The Weil height in terms of an auxiliary polynomial

by

Charles L. Samuels (Austin, TX)

1. Introduction. Let K be a number field and v a place of K dividing the place p of \mathbb{Q}. Let K_{v} and \mathbb{Q}_{p} denote the respective completions. We write $\|\cdot\|_{v}$ to denote the unique absolute value on K_{v} extending the p-adic absolute value on \mathbb{Q}_{p} and let $|\cdot|_{v}=\|\cdot\|_{v}^{\left[K_{v}: \mathbb{Q}_{p}\right] /[K: \mathbb{Q}]}$. Define the logarithmic Weil height of $\alpha \in K$ by

$$
h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v}
$$

where the sum is taken over all places v of K. By the way we have normalized our absolute values, this definition does not depend on K, and therefore, h is a well-defined function on $\overline{\mathbb{Q}}$. By Kronecker's theorem, $h(\alpha) \geq 0$ with equality precisely when α is zero or a root of unity.

For $f \in \mathbb{Z}[x]$ having roots $\alpha_{1}, \ldots, \alpha_{d}$ define the logarithmic Mahler measure of f by

$$
\mu(f)=\sum_{k=1}^{d} h\left(\alpha_{k}\right)
$$

It is also worth noting that if f is irreducible then $\mu(f)=\operatorname{deg} \alpha \cdot h(\alpha)$.
Certainly $\mu(f) \geq 0$ with equality precisely when the only roots of f are 0 and roots of unity. In $1933, \mathrm{D} . \mathrm{H}$. Lehmer [7] asked if there is a constant $c>0$ such that $\mu(f) \geq c$ in all other cases. He noted that

$$
\mu\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)=.1623 \ldots
$$

and this remains the smallest known Mahler measure greater than 0 . The best known unconditional result toward answering Lehmer's problem is a theorem of Dobrowolski [5] where he proves that if f has positive Mahler measure then

$$
\mu(f) \gg\left(\frac{\log \log \operatorname{deg} f}{\log \operatorname{deg} f}\right)^{3}
$$

2000 Mathematics Subject Classification: Primary 11R04, 11R09.
Key words and phrases: Weil height, Mahler measure, Lehmer's problem.

An affirmative answer to Lehmer's problem has been given in certain special cases. A polynomial f is said to be reciprocal if whenever α is a root of f then α^{-1} is also a root. Breusch [4] proved that there exists a positive constant c such that if f is not reciprocal then $\mu(f) \geq c$. Smyth [11] later showed that we may take $c=\mu\left(x^{3}-x+1\right)$. Borwein, Hare and Mossinghoff [3] improved the constant found by Smyth in the special case that f has odd coefficients. They showed that if f is a non-reciprocal polynomial over \mathbb{Z} having odd coefficients, then $\mu(f) \geq \mu\left(x^{2}-x-1\right)$.

Borwein, Dobrowolski and Mossinghoff [2] relaxed the assumption that f not be reciprocal and still obtained an absolute lower bound on $\mu(f)$. They used properties of the resultant to prove that if f has no cyclotomic factors and coefficients congruent to $1 \bmod m$ then

$$
\mu(f) \geq c_{m} \frac{\operatorname{deg} f}{1+\operatorname{deg} f}
$$

where $c_{2}=(\log 5) / 4$ and $c_{m}=\log \left(\sqrt{m^{2}+1} / 2\right)$ for all $m>2$. These results appear in [2] as Corollaries 3.4 and 3.5 to Theorem 3.3. This theorem gives a lower bound of the form

$$
\begin{equation*}
\mu(f) \geq c_{m}(T) \frac{\operatorname{deg} f}{1+\operatorname{deg} f} \tag{1.1}
\end{equation*}
$$

where f has no cyclotomic factors and coefficients congruent to $1 \bmod m$. Here, $c_{m}(T)$ is a positive constant depending on both m and an auxiliary polynomial $T \in \mathbb{Z}[x]$. The corollaries follow by making an appropriate choice of T.

Extending the techniques of [2], Dubickas and Mossinghoff [6] improved inequality (1.1) by finding a lower bound of the form

$$
\begin{equation*}
\mu(g) \geq b_{m}(T) \frac{\operatorname{deg} g}{1+\operatorname{deg} f} \tag{1.2}
\end{equation*}
$$

where $b_{m}(T) \geq c_{m}(T)$. Here, g has no cyclotomic factors and is a factor of a polynomial f having coefficients congruent to $1 \bmod m$. Moreover, they produced an algorithm which generates a sequence of polynomials $\left\{T_{k}\right\}$ such that the sequence $\left\{b_{m}\left(T_{k}\right)\right\}$ is increasing and $b_{m}\left(T_{k}\right)>c_{m}$ for sufficiently large k.

In a slightly different direction, Schinzel [10] proved that if α is a totally real algebraic integer, not 0 or ± 1, then $h(\alpha) \geq \frac{1}{2} \log \frac{1+\sqrt{5}}{2}$. Bombieri and Zannier [1] proved that if α is a totally p-adic algebraic number, not 0 or a root of unity, then $h(\alpha) \geq \frac{\log p}{2(p+1)}$.

If, in addition, α is an algebraic unit, Petsche [9] gave the improved lower bound

$$
\begin{equation*}
h(\alpha) \geq \frac{c_{p}}{p-1} \tag{1.3}
\end{equation*}
$$

where $c_{2}=\log \sqrt{2}$ and $c_{p}=\log (p / 2)$ for all primes $p>2$. Dubickas and Mossinghoff [6] introduced an auxiliary polynomial to this problem as well, giving the lower bound

$$
\begin{equation*}
h(\alpha) \geq \frac{b_{p}(T)}{p-1} \tag{1.4}
\end{equation*}
$$

where $b_{p}(T)$ is the same as in (1.2). They showed how to find a sequence of auxiliary polynomials that further improved (1.3).

As we have remarked, the well-known lower bounds (1.1), (1.2) and (1.4) all rely on an auxiliary polynomial T. However, each of these bounds requires an assumption on α. Our main result, Theorem 2.2 , shows that if $\alpha \in \overline{\mathbb{Q}}$ then $h(\alpha)$ can be written in terms of an auxiliary polynomial. In Section 3, we show that this theorem naturally contains the results of [6]. Finally, in Sections 4 and 5 we deduce two other interesting consequences of our main result.
2. Main results. Let Ω_{v} be the completion of an algebraic closure of K_{v}. We define the logarithmic local supremum norm of $T \in \Omega_{v}[x]$ on the unit circle by

$$
\nu_{v}(T)=\log \sup \left\{|T(z)|_{v}: z \in \Omega_{v} \text { and }|z|_{v}=1\right\}
$$

For $\alpha \in \Omega_{v}$ and $N \in \mathbb{Z}$ such that $\operatorname{deg} T \leq N$ define

$$
U_{v}(N, \alpha, T)=\inf \left\{\nu_{v}(T-f): f \in \Omega_{v}[x], f(\alpha)=0 \text { and } \operatorname{deg} f \leq N\right\}
$$

We now obtain the following lemma which relates $U_{v}(N, \alpha, T)$ to more familiar functions.

Lemma 2.1. Let $N \in \mathbb{Z}$ and $\alpha \in \Omega_{v}$. If $T \in \Omega_{v}[x]$ is such that $\operatorname{deg} T$ $\leq N$ then

$$
\begin{align*}
U_{v}(N, \alpha, T) & =\log |T(\alpha)|_{v}+U_{v}(N, \alpha, 1) \tag{2.1}\\
& =\log |T(\alpha)|_{v}-N \log ^{+}|\alpha|_{v}
\end{align*}
$$

Proof. If $T(\alpha)=0$ then all parts of equations (2.1) equal $-\infty$, so we assume that $T(\alpha) \neq 0$. Let us first verify the left hand equation. For simplicity define the set

$$
S_{v}(\alpha, N)=\left\{f \in \Omega_{v}[x]: f(\alpha)=0 \text { and } \operatorname{deg} f \leq N\right\}
$$

It is clear that

$$
\begin{aligned}
U_{v}(N, \alpha, T) & =\inf \left\{\nu_{v}(T(x)-f(x)): f \in S_{v}(\alpha, N)\right\} \\
& =\inf \left\{\nu_{v}(T(x)-(T(x)-T(\alpha)+f(x))): f \in S_{v}(\alpha, N)\right\} \\
& =\inf \left\{\nu_{v}(T(\alpha)-f(x)): f \in S_{v}(\alpha, N)\right\} \\
& =\inf \left\{\nu_{v}(T(\alpha)(1-f(x))): f \in S_{v}(\alpha, N)\right\}
\end{aligned}
$$

Since ν_{v} is the logarithm of a norm, we may factor $T(\alpha)$ out of the infimum to see that

$$
\begin{aligned}
U_{v}(N, \alpha, T) & =\log |T(\alpha)|_{v}+\inf \left\{\nu_{v}(1-f(x)): f \in S_{v}(\alpha, N)\right\} \\
& =\log |T(\alpha)|_{v}+U_{v}(N, \alpha, 1)
\end{aligned}
$$

which establishes the left hand equality.
In order to establish the right hand equality we must show that $U_{v}(N, \alpha, 1)$ $=-N \log ^{+}|\alpha|_{v}$. We first claim that if $N \in \mathbb{Z}$ then

$$
\begin{equation*}
\log |F(\alpha)|_{v} \leq \nu_{v}(F)+N \log ^{+}|\alpha|_{v} \tag{2.2}
\end{equation*}
$$

for all $F \in \Omega_{v}[x]$ with $\operatorname{deg} F \leq N$. To see this, write $F(x)=\sum_{k=0}^{\operatorname{deg} F} a_{k} x^{k}$. If v is non-Archimedean then we have

$$
\begin{equation*}
\nu_{v}(F)=\log \max \left\{\left|a_{k}\right|_{v}: 0 \leq k \leq \operatorname{deg} F\right\} \tag{2.3}
\end{equation*}
$$

and (2.2) follows from the strong triangle inequality. We now assume that v is Archimedean. If $|\alpha|_{v} \leq 1$ then the inequality follows from the maximum principle. If $|\alpha|_{v}>1$ then we obtain

$$
\log \left|\alpha^{-\operatorname{deg} F} F(\alpha)\right|_{v} \leq \nu_{v}\left(x^{\operatorname{deg} F} F\left(x^{-1}\right)\right)=\nu_{v}(F)
$$

and (2.2) follows.
Now suppose that $f \in S_{v}(\alpha, N)$. Therefore, $\operatorname{deg}(1-f) \leq N$ and inequality (2.2) implies that

$$
0=\log |1-f(\alpha)|_{v} \leq \nu_{v}(1-f)+N \log ^{+}|\alpha|_{v}
$$

This inequality holds for all polynomials $f \in S_{v}(\alpha, N)$ so that the right hand side may be replaced by its infimum over all such f. That is, we obtain $0 \leq U_{v}(N, \alpha, 1)+N \log ^{+}|\alpha|_{v}$ so we find that

$$
\begin{equation*}
U_{v}(N, \alpha, 1) \geq-N \log ^{+}|\alpha|_{v} \tag{2.4}
\end{equation*}
$$

We will now establish the opposite direction of (2.4) by making specific choices for f to give upper bounds on $U_{v}(N, \alpha, 1)$. By taking $f \equiv 0$ we see easily that $U_{v}(N, \alpha, 1) \leq 0$. Similarly, by taking $f(x)=1-(x / \alpha)^{N}$ we obtain

$$
U_{v}(N, \alpha, 1) \leq \nu_{v}(x / \alpha)^{N}=-N \log |\alpha|_{v}
$$

Hence

$$
\begin{equation*}
U_{v}(N, \alpha, 1) \leq \min \left\{0,-N \log |\alpha|_{v}\right\}=-N \log ^{+}|\alpha|_{v} \tag{2.5}
\end{equation*}
$$

If $\alpha \in K$ and $T \in K[x]$ are such that $T(\alpha) \neq 0$ then Lemma 2.1 implies that $U_{v}(N, \alpha, T)=0$ for all but finitely many places v of K. Hence, in this situation we may define

$$
U(N, \alpha, T)=\sum_{v} U_{v}(N, \alpha, T)
$$

where v runs over the places of K. We note that this definition does not depend on K, so that U is a well-defined function on $\{(\alpha, T) \in \overline{\mathbb{Q}} \times \overline{\mathbb{Q}}[x]$: $T(\alpha) \neq 0\}$. We are now prepared to state and prove our main result.

Theorem 2.2. Let $N \in \mathbb{Z}$ and $\alpha \in \overline{\mathbb{Q}}$. If $T \in \overline{\mathbb{Q}}[x]$ is such that $\operatorname{deg} T$ $\leq N$ and $T(\alpha) \neq 0$ then

$$
U(N, \alpha, T)=U(N, \alpha, 1)=-N h(\alpha) .
$$

Proof. Assume that K is a number field containing α and the coefficients of T, and v is a place of K. We know that the absolute value $|\cdot|_{v}$ satisfies the product formula $\prod_{v}|\beta|_{v}=1$ for all $\beta \in K^{\times}$. Hence, summing the equation of Lemma 2.1 over all places v of K we get

$$
\begin{equation*}
U(N, \alpha, T)=U(N, \alpha, 1)=-N h(\alpha), \tag{2.6}
\end{equation*}
$$

which establishes the theorem.
3. Polynomials near $x^{n}-1$. As we have remarked, Theorem 2.2 naturally generalizes the results of Dubickas and Mossinghoff in [6]. We will give a single result that contains both their bound on the Mahler measure of a polynomial having coefficients congruent to $1 \bmod m$ and their bound on the height of a totally p-adic algebraic unit.

Let us begin by reconstructing the situation of [6]. For an auxiliary polynomial $T \in \mathbb{Z}[x]$ and a positive integer m define

$$
\begin{equation*}
\omega_{m}(T)=\log \operatorname{gcd}\left\{\frac{m^{k} T^{(k)}(1)}{k!}: 0 \leq k \leq \operatorname{deg} T\right\} . \tag{3.1}
\end{equation*}
$$

Also assume that f is a polynomial of degree $n-1$ with integer coefficients congruent to $1 \bmod m$. The authors prove (Theorem 2.2 of [6]) that if g is a factor of f over \mathbb{Z} satisfying $\operatorname{gcd}\left(g(x), T\left(x^{n}\right)\right)=1$ then

$$
\begin{equation*}
\mu(g) \geq \frac{\omega_{m}(T)-\nu_{\infty}(T)}{\operatorname{deg} T} \cdot \frac{\operatorname{deg} g}{n} . \tag{3.2}
\end{equation*}
$$

Later they prove (Theorem 4.2 of [6]) that if α is a totally p-adic algebraic unit then

$$
\begin{equation*}
h(\alpha) \geq \frac{\omega_{p}(T)-\nu_{\infty}(T)}{(p-1) \operatorname{deg} T} . \tag{3.3}
\end{equation*}
$$

Our goal is to produce a generalization of (3.2) where T and f are allowed to have algebraic coefficients. Our version also contains (3.3) as a corollary.

Before we begin, we make one final trivial remark regarding the hypotheses of [6]. The assumption that f have degree $n-1$ and coefficients congruent to $1 \bmod m$ is equivalent to the assumption that $(x-1) f(x) \equiv x^{n}-1 \bmod m$. Therefore, we can make a slightly stronger conclusion by hypothesizing instead that $f(x) \equiv x^{n}-1 \bmod m$ and bounding the Mahler measure of all factors g of f.

We will require a version of $\omega_{m}(T)$ defined in (3.1) that allows m to be a general algebraic number and T to have any algebraic coefficients. If K is a number field, $m \in K$ and $T \in K[x]$ define

$$
\begin{equation*}
\omega_{m}(T)=-\sum_{v \nmid \infty} \log \max \left\{\left|\frac{m^{k} T^{(k)}(1)}{k!}\right|_{v}: 0 \leq k \leq \operatorname{deg} T\right\} \tag{3.4}
\end{equation*}
$$

where the sum is taken over places v of K. By the way we have normalized our absolute values, this definition does not depend on K. Moreover, if $m \in \mathbb{Z}$ and $T \in \mathbb{Z}[x]$ then (3.4) is the same as the definition (3.1).

If $\alpha, \beta, m \in K$, then we write $\alpha \equiv \beta \bmod m$ if $|\alpha-\beta|_{v} \leq|m|_{v}$ for all $v \nmid \infty$. Similarly, if $f, g \in K[x]$ we write $f \equiv g \bmod m$ if $\nu_{v}(f-g) \leq \log |m|_{v}$ for all $v \nmid \infty$. Neither definition depends on K and both generalize the usual notions of congruence in \mathbb{Z}. If $T \in K[x]$ we often write $\nu_{\infty}(T)=\sum_{v \mid \infty} \nu_{v}(T)$ where v runs over places of K. This notation again does not depend on K.

It will also be convenient for this section and future applications to define $U_{v}(\alpha, T)=U_{v}(\operatorname{deg} T, \alpha, T)$ and $U(\alpha, T)=U(\operatorname{deg} T, \alpha, T)$.

Using the definitions above, we obtain our generalized version of the results of [6].

Theorem 3.1. Let m be an algebraic number. Suppose that $f \in \overline{\mathbb{Q}}[x]$ has degree n and $f(x) \equiv x^{n}-1 \bmod m$. If α is a root of f and $T \in \overline{\mathbb{Q}}[x]$ is such that $T\left(\alpha^{n}\right) \neq 0$ then

$$
h(\alpha) \geq \frac{\omega_{m}(T)-\nu_{\infty}(T)}{n \operatorname{deg} T} .
$$

Proof. Let K be a number field containing α and the coefficients of T and let v index the places of K. Using Theorem 2.2 with $N=\operatorname{deg} T$ and the definition of U_{v} we have

$$
\begin{equation*}
-n \operatorname{deg} T \cdot h(\alpha) \leq \sum_{v \nmid \infty} U_{v}\left(\alpha, T\left(x^{n}\right)\right)+\nu_{\infty}(T) \tag{3.5}
\end{equation*}
$$

so we must show that $\sum_{v \nmid \infty} U_{v}\left(\alpha, T\left(x^{n}\right)\right) \leq-\omega_{m}(T)$. Let $v \nmid \infty$. Writing T in its Taylor expansion at 1 and using the binomial theorem we find that

$$
\begin{aligned}
U_{v}\left(\alpha, T\left(x^{n}\right)\right) & =U_{v}\left(\alpha, \sum_{k=0}^{\operatorname{deg} T} \frac{T^{(k)}(1)}{k!}\left(x^{n}-1\right)^{k}\right) \\
& \leq \nu_{v}\left(\sum_{k=0}^{\operatorname{deg} T} \frac{T^{(k)}(1)}{k!}\left(x^{n}-1-f(x)\right)^{k}\right) .
\end{aligned}
$$

Then using the strong triangle inequality for ν_{v} we obtain
$U_{v}\left(\alpha, T\left(x^{n}\right)\right) \leq \max \left\{\log \left|\frac{T^{(k)}(1)}{k!}\right|_{v}+k \nu_{v}\left(x^{n}-1-f(x)\right): 0 \leq k \leq \operatorname{deg} T\right\}$.

Since $f(x) \equiv x^{n}-1 \bmod m$ we have $\nu_{v}\left(x^{n}-1-f(x)\right) \leq \log |m|_{v}$. Consequently,
$\sum_{v \nmid \infty} U_{v}\left(\alpha, T\left(x^{n}\right)\right) \leq \sum_{v \nmid \infty} \log \max \left\{\left|\frac{m^{k} T^{(k)}(1)}{k!}\right|_{v}: 0 \leq k \leq \operatorname{deg} T\right\}=-\omega_{m}(T)$ and the theorem follows from (3.5).

If we assume that f and T have integer coefficients and m is a positive integer then we recover Theorem 2.2 of [6].

Corollary 3.2. Let $f \in \mathbb{Z}[x]$ have degree n and $f(x) \equiv x^{n}-1 \bmod m$. If g is a factor of f and $T \in \mathbb{Z}[x]$ is such that $\operatorname{gcd}\left(g(x), T\left(x^{n}\right)\right)=1$ then

$$
\mu(g) \geq \frac{\omega_{m}(T)-\nu_{\infty}(T)}{\operatorname{deg} T} \cdot \frac{\operatorname{deg} g}{n} .
$$

Proof. Apply Theorem 3.1 to each root α of g and the result follows.
We also recover Theorem 4.2 of [6] giving a lower bound on the height of a totally p-adic algebraic unit.

Corollary 3.3. If α is a totally p-adic algebraic unit and $T \in \mathbb{Z}[x]$ is such that $T\left(\alpha^{p-1}\right) \neq 0$ then

$$
h(\alpha) \geq \frac{\omega_{p}(T)-\nu_{\infty}(T)}{(p-1) \operatorname{deg} T} .
$$

Proof. For a general number field K and a non-Archimedean place v of K dividing the place p of \mathbb{Q}, let $O_{v}=\left\{x \in K_{v}:|x|_{v} \leq 1\right\}$ denote the ring of v-adic integers in K_{v} and let π_{v} be a generator of its unique maximal ideal $M_{v}=\left\{x \in K_{v}:|x|_{v}<1\right\}$. Let $d_{v}=\left[K_{v}: \mathbb{Q}_{p}\right]$ denote the local degree and $d=[K: \mathbb{Q}]$ the global degree. We also define the residue degree f_{v} by $p^{f_{v}}=\left|O_{v} / M_{v}\right|$ and note that $\left|\pi_{v}\right|_{v}=\|p\|_{v}^{f_{v} / d}$. If K is a totally p-adic field then we have $f_{v}=d_{v}=1$ for all $v \mid p$.

Now assume that K is the totally p-adic field $\mathbb{Q}(\alpha)$. If v is a place of K dividing p then

$$
\left|\alpha^{p-1}-1\right|_{v} \leq\left|\pi_{v}\right|_{v}=\|p\|_{v}^{f_{v} / d}=\|p\|_{v}^{d_{v} / d}=|p|_{v},
$$

and if v does not divide p or ∞ then

$$
\left|\alpha^{p-1}-1\right|_{v} \leq 1=|p|_{v} .
$$

Hence $x^{p-1}-1 \equiv x^{p-1}-\alpha^{p-1} \bmod p$. Now we may apply Theorem 3.1 with $m=p$ and $f(x)=x^{p-1}-\alpha^{p-1}$ and the result follows.
4. Polynomials near $\left(x^{n}-1\right)^{r}$. In this section, we apply Theorem 2.2 in order to examine the Mahler measure of any factor of a polynomial f satisfying $f(x) \equiv\left(x^{n}-1\right)^{r} \bmod m$. In particular, we obtain the following explicit lower bound.

THEOREM 4.1. Suppose that $f \in \mathbb{Z}[x]$ has degree $n r, m \geq 2$ is an integer, and $f(x) \equiv\left(x^{n}-1\right)^{r} \bmod m$. If g is a factor of f over \mathbb{Z} having no cyclotomic factors then

$$
\mu(g) \geq c \frac{\operatorname{deg} g}{n 2^{r}}
$$

where c is the unique positive number satisfying $c e^{c / 2} \log 3=\log (3 / 2) \log 2$. (Note that $c=.22823 \ldots$.)

As an application, let T be a product of cyclotomic polynomials of degree $2 N$. Then we may apply Theorem 4.1 with $g(x)=T(x)+m x^{N}$ where $|m| \geq 2$. In this situation, r is the maximum multiplicity of the cyclotomic polynomials in the factorization of T over \mathbb{Z}. These types of polynomials have been studied extensively (see, for example, [8]) and our results yield a lower bound on any such g, although it is not absolute for this entire class of polynomials.

Of course, Theorem 4.1 is not helpful when g is a product of cyclotomic polynomials with the middle coefficient shifted by only 1 . Numerical evidence presented in [8] suggests that these polynomials form a relatively rich collection of polynomials of small Mahler measure. Hence it would be useful to have a method for giving a lower bound on their Mahler measure. However, we are unable to do so in this paper.

We also note that Theorem 4.1 is weaker than Corollaries 3.3 and 3.4 of [2] when $r=1$. In this situation, we may appeal to [6] or the results of Section 3 to obtain the sharpest known bounds.

The proof of Theorem 4.1 will require three lemmas as well as some additional notation. Suppose that g and T are polynomials over any field K. As $K[x]$ is a unique factorization domain, we may write $\lambda_{g}(T)$ to denote the multiplicity of g in the factorization of T. If G is a collection of polynomials over K, then let $\lambda_{G}(T)=\sum_{g \in G} \lambda_{g}(T)$.

Our first lemma is a direct generalization of Theorem 3.3 of [2].
LEmmA 4.2. Suppose that $f \in \mathbb{Z}[x]$ has degree $n r$ and $f(x) \equiv\left(x^{n}-1\right)^{r}$ $\bmod m$. If g is a factor of f over \mathbb{Z} and $T \in \mathbb{Q}[x]$ is relatively prime to g then

$$
\begin{equation*}
\mu(g) \geq \frac{\lambda_{x^{n}-1}(T) \log m-r \nu_{\infty}(T)}{r \operatorname{deg} T} \operatorname{deg} g \tag{4.1}
\end{equation*}
$$

Moreover, if $2 \mid m$ then

$$
\begin{equation*}
\mu(g) \geq \frac{\lambda_{x^{n}-1}(T) \log m+\lambda_{G_{n}}(T) \log 2-r \nu_{\infty}(T)}{r \operatorname{deg} T} \operatorname{deg} g \tag{4.2}
\end{equation*}
$$

where $G_{n}=\left\{x^{n 2^{j}}+1: j \geq 0\right\}$.

Proof. Suppose that α is a root of f, K is a number field containing α, and v indexes the places of K. First observe that if $F_{1}, F_{2} \in \Omega_{v}[x]$ then $\nu_{v}\left(F_{1} F_{2}\right) \leq \nu_{v}\left(F_{1}\right)+\nu_{v}\left(F_{2}\right)$. This yields the multiplicativity relation

$$
\begin{equation*}
U_{v}\left(\alpha, F_{1} F_{2}\right) \leq U_{v}\left(\alpha, F_{1}\right)+U_{v}\left(\alpha, F_{2}\right) \tag{4.3}
\end{equation*}
$$

Theorem 2.2 implies that

$$
\begin{equation*}
-r \operatorname{deg} T \cdot h(\alpha) \leq \sum_{v \nmid \infty} U_{v}\left(\alpha, T^{r}\right)+r \nu_{\infty}(T) \tag{4.4}
\end{equation*}
$$

Suppose that $T_{0} \in \mathbb{Z}[x]$ is such that $T(x)^{r}=\left(x^{n}-1\right)^{r \lambda_{x^{n}-1}(T)} T_{0}(x)$. We know that since T_{0} has integer coefficients, $U_{v}\left(\alpha, T_{0}\right) \leq \nu_{v}\left(T_{0}\right) \leq 0$. Then (4.3) implies that

$$
U_{v}\left(\alpha, T^{r}\right) \leq \lambda_{x^{n}-1}(T) U_{v}\left(\alpha,\left(x^{n}-1\right)^{r}\right) \leq \lambda_{x^{n}-1}(T) \nu_{v}\left(\left(x^{n}-1\right)^{r}-f(x)\right)
$$

Since f has integer coefficients and satisfies $f(x) \equiv\left(x^{n}-1\right)^{r} \bmod m$ we know that $\sum_{v \nmid \infty} \nu_{v}\left(\left(x^{n}-1\right)^{r}-f(x)\right) \leq-\log m$. It follows that

$$
\begin{equation*}
-r \operatorname{deg} T \cdot h(\alpha) \leq-\lambda_{x^{n}-1}(T) \log m+r \nu_{\infty}(T) \tag{4.5}
\end{equation*}
$$

Applying (4.5) to each root α of g, we obtain (4.1).
Next, assume that $2 \mid m$. In this situation, write

$$
T(x)^{r}=T_{0}(x)\left(x^{n}-1\right)^{r \lambda_{x^{n}-1}(T)} \prod_{j \geq 0}\left(x^{n 2^{j}}+1\right)^{r \lambda_{x^{n 2 j}+1}(T)}
$$

for some $T_{0} \in \mathbb{Z}[x]$. In addition to the congruence $f(x) \equiv\left(x^{n}-1\right)^{r} \bmod m$, for each $j \geq 0$ there exists $b_{j} \in \mathbb{Z}[x]$ such that $f(x) b_{j}(x) \equiv\left(x^{n 2^{j}}+1\right)^{r} \bmod 2$. Hence,

$$
\sum_{v \nmid \infty} \nu_{v}\left(x^{n 2^{j}}+1-f(x) b_{j}(x)\right) \leq-\log 2
$$

for all $j \geq 0$. Now we find that

$$
\begin{aligned}
U_{v}\left(\alpha, T^{r}\right) \leq & \lambda_{x^{n}-1}(T) \nu_{v}\left(\left(x^{n}-1\right)^{r}-f(x)\right) \\
& +\sum_{j \geq 0} \lambda_{x^{n 2^{j}+1}}(T) \nu_{v}\left(x^{n 2^{j}}+1-f(x) b_{j}(x)\right)
\end{aligned}
$$

for all $v \nmid \infty$. Therefore, (4.4) yields

$$
-r \operatorname{deg} T \cdot h(\alpha) \leq-\lambda_{x^{n}-1}(T) \log m-\lambda_{G_{n}}(T) \log 2+r \nu_{\infty}(T)
$$

and the result follows by a similar argument to the above.
Note that the right hand sides of the inequalities of Lemma 4.2 are less than 0 when r is large compared to m. Hence, it may appear that these bounds are useful only when r is small. However, a simple consequence of Lemma 4.2 allows us to give non-trivial lower bounds when r is large.

Lemma 4.3. Let p be prime and q be a power of p such that $\operatorname{deg} f=n q$ and $f(x) \equiv\left(x^{n}-1\right)^{q} \bmod p$. If g is a factor of f over \mathbb{Z} and $T \in \mathbb{Q}[x]$ is such that $\operatorname{gcd}\left(T\left(x^{q}\right), g(x)\right)=1$ then

$$
\begin{equation*}
\mu(g) \geq \frac{\lambda_{x^{n}-1}(T) \log p-\nu_{\infty}(T)}{q \operatorname{deg} T} \operatorname{deg} g \tag{4.6}
\end{equation*}
$$

Moreover, if $p=2$ then

$$
\begin{equation*}
\mu(g) \geq \frac{\left(\lambda_{x^{n}-1}(T)+\lambda_{G_{n}}(T)\right) \log 2-\nu_{\infty}(T)}{q \operatorname{deg} T} \operatorname{deg} g \tag{4.7}
\end{equation*}
$$

where $G_{n}=\left\{x^{n 2^{j}}+1: j \geq 0\right\}$.
Proof. We know that $f(x) \equiv\left(x^{n}-1\right)^{q} \equiv x^{n q}-1 \bmod p$. Therefore, we may apply Lemma 4.2 with $m=p, r=1$ and $T\left(x^{q}\right)$ in place of $T(x)$. We obtain

$$
\begin{aligned}
\mu(g) & \geq \frac{\lambda_{x^{n q}-1}\left(T\left(x^{q}\right)\right) \log p-\nu_{\infty}\left(T\left(x^{q}\right)\right)}{q \operatorname{deg} T} \operatorname{deg} g \\
& =\frac{\lambda_{x^{n}-1}(T) \log p-\nu_{\infty}(T)}{q \operatorname{deg} T} \operatorname{deg} g
\end{aligned}
$$

Inequality (4.7) follows from a similar argument.
In the hypotheses of Lemma 4.2 we are given $f(x) \equiv\left(x^{n}-1\right)^{r} \bmod m$, so we may also apply Lemma 4.3 with p a prime dividing m and $q=p^{\left\lceil\log _{p} r\right\rceil}$. We know that $\left(x^{n}-1\right)^{q-r} f(x) \equiv\left(x^{n}-1\right)^{q} \bmod p$ so that Lemma 4.3 still applies to any factor g of f.

As we have noted, this method allows us to deduce non-trivial lower bounds on the Mahler measure even when r is large. There is the disadvantage that q is potentially much larger than r, making the inequalities of Lemma 4.3 weaker than those of Lemma 4.2 in some cases. Furthermore, if m has many prime factors, p will be significantly smaller than m, again making the inequalities of Lemma 4.3 weaker than those of Lemma 4.2.

As a general rule, we will use Lemma 4.2 when r is small and Lemma 4.3 when r is large to obtain the best universal results. We see this strategy in the proof of our next lemma.

Lemma 4.4. Suppose that $f \in \mathbb{Z}[x]$ has degree $n r$ and $f(x) \equiv\left(x^{n}-1\right)^{r}$ $\bmod m$. If g is a factor of f over \mathbb{Z} having no cyclotomic factors then

$$
\begin{equation*}
\mu(g) \geq \log \left(\frac{m}{2^{r}}\right) \cdot \frac{\operatorname{deg} g}{n r} \tag{4.8}
\end{equation*}
$$

If p is a prime dividing m then

$$
\begin{equation*}
\mu(g) \geq \frac{1}{p} \log \left(\frac{p}{2}\right) \cdot \frac{\operatorname{deg} g}{n r} \tag{4.9}
\end{equation*}
$$

and if 2 divides m then

$$
\begin{equation*}
\mu(g) \geq \frac{\log 2}{4} \cdot \frac{\operatorname{deg} g}{n r} \tag{4.10}
\end{equation*}
$$

Proof. To prove (4.8), we apply Lemma 4.2 with $T(x)=x^{n}-1$ and the inequality follows immediately.

To prove (4.9), we let p be a prime dividing m and set $q=p^{\left\lceil\log _{p} r\right\rceil}$. Therefore q is an integer greater than or equal to r so that $\left(x^{n}-1\right)^{q-r} f(x) \equiv$ $\left(x^{n}-1\right)^{q} \bmod p$. Using $T(x)=x^{n}-1$ with inequality (4.6) of Lemma 4.3 we find that

$$
\mu(g) \geq \log \left(\frac{p}{2}\right) \cdot \frac{\operatorname{deg} g}{n q}
$$

But we also know that $q=p^{\left\lceil\log _{p} r\right\rceil}<p^{1+\log _{p} r}=p r$ so that

$$
\mu(g) \geq \log \left(\frac{p}{2}\right) \cdot \frac{\operatorname{deg} g}{n p r}
$$

which is the desired inequality.
Finally, to prove (4.10), suppose that $2 \mid m$ and $q=2^{\left\lceil\log _{2} r\right\rceil}$. Use $T(x)=$ $x^{2 n}-1$ in inequality (4.7) of Lemma 4.3 to obtain the desired result.

Proof of Theorem 4.1. Let $c_{0}=c /(2 \log 2)$. We distinguish the following three cases:
(i) $m \geq 2^{r+c_{0}}$,
(ii) $m<2^{r+c_{0}}$ and $2 \mid m$,
(iii) $m<2^{r+c_{0}}$ and $2 \nmid m$.

If $m \geq 2^{r+c_{0}}$ then we use inequality (4.8) of Lemma 4.4 to find that

$$
\mu(g) \geq c_{0} \log 2 \cdot \frac{\operatorname{deg} g}{n r} \geq 2 c_{0} \log 2 \cdot \frac{\operatorname{deg} g}{n 2^{r}}=c \frac{\operatorname{deg} g}{n 2^{r}}
$$

If $m<2^{r+c_{0}}$ and $2 \mid m$ then inequality (4.10) implies that

$$
\mu(g) \geq \frac{\log 2}{4} \cdot \frac{\operatorname{deg} g}{n r} \geq \frac{\log 2}{2} \cdot \frac{\operatorname{deg} g}{n 2^{r}} \geq c \frac{\operatorname{deg} g}{n 2^{r}}
$$

If $m<2^{r+c_{0}}$ and $p \neq 2$ is a prime dividing m then we apply inequality (4.9) to find that

$$
\begin{aligned}
\mu(g) & \geq \frac{1}{p} \log \left(\frac{p}{2}\right) \cdot \frac{\operatorname{deg} g}{n r} \geq\left(1-\frac{\log 2}{\log p}\right) \cdot \frac{\log p}{p} \cdot \frac{\operatorname{deg} g}{n r} \\
& \geq \frac{\log (3 / 2)}{\log 3} \cdot \frac{\log p}{p} \cdot \frac{\operatorname{deg} g}{n r} .
\end{aligned}
$$

However, the function $(\log x) / x$ is decreasing for $x \geq e$. Since $p \leq m<2^{r+c_{0}}$, we conclude that

$$
\frac{\log p}{p}>\frac{\left(r+c_{0}\right) \log 2}{2^{r+c_{0}}}>\frac{r \log 2}{2^{r+c_{0}}}
$$

and hence,

$$
\mu(g) \geq \frac{\log (3 / 2) \log 2}{2^{c_{0}} \log 3} \cdot \frac{\operatorname{deg} g}{n 2^{r}}
$$

We know that $2^{c_{0}}=e^{c / 2}$ so that by our definition of c we obtain

$$
\mu(g) \geq c \frac{\operatorname{deg} g}{n 2^{r}}
$$

which establishes the theorem in the final case.
5. Polynomials near polynomials of low Archimedean supremum norm. Suppose that m is a non-zero algebraic number. We now examine the situation where f and T are polynomials over $\overline{\mathbb{Q}}$ of the same degree with $f \equiv T \bmod m$. If K is a number field containing m with v indexing the places of K, let

$$
N(m)=\sum_{v \mid \infty} \log |m|_{v}=-\sum_{v \nmid \infty} \log |m|_{v}
$$

Note that this definition does not depend on K and the second equality follows from the product formula. Recall that we write $\nu_{\infty}(T)=\sum_{v \mid \infty} \nu_{v}(T)$ and we say that $f \equiv T \bmod m$ if $\nu_{v}(T-f) \leq \log |m|_{v}$ for all $v \nmid \infty$.

Theorem 5.1. Suppose that f and T are polynomials over $\overline{\mathbb{Q}}$ of the same degree such that $f \equiv T \bmod m$. If α satisfies $f(\alpha)=0$ and $T(\alpha) \neq 0$ then

$$
\operatorname{deg} T \cdot h(\alpha) \geq N(m)-\nu_{\infty}(T)
$$

Proof. Let K be a number field containing α, m, the coefficients of T and the coefficients of f. By Theorem 2.2 we find that

$$
-\operatorname{deg} T \cdot h(\alpha) \leq \sum_{v \nmid \infty} U_{v}(\alpha, T)+\nu_{\infty}(T)
$$

If $v \nmid \infty$ then $U_{v}(\alpha, T) \leq \nu_{v}(T-f) \leq \log |m|_{v}$ and the result follows. -
Clearly, in order for Theorem 5.1 to yield a non-trivial lower bound, we must have $N(m)>\nu_{\infty}(T)$, which justifies the title of this section. That is, if f is sufficiently close to T at enough non-Archimedean places of K, the positive contribution from $N(m)$ will overcome the negative contribution from $\nu_{\infty}(T)$. We also note the special case of Theorem 5.1 where $m \in \mathbb{Z}$ and $f, T \in \mathbb{Z}[x]$.

Corollary 5.2. Suppose that f and T are polynomials over \mathbb{Z} of the same degree and m is a positive integer such that $f \equiv T \bmod m$. If g is a factor of f relatively prime to T then

$$
\operatorname{deg} f \cdot \mu(g) \geq \operatorname{deg} g \cdot\left(\log m-\nu_{\infty}(T)\right)
$$

Proof. Apply Theorem 5.1 to each root α of g and the corollary follows. -
Corollary 5.3. Suppose that f and T are polynomials over \mathbb{Z} of the same degree and m is a positive integer such that $f \equiv T \bmod m$. If f is relatively prime to T then

$$
\mu(f) \geq \log m-\nu_{\infty}(T)
$$

Proof. Apply Corollary 5.2 with $g=f$ and the result is immediate.
Acknowledgments. The author wishes to thank J. Garza for noticing that the language of heights and places yields a more easily generalized proof of the results of [2]. We also thank F. Rodriguez-Villegas for remarking that the hypothesis that f have coefficients congruent to $1 \bmod m$ may be replaced by a hypothesis giving a more general congruence relation in \mathbb{Z}. We thank M. J. Mossinghoff for his many useful suggestions, in particular, the inclusion of [4] in the introduction. Finally, we thank J. D. Vaaler for noticing that equality occurs in Theorem 2.2 for all auxiliary polynomials T along with many other ideas.

References

[1] E. Bombieri and U. Zannier, A note on heights in certain infinite extensions of \mathbb{Q}, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5-14.
[2] P. Borwein, E. Dobrowolski and M. J. Mossinghoff, Lehmer's problem for polynomials with odd coefficients, preprint, 2003.
[3] P. Borwein, K. G. Hare and M. J. Mossinghoff, The Mahler measure of polynomials with odd coefficients, Bull. London Math. Soc. 36 (2004), 332-338.
[4] R. Breusch, On the distribution of the roots of a polynomial with integral coefficients, Proc. Amer. Math. Soc. 2 (1951), 939-941.
[5] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
[6] A. Dubickas and M. J. Mossinghoff, Auxiliary polynomials for some problems regarding Mahler's measure, ibid. 119 (2005), 65-79.
[7] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
[8] M. J. Mossinghoff, C. G. Pinner and J. D. Vaaler, Perturbing polynomials with all their roots on the unit circle, Math. Comp. 67 (1998), 1707-1726.
[9] C. J. Petsche, The height of algebraic units in local fields, preprint, 2003.
[10] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399; Addendum, ibid. 26 (1975), 329-331.
[11] C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175.

Department of Mathematics
University of Texas at Austin
1 University Station C1200
Austin, TX 78712, U.S.A.
E-mail: csamuels@math.utexas.edu

