 \mid b_\ell \text{ or } \ell \equiv 3, 2 \mid b_\ell} (1 - \zeta_{q-1}^{jb_\ell} \ell^{-2s})^{-1} \\
\times \prod_{\ell \equiv 3, 2 \mid b_\ell} (1 + \zeta_{q-1}^{jb_\ell} \ell^{-2s})^{-1} \prod_{\ell \equiv 1, 2 \mid b_\ell} (1 - u_\ell \zeta_{2(q-1)}^{jb_\ell} \ell^{-s})^{-2},
\end{equation}

where \(u_q = 1 \) if \(q \notin P_0 \), \(16 \mid q^* - 1 \) or \(q \in P_0 \), \(16 \mid q^* - 1 \), and \(u_q = -1 \) otherwise; \(\delta_{0j} = 0 \) if \(j \neq 0 \) and \(\delta_{00} = 1 \); and \(u_\ell = (\frac{\alpha_\ell}{\ell}) (-1)^{b_\ell/2} \). In the above products, “\(\equiv \)” denotes congruence modulo 4.

Theorem 6.1. Except for the Dirichlet \(L \)-functions, all Artin \(L \)-functions of the Galois extension \(\widetilde{K}/Q \) are explicitly given by (6.1) in the case \(q = 2 \) and by (6.2) in the case of \(q \) odd, where in (6.2) \(0 \leq j < q - 1, \ 2 \mid j \) if \(q \equiv 1 \pmod{4} \) and \(0 \leq j < q - 1, \ 2 \nmid j \) if \(q \equiv 3 \pmod{4} \).

6.3. A formula. Let \(\zeta_{\widetilde{K}}(s) \) and \(\zeta_K(s) \) be the Dedekind zeta functions of \(\widetilde{K} \) and \(K \) respectively. By Artin’s formula for the decomposition of Dedekind zeta functions, we have

\[\frac{\zeta_{\widetilde{K}}(s)}{\zeta_K(s)} = \prod_{\tilde{\rho}_j} \prod_{\ell \text{ prime}} L_\ell(\tilde{\rho}_j, s)^2, \]

where \(\tilde{\rho}_j \) runs over all 2-dimensional irreducible representations of \(\widetilde{G} \). When \(q = 2 \), there is only one 2-dimensional irreducible representation of \(\widetilde{G} \). So the
square of (6.1) gives the formula. When q is odd, by computing $\prod L_\ell(\tilde{\rho}_j, s)$, we get the following

Corollary 6.2. For a prime number $\ell \neq q$, let

$$f_\ell = \frac{q - 1}{\gcd(b_\ell, q - 1)}$$

be the order of ℓ mod q and let

$$g_\ell = \gcd(b_\ell, q - 1) = \frac{q - 1}{f_\ell}.$$

If $q \equiv 1 \pmod{4}$, then

$$\frac{\zeta_K(s)}{\zeta_K(s)} = (1 - u_q^2 2^{-f_2 s})^{g_2} (1 - (-1)(q-1)/4 q^{-s})^{-2} \prod_{\ell \equiv 1, 2|b_\ell \text{ or } \ell \equiv 3} (1 - \ell^{-f_\ell s})^{-2g_\ell} \times \prod_{\ell \equiv 1, 2|\ell} (1 - u_\ell^{f_\ell \ell^{-f_\ell s}})^{-2g_\ell},$$

and if $q \equiv 3 \pmod{4}$, then

$$\frac{\zeta_K(s)}{\zeta_K(s)} = (1 + u_q^2 2^{-f_2 s})^{g_2} \prod_{\ell \equiv 1, 2|b_\ell} (1 + \ell^{-f_\ell s})^{-2g_\ell} \prod_{\ell \equiv 3} (1 - \ell^{-2f_\ell s})^{-g_\ell} \times \prod_{\ell \equiv 1, 2|\ell} (1 + u_\ell^{f_\ell \ell^{-f_\ell s}})^{-2g_\ell},$$

where u_q and u_ℓ are as above.

6.4. The corresponding modular forms

All the 2-dimensional irreducible representations of \tilde{G} in the case $p = -1$ are monomial. It is easy to see that they are odd. By Deligne–Serre’s theorem [6, Th. 2], these Artin L-functions above are equal to the L-functions of some normalized newforms of weight one, which allows one to determine a newform of weight one from a 2-dimensional irreducible odd representation of \tilde{G}. More precisely, the irreducible representation $\tilde{\rho}_j$ of conductor N corresponds to a normalized newform $f_j(z)$ of weight one on $\Gamma_0(N)$ with nebentype $\phi_j = \det(\tilde{\rho}_j)$, which has a Fourier expansion at infinity

$$f_j(z) = \sum_{n=1}^{\infty} a_n^{(j)} q^n, \quad q = e^{2\pi i z},$$

where $a_1^{(j)} = 1$ and the other coefficients a_n are equal to those of the L-function $L(\phi_j, s) = \sum_{n=1}^{\infty} a_n n^{-s}$. In this subsection we describe these modular forms explicitly. Since these newforms are eigenfunctions of Hecke operators, to determine all $a_n^{(j)}$ it is enough to determine $a_{\ell}^{(j)}$ for all primes ℓ.

When $q = 2$, we get one normalized newform $f_0(z)$ of weight 1 on $\Gamma_0(2^7)$ with nebentype $\phi_0 : (\mathbb{Z}/8\mathbb{Z})^* \to \mathbb{C}^*$, where $\phi_0(\sigma_{-1}) = -1$ and $\phi_0(\sigma_2) = 1$.
By (6.1), we directly see that for primes \(\ell \) the coefficients \(a^{(0)}_\ell \) of the newform are given by

\[
a^{(0)}_\ell = \begin{cases}
0 & \text{if } \ell = 2 \text{ or } \ell \equiv 3, 5, 7 \mod 8, \\
2 & \text{if } \ell \in P_0, \\
-2 & \text{if } \ell \equiv 1 \mod 8 \text{ but } \ell \not\in P_0.
\end{cases}
\]

When \(q \) is odd, we get \((q - 1)/2 \) normalized newforms \(f_j(z) \) of weight 1 on \(\Gamma_0(4^{1+\log_2(\ell/3)}q^2) \) with nebentype \(\phi_j : (\mathbb{Z}/4q\mathbb{Z})^* \rightarrow \mathbb{C}^* \), where \(\phi_j(\sigma_{-1}) = -1 \) and \(\phi_j(\sigma_q) = -\zeta_{q-1}^j \). By (6.2) we directly see that for primes \(\ell \neq q \) the coefficients of the newforms are given by

\[
a^{(j)}_\ell = \begin{cases}
u_q \zeta_{2(q-1)}^{jb_\ell} & \text{if } \ell = 2, \\
2u_\ell \zeta_{2(q-1)}^{jb_\ell} & \text{if } \ell \equiv 1 \mod 4 \text{ and } 2 \mid b_\ell, \\
0 & \text{otherwise},
\end{cases}
\]

and

\[
a^{(j)}_q = \begin{cases}
0 & \text{if } j \neq 0, \\
(-1)^{(q-1)/4} & \text{if } j = 0,
\end{cases}
\]

where \(0 \leq j < q - 1, 2 \mid j \) if \(q \equiv 1 \mod 4 \), and \(0 \leq j < q - 1, 2 \nmid j \) if \(q \equiv 3 \mod 4 \); \(b_\ell \) is defined by \(\ell \equiv g^{b_\ell} \mod q \) for a primitive root \(g \) modulo \(q \); \(u_\ell = (\alpha_\ell/\ell) (-1)^{b_\ell/2} \) for an integer \(\alpha_\ell \) such that \(\alpha_\ell^2 \equiv q^* \mod \ell \); and

\[
u_q = \begin{cases}
1 & \text{if } q \not\in P_0, 16 \nmid q^* - 1 \text{ or } q \in P_0, 16 \mid q^* - 1, \\
-1 & \text{if } q \not\in P_0, 16 \mid q^* - 1 \text{ or } q \in P_0, 16 \nmid q^* - 1.
\end{cases}
\]

Here \(P_0 \) is the set of all primes of the form \(A^2 + 64B^2 \) with \(A, B \in \mathbb{Z} \).

Acknowledgments. The authors thank the referee for the careful reading of the manuscript and for correcting some misprints.

S. Bae is supported by NRF of Korea (ASARC R11-2007-035-01001-0).

L. S. Yin is supported by NSFC (No. 10871107).

References

Sunghan Bae
Department of Mathematics
KAIST
Daejeon, Korea

Yong Hu, Linsheng Yin (corresponding author)
Department of Mathematical Sciences
Tsinghua University
Beijing 100084, China
E-mail: lsyin@math.tsinghua.edu.cn

\textit{Received on 24.3.2009}
\textit{and in revised form on 6.9.2009}