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Representation of odd integers as the sum of one prime,

two squares of primes and powers of 2

by

Hongze Li (Shanghai)

1. Introduction. Let

A = {n : n ∈ N, n 6≡ 0 (mod2), n 6≡ 2 (mod3)}.

In 1938 Hua [3] proved that almost all n ∈ A are representable as sums
of two squares of primes and a kth power of a prime for odd k,

n = p2
1 + p2

2 + pk
3.(1.1)

In 1999, Liu, Liu and Zhan [6] proved that every large odd integer N
can be written as a sum of one prime, two squares of primes and k powers
of 2,

N = p2
1 + p2

2 + p3 + 2ν1 + · · · + 2νk .(1.2)

In 2004, Liu [8] proved that k = 22000 is acceptable in (1.2).

In this paper we shall prove the following result.

Theorem. Every sufficiently large odd integer can be written as a sum

of one prime, two squares of primes and 106 powers of 2.

The substantial improvement is due to two facts: firstly, we use the
method of [1] and [7] to enlarge the major arcs; secondly, Heath-Brown
and Puchta’s estimation for the measure of exponential sums of powers of 2
(Lemma 3) gives a good control for the minor arcs.

2. Outline and preliminary results. To prove the Theorem, it suf-
fices to estimate the number of solutions of the equation

n = p2
1 + p2

2 + p3 + 2ν1 + · · · + 2νk .(2.1)
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Suppose N is our main parameter, which we assume to be “sufficiently
large”. We write

P = N1/6−ε, Q = NP−1L−10, M = NL−9, L = log2 N.(2.2)

We use c and ε to denote an absolute constant and a sufficiently small
positive number, not necessarily the same at each occurrence.

The circle method, in the form we require, begins with the observation
that

R(N) :=
∑

p2

1
+p2

2
+p3+2ν1+···+2νk=N

M<p2

1
,p2

2
,p3≤N

(log p1)(log p2)(log p3)(2.3)

=

1\
0

f2(α)g(α)hk(α)e(−αN) dα,

where we write e(x) = exp(2πix) and

(2.4)

f(α) =
∑

M<p2≤N

(log p)e(αp2), g(α) =
∑

M<p≤N

(log p)e(αp),

h(α) =
∑

2ν≤N

e(α2ν) :=
∑

ν≤L

e(α2ν).

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q]
can be written as

α =
a

q
+ β, |β| ≤

1

qQ
,(2.5)

for some integers a, q with 1 ≤ a ≤ q ≤ Q, (a, q) = 1. Let

M =
⋃

1≤q≤P

q
⋃

a=1
(a,q)=1

[

a

q
−

1

qQ
,
a

q
+

1

qQ

]

.(2.6)

These are the major arcs, and the minor arcs m are given by

m =

[

1

Q
, 1 +

1

Q

]

\ M.(2.7)

Lemma 1 (Theorem 3 of [4] for k = 2). Suppose that α is a real number

and there exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ Y, (a, q) = 1, |qα − a| < Y −1,

with Y = X3/2. Then for any fixed ε > 0 one has

∑

X<p≤2X

(log p)e(αp2) ≪ X7/8+ε +
qεX(log X)c

(q + X2|qα − a|)1/2
.
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For χ mod q, define

C2(χ, a) =

q
∑

h=1

χ(h)e

(

ah2

q

)

, C(χ, a) =

q
∑

h=1

χ(h)e

(

ah

q

)

,(2.8)

C2(q, a) = C2(χ0, a), C(q, a) = C(χ0, a).(2.9)

Here χ0 is the principal character modulo q.
If χ1, χ2, χ3 are characters mod q, then let

B(n, q; χ1, χ2, χ3)=
1

φ3(q)

q
∑

a=1
(a,q)=1

C(χ1, a)C2(χ2, a)C2(χ3, a)e

(

−
an

q

)

,(2.10)

A(n, q) = B(n, q; χ0, χ0, χ0), S(n, X) =
∑

q≤X

A(n, q).(2.11)

Lemma 2 (Lemma 2.1 of [8]). Let χj mod rj with j = 1, 2, 3 be primitive

characters, r0 = [r1, r2, r3], and χ0 the principal character mod q. Then
∑

q≤x
r0|q

|B(n, q; χ1χ0, χ2χ0, χ3χ0)| ≪ r
−1/2+ε
0 (log x)c.

On the minor arcs, we need estimates for the measure of the set

Eλ := {α ∈ (0, 1] : |h(α)| ≥ λL}.(2.12)

The following lemma is due to Heath-Brown and Puchta [2].

Lemma 3. We have

meas(Eλ) ≪ N−E(λ) with E(0.9108) >
19

24
+ 10−10.

Proof. Let

Th(α) =
∑

0≤n≤h−1

e(α2n),

F (ξ, h) =
1

2h

2h−1
∑

r=0

exp{ξ Re(Th(r/2h))},

E(λ) =
ξλ

log 2
−

log F (ξ, h)

h log 2
−

ε

log 2
.

Then for any ξ, ε > 0, and any h ∈ N, we have

meas(Eλ) ≪ N−E(λ).

This was proved in Section 7 of [2]. Taking ξ = 1.31, h = 18, we get

E(0.9108) >
19

24
+ 10−10.

This completes the proof of the lemma.
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3. The major arcs. Let

(3.1)

f∗(α) =
C2(q, a)

φ(q)

∑

M<m2≤N

e(βm2),

g∗(α) =
C(q, a)

φ(q)

∑

M<m≤N

e(βm).

We now proceed to estimate the quantity\
M

f2(α)g(α)e(−αn) dα −
\
M

f∗2(α)g∗(α)e(−αn) dα,(3.2)

which we think of as the error of approximation of the integral over M by
the expected term.

By the standard major arcs techniques we have\
M

f∗2(α)g∗(α)e(−αn) dα = P0S(n, P )(1 + o(1)),(3.3)

where

P0 = πn/4,(3.4)

and S(n, P ) is defined by (2.11). Define

W (χ, β) =
∑

M<p2≤N

(log p)χ(p)e(βp2) − D(χ)
∑

M<m2≤N

e(βm2),

W ♯(χ, β) =
∑

M<p≤N

(log p)χ(p)e(βp) − D(χ)
∑

M<m≤N

e(βm),

where D(χ) is 1 or 0 according as χ is principal or not.

Just as in [1, (4.1)] we can rewrite f(α) and g(α) as

f

(

a

q
+ β

)

=
C2(q, a)

φ(q)

∑

M<m2≤N

e(βm2) +
1

φ(q)

∑

χ mod q

C2(χ, a)W (χ, β),(3.5)

g

(

a

q
+ β

)

=
C(q, a)

φ(q)

∑

M<m≤N

e(βm) +
1

φ(q)

∑

χ mod q

C(χ, a)W ♯(χ, β).(3.6)

So we can use (3.5) and (3.6) to express the difference in (3.2) as a linear
combination of error terms involving f∗(α) and g∗(α), and W (χ, β) and
W ♯(χ, β).

We shall focus on the most troublesome among the error terms that
arise, namely the multiple sum

∑

q≤P

∑

χ1 mod q

∑

χ2 mod q

∑

χ3 mod q

B(n, q; χ1, χ2, χ3)J(n, q, χ1, χ2, χ3).(3.7)
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Here B(n, q; χ1, χ2, χ3) is defined in (2.10), and

J(n, q, χ1, χ2, χ3) =

1/qQ\
−1/qQ

W ♯(χ1, β)W (χ2, β)W (χ3, β)e(−βn) dβ.

We first reduce (3.7) to a sum over primitive characters. Suppose χ∗
j mod rj

with rj | q is the primitive character inducing χj. In general, if χ mod q,
q ≤ P , is induced by a primitive character χ∗ mod r with r | q, we have

W ♯(χ, β) = W ♯(χ∗, β), W (χ, β) = W (χ∗, β).(3.8)

By Cauchy’s inequality

J(n, q, χ1, χ2, χ3) ≪ W ♯(χ∗
1)W (χ∗

2)W (χ∗
3),(3.9)

where for a character χ mod r,

W ♯(χ) = max
|β|≤1/rQ

|W ♯(χ, β)|, W (χ) =
(

1/rQ\
−1/rQ

|W (χ, β)|2 dβ
)1/2

.(3.10)

Using (3.9) we can bound (3.7) by
∑

r1≤P

∑

χ1

∗ ∑

r2≤P

∑

χ2

∗ ∑

r3≤P

∑

χ3

∗
W ♯(χ1)W (χ2)W (χ3)B(n, χ1, χ2, χ3).(3.11)

Here
∑

rj

∑∗
χ denotes a summation over the primitive characters mod rj

≤ P , and

B(n, χ1, χ2, χ3) =
∑

q≤P
r0|q

|B(n, q; χ1χ0, χ2χ0, χ3χ0)|,

where r0 = [r1, r2, r3] and χ0 is the principal character mod q.

By Lemma 2 we have

B(n, χ1, χ2, χ3) ≪ r
−1/2+ε
0 Lc,

and by [7, Lemma 2.4] we have
∑

r≤R

∑

χ

∗
[r, d]−1/2+εW (χ) ≪ d−1/2+εLc

whenever R ≤ N1/6−ε. Thus the sixfold sum in (3.11) does not exceed

Lc
∑

r1≤P

∑

χ1

∗
r
−1/2+ε
1 W ♯(χ1).

To estimate
∑

r1≤P

∑∗
χ1

r
−1/2+ε
1 W ♯(χ1), we can modify the proof of Lem-

ma 2.3 of [7] for k = 1. For LB < R ≤ P , where B is a constant depending
on A, the right-hand sides of (5.1) and (5.2) of [7] should be replaced by
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N1/2(T1 +1)1/2L−A and N1/2T2L
−A, by using Theorem 4.1 of [7]; moreover,

since R ≤ P = N1/6−ε, we get
∑

LB<r1≤P

∑

χ1

∗
r
−1/2+ε
1 W ♯(χ1) ≪ NL−A for any A > 0.

For the case R ≤ LB, in the same way as in [7] we deduce that
∑

r1≤LB

∑

χ1

∗
r
−1/2+ε
1 W ♯(χ1) ≪ NL−A for any A > 0.

We have shown that the sum in (3.7) is O(NL−A) for any fixed A > 0.
Recall that (3.7) was one of several error terms in a representation of (3.2).
Since the other error terms in that representation can be estimated similarly,
we conclude that the difference in (3.2) is O(NL−A).

Together with (3.3) we obtain the following result:

Lemma 4. For all integers n ∈ A, we have\
M

f2(α)g(α)e(−αn) dα = (π/4 + o(1))S(n, P )n + O(N/log N).(3.12)

Lemma 5. For n ∈ A, we have

S(n, P ) ≥ 2.27473966.

Otherwise, we have S(n, P ) = O(P−1+ε).

Proof. By [8, p. 114], we have

S(n, P ) =
∞

∑

q=1

A(n, q) + O(P−1+ε).(3.13)

By [10, (3.14)], when (a, q) = 1, we have C(q, a) = µ(q). Hence

A(n, q) =
µ(q)

φ3(q)

q
∑

a=1
(a,q)=1

C2
2(q, a)e

(

−
an

q

)

,

and for k ≥ 2, A(n, pk) = 0. Since A(n, q) is multiplicative, we have

S(n, P ) =

∞
∏

p=2

(1 + A(n, p)) + O(P−1+ε).(3.14)

By direct computation, for n ∈ A we have

1 + A(n, 2) = 2, 1 + A(n, 3) = 3/2.(3.15)

If n ≡ 0 (mod2), we have 1 + A(n, 2) = 0. When n ≡ 2 (mod3), we have
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1 + A(n, 3) = 0. By [8, p. 114], for p ≥ 5, we have

1 + A(n, p) ≥















1 −
p + 1

(p − 1)3
, p ≡ 1 (mod4),

1 −
3p − 1

(p − 1)3
, p ≡ −1 (mod4).

(3.16)

Hence
∏

p≥5

(1 + A(n, p)) ≥
∏

p≡1 (mod4)
p≥5

(

1 −
p + 1

(p − 1)3

)

∏

p≡−1 (mod 4)
p≥5

(

1 −
3p − 1

(p − 1)3

)

.

By the elementary inequality

(1 + x)a < 1 + ax +
a(a − 1)

2
x2 if a > 2, −1 < x < 0,

for p > 82 and p ≡ 1 (mod4) we have

1 −
p + 1

(p − 1)3
≥

(

1 −
1

(p − 1)2

)3.025

,

and for p > 82 and p ≡ −1 (mod4),

1 −
3p − 1

(p − 1)3
≥

(

1 −
1

(p − 1)2

)3.025

.

Thus
∏

p≥5

(1 + A(n, p))

≥
∏

p≡1 (mod 4)
5≤p<82

(

1−
p + 1

(p − 1)3

)

∏

p≡−1 (mod 4)
5≤p<82

(

1−
3p − 1

(p − 1)3

)

∏

p>82

(

1 −
1

(p − 1)2

)3.025

=
∏

p≡1 (mod 4)
5≤p<82

(

1 −
p + 1

(p − 1)3

)

∏

p≡−1 (mod 4)
5≤p<82

(

1 −
3p − 1

(p − 1)3

)

×
∏

p≡1 (mod 4)
5≤p<82

(

1 −
1

(p − 1)2

)−3.025
∏

p≡−1 (mod 4)
3≤p<82

(

1 −
1

(p − 1)2

)−3.025

×
∏

p≥3

(

1 −
1

(p − 1)2

)3.025

≥ 1.11571 ·

(

0.6601 ·
4

3

)3.025

> 0.7582465536,

where we have used the well known result
∏

p≥3(1−1/(p − 1)2) = 0.6601 . . . .
By (3.14), (3.15) and the above estimate, we get the lemma.
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4. Proof of Theorem. We need the following lemmas.

Lemma 6. Let A(N, k) = {n ≥ 2 : n = N−2ν1−· · ·−2νk} with k ≥ 100.
Then for odd N , we have

∑

n∈A(N,k)
n 6≡2 (mod3)

n ≥ (2/3 − 2−90)NLk.

Proof. Let ((ν)) mean that ν1, . . . , νk satisfies

1 ≤ ν1, . . . , νk ≤ log2(N/kL), N − 2ν1 − · · · − 2νk ≡ 0 (mod3).(4.1)

Then n ≥ N − N/L, and

∑

n∈A(N,k)
n≡0 (mod3)

n ≥
∑

((ν))

(N − 2ν1 − · · · − 2νk) ≥

(

N −
N

L

)

∑

((ν))

1.(4.2)

For odd q, let ε(q) be the order of 2 in the multiplicative group of integers
modulo q. Let

H(d, N, K) = ♯
{

(ν1, . . . , νK) : 1 ≤ νi ≤ ε(d), d |N −
∑

2νi

}

.

When d = 3, ε(3) = 2, and it is an easy exercise to check that

H(3, N, K) =

{

1
3(2K − (−1)K), 3 ∤ N ,
1
3(2K + (−1)K), 3 |N .

Thus if K > 100 we have

H(3, N, K)ε(3)−K ≥
1

3
(1 − 2−98),

and
∑

((ν))

1 ≥ H(3, N, k)([log2(N/kL)/ε(3)]− 2)k ≥
1

3
(1 − 2−96)Lk.

Hence
∑

n∈A(N,k)
n≡0 (mod3)

n ≥ (1/3 − 2−95)NLk.(4.3)

Similarly,
∑

n∈A(N,k)
n≡1 (mod3)

n ≥ (1/3 − 2−95)NLk.(4.4)

From this and (4.3) we get the lemma.
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Lemma 7 (Lemma 3 of [5]). Let f(α) and h(α) be as in (2.4). Then

1\
0

|f(α)h(α)|4 dα ≤ c1
π2

16
NL4,

where

c1 ≤

(

324 · 101 · 1.620767

3
+

8 · log2 2

π2

)

(1 + ε)9.

Lemma 8. Let g(α) and h(α) be as in (2.4). Then\
m

|g(α)h(α)|2 dα ≤ 12.3685c0NL2,

where

c0 =
∏

p≥3

(

1 −
1

(p − 1)2

)

= 0.6601 . . . .

Proof. This is actually Lemma 10 of [2]. By (8.14) of [9], we can replace
(41) of [2] by C2 ≤ 1.94, and then by the proof of Lemma 9 of [2] the
assertion follows.

Now we prove the Theorem. Let Eλ be as defined in (2.12), and M and
m as in (2.6) and (2.7) with P, Q determined in (2.2). Then (2.3) becomes

R(N) =

1\
0

f2(α)g(α)hk(α)e(−αN) dα =
\
M

+
\

m∩Eλ

+
\

m\Eλ

.(4.5)

For the major arcs, by Lemma 4 we have

(4.6)
\
M

f2(α)g(α)hk(α)e(−αN) dα

=
∑

n∈A(N,k)

\
M

f2(α)g(α)e(−αn) dα

=

(

π

4
+ o(1)

)

∑

n∈A(N,k)

S(n, P )n + O(NLk−1)

≥ 2.27473966

(

π

4
+ o(1)

)

{

∑

n∈A(N,k)
n 6≡2 (mod 3)

n
}

+ O(NLk−1)

≥ 1.516492
π

4
NLk,

where we have used Lemmas 5 and 6.
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For the second integral in (4.5), by Dirichlet’s lemma on rational approx-
imation, any α ∈ m can be written as

α =
a

q
+ β, |β| ≤

1

qN3/4
,(4.7)

for some integers a, q with 1 ≤ a ≤ q ≤ N3/4, (a, q) = 1. If q ≤ P = N1/6−ε,
since α ∈ m, we have PL10 < N |qα − a|; otherwise we have q > P ; hence
q + N |qα − a| > P for any α ∈ m. By Lemma 1,

max
α∈m

|f(α)| ≪ N1/2−1/16+ε.

By Theorem 3.1 of Vaughan [10],

max
α∈m

|g(α)| ≪ N1−1/12+ε.

Therefore \
m∩Eλ

≪ N−E(0.9108)N2−5/24+εLk ≪ N1−ε,(4.8)

where we have used Lemma 3 for λ = 0.9108.
For the last integral in (4.5), with the definition of Eλ, and Lemmas 7

and 8, by Cauchy’s inequality we have\
m\Eλ

≤ (λL)k−3
(

1\
0

|f(α)h(α)|4 dα
)1/2(\

m

|g(α)h(α)|2 dα
)1/2

(4.9)

≤ 21616λk−3 π

4
NLk.

Combining this with (4.6) and (4.8), we get

R(N) ≥
π

4
NLk(1.516492 − 21616λk−3).(4.10)

When k ≥ 106, for λ = 0.9108, by the above estimate we have

R(N) > 0.

This means that every large odd integer N can be written in the form of
(1.2) for k ≥ 106.
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