ACTA ARITHMETICA
128.3 (2007)

Representation of odd integers as the sum of one prime,
two squares of primes and powers of 2

by

HoNGZE L1 (Shanghai)

1. Introduction. Let
A={n:neN,;n#0 (mod2),n#2 (mod3)}.

In 1938 Hua [3] proved that almost all n € A are representable as sums
of two squares of primes and a kth power of a prime for odd &,

(1.1) n = pi +p + pi.
In 1999, Liu, Liu and Zhan [6] proved that every large odd integer N

can be written as a sum of one prime, two squares of primes and k powers
of 2,
(1.2) N =p}+ps+p3+2" 4427

In 2004, Liu [8] proved that k = 22000 is acceptable in (1.2).
In this paper we shall prove the following result.

THEOREM. FEwvery sufficiently large odd integer can be written as a sum
of one prime, two squares of primes and 106 powers of 2.

The substantial improvement is due to two facts: firstly, we use the
method of [1] and [7] to enlarge the major arcs; secondly, Heath-Brown
and Puchta’s estimation for the measure of exponential sums of powers of 2
(Lemma 3) gives a good control for the minor arcs.

2. Outline and preliminary results. To prove the Theorem, it suf-
fices to estimate the number of solutions of the equation

(2.1) n=pd+pi+ps+ 2 4o+ 2%
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Suppose NN is our main parameter, which we assume to be “sufficiently
large”. We write

(22) P=NY6—=  Q=NP 'L M=NL° L=log,N.

We use ¢ and ¢ to denote an absolute constant and a sufficiently small
positive number, not necessarily the same at each occurrence.

The circle method, in the form we require, begins with the observation
that

(2.3) R(N) := > (log p1)(log p2)(log p3)

Pi+P3+pa+2/1 442"k =N
M<p?,p3,p3<N

1

= A (@)g(@)h*(@)e(~aN) da,

0

where we write e(z) = exp(2miz) and

flay="> (logp)e(ap®), gla)= > (logp)e(ap),

(2.4) M<p?<N M<p<N
h(a) = Z e(a2”) := Z e(a2”).
W<N v<L

By Dirichlet’s lemma on rational approximation, each o € [1/Q, 1+ 1/Q)]
can be written as

a
(2.5) a=_+5 6] < —Q

for some integers a,q with 1 <a < ¢ <@, (a,q) = 1. Let

(2.6) m= | U{ ,—+th]

1<g<P a=1
(a,g9)=1

These are the major arcs, and the minor arcs m are given by

(2.7) m= [%,14—%] \ <.

LeEMMA 1 (Theorem 3 of [4] for k = 2). Suppose that « is a real number
and there exist a € Z and q € N satisfying

1<q<Y, (aq)=1 |ga—al <Y,
with Y = X3/2. Then for any fized ¢ > 0 one has

¢ X (log X )°
> (logple(ap?) < X/ 4 2( o %) 7z
XpeaX (¢ + X?|go — al)
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For x mod ¢, define
1 ah? 1 ah
(28)  Calx,a) =) X(hel — ), Clx,a)=) X(h)e| — |,
s = R0 (55). ) = Soxone()
(2.9)  Ca(g,a) = Ca(xo,a), C(g,a) = C(xo0, a).

Here yg is the principal character modulo gq.
If x1, x2, x3 are characters mod ¢, then let

q
(210) B('nnq’ X17X25X3): 31 Z C(Xl,CL)CQ(XQ’(L)C2(X37@)6(_%)’
9% (q) —1 q
(a,q)=1
(211) A(n7 Q) = B(naq;X()?XO)XO)a 6(7’L, X) = Z A(’I’L, Q)

q<X

LEMMA 2 (Lemma 2.1 of [8]). Let x; mod r; with j =1,2,3 be primitive
characters, ro = [r1,r2,r3], and xo the principal character mod q. Then

—1/2
S IB(n,¢; x1x0, X2X0, X3X0)| < 19 /2T (log ).

q<z
Tolq

On the minor arcs, we need estimates for the measure of the set
(2.12) Ex:={a € (0,1]: |h(a)] > AL}.
The following lemma is due to Heath-Brown and Puchta [2].

LEMMA 3. We have
meas(Ey) < N"FXN  with  F£(0.9108) > % +1071
Proof. Let
Th(a)= > e(a2"),

0<n<h—1
2h 1

F(EH) = 57 3 exp{€Re(Ti(r/2)),
r=0

E(\) = A logF(§h) € '
log 2 hlog 2 log 2
Then for any £, > 0, and any h € N, we have
meas(€,) < N~EX.
This was proved in Section 7 of [2]. Taking £ = 1.31, h = 18, we get

19
E(0.9108) > 517t 1071,

This completes the proof of the lemma.
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3. The major arcs. Let

ey = 229 S g,

M<m?2<N

g'(a) = 229 S am),

@) 5y

(3.1)

We now proceed to estimate the quantity
(32) | P(@)g(@)e(—an)da — | [ ()g"(@)e(—an) da,
m m

which we think of as the error of approximation of the integral over 9 by
the expected term.

By the standard major arcs techniques we have

(3.3) S f2(a)g*(a)e(—an) do = Py&(n, P)(1+ o(1)),
AL

where

(34) PO = 7'(71/47

and S(n, P) is defined by (2.11). Define
W.08)= Y. (ogp)x(p)e(Bp®)—D(x) >, e(Bm?),

M<p?<N M<m2<N
Wi x,8) = Y (logp)x(p)e(Bp) = D(x) > e(Bm),
M<p<N M<m<N

where D(x) is 1 or 0 according as x is principal or not.
Just as in [1, (4.1)] we can rewrite f(a) and g(«) as

a _ C2(Qa CL) e(Bm2 1 a

(3.5) f<q+ﬂ>— e M;SN (3 >+—¢(q)xmzmcz<x, W),
g — C(Qa CL) e(Bm 1 a i

(3.6) 9<q+ﬁ> fusl M;ﬂ T >+—¢(q)xm20dqc<x, YW (x, ).

So we can use (3.5) and (3.6) to express the difference in (3.2) as a linear
combination of error terms involving f*(«) and ¢g*(a), and W(x, ) and
WE(x, B).

We shall focus on the most troublesome among the error terms that
arise, namely the multiple sum

G DD D> ) Bmgixixex3)J (0,4 x1, X2, X3)-

g<P x1modgq x2modgq x3modgq
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Here B(n,q; x1, x2, x3) is defined in (2.10), and

1/4Q
J(n7Q7X17X2)X3) = S Wﬁ(leﬁ)W(X%/B)W(Xi’nﬁ)e(_ﬁn) d/g
-1/4@Q
We first reduce (3.7) to a sum over primitive characters. Suppose X;f mod 7
with ;| ¢ is the primitive character inducing x;. In general, if x mod g,
q < P, is induced by a primitive character x* mod r with r | g, we have

(3.8) WE G B) = WX 0),  W(x, B) = W', 5).
By Cauchy’s inequality
(3.9) J(n,¢,x1, X2, x3) << WEOD)W (x3) W (x3),
where for a character y mod r,
1/rQ 1/2
# — § _ 2
(3810) WA= max WAl W =( | WeelRas) "
1BI<1/rQ —1/rQ

Using (3.9) we can bound (3.7) by
B D DT DT DD W)W (xe) W (xs) B(n, X1, X2, X3)-
ri<P x1 ra<P X2 r3<P X3

Here er ZX denotes a summation over the primitive characters mod 7;
< P, and

B(n,x1,x2:x3) = > |B(n,q; x1x0, X2X0: X3X0)|,
q<P
Tolg

where rg = [r1,72,73] and xo is the principal character mod gq.
By Lemma 2 we have

—-1/2
B(n7X17X27X3) < 7"0 / +€ch

and by [7, Lemma 2.4] we have
Z Z*[r’ d]—1/2+EW<X) < d—1/2+€Lc
r<R X
whenever R < N'/6=¢_ Thus the sixfold sum in (3.11) does not exceed

¢ Z Z*T;1/2+€Wﬁ(X1)'

71 SP X1

To estimate Y., <p > 1,71 1/2+5Wﬁ()(1), we can modify the proof of Lem-

ma 2.3 of [7] for k = 1. For L® < R < P, where B is a constant depending
on A, the right-hand sides of (5.1) and (5.2) of [7] should be replaced by
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NY2(Ty+1)2L=4 and N'/2T, =4, by using Theorem 4.1 of [7]; moreover,
since R< P = Nl/G_E, we get

Z Z*T;1/2+5Wﬁ(xl) << NL—A fOI‘ any A > 0
LB<r<P X1
For the case R < LB, in the same way as in [7] we deduce that
SN TP WE () < NLTA for any A > 0.

T1§LB X1

We have shown that the sum in (3.7) is O(NL~4) for any fixed A > 0.
Recall that (3.7) was one of several error terms in a representation of (3.2).
Since the other error terms in that representation can be estimated similarly,
we conclude that the difference in (3.2) is O(NL™4).

Together with (3.3) we obtain the following result:

LEMMA 4. For all integers n € A, we have

(3.12) S fAa)g(a)e(—an) da = (7 /44 0(1))&(n, P)n + O(N/log N).
m

LEMMA 5. Forn € A, we have
&(n, P) > 2.27473966.
Otherwise, we have &(n, P) = O(P~11¢).
Proof. By [8, p. 114], we have

(3.13) &(n,P) = i A(n,q) + O(P~11e).
q=1

By [10, (3.14)], when (a,q) = 1, we have C(g,a) = u(q). Hence

A(n,Q)Zqﬁf(qq)) > C%(%CL)@(-%)

a=
(a,q)=1

and for k > 2, A(n,p¥) = 0. Since A(n,q) is multiplicative, we have

(3.14) &(n, P) = ﬁ(l + A(n, p)) + O(P~1+%),
p=2

By direct computation, for n € A we have
(3.15) 1+ A(n,2)=2, 1+ A(n,3)=3/2.
If n =0 (mod2), we have 1 + A(n,2) = 0. When n = 2 (mod 3), we have
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1+ A(n,3) =0. By [8, p. 114], for p > 5, we have

p+1
1*@, pEl (m0d4),
(3.16) 1+ A(n,p) >
3p—1
Hence
p+1 3p—1
1+ A > 1-— 1-— .
Moo= T (1-g55) T (-5
p>5 p=1(mod4) p=—1(mod4)
p=>5 p=>5
By the elementary inequality
-1
1+2)< 1+a$+%$2 ifa>2 -1<z<0,

for p > 82 and p =1 (mod4) we have

1 1 3.025
L (1 LY
(p—1) (p—1)

and for p > 82 and p = —1 (mod4),

31 1 3.025
1‘m4ﬁ20‘@—w> '

Thus
10+ A, p)
p=>5
p+1 ) < 3p—1> 1 \30%
- I (- R ) ) [
- —1)3 _1)3 —1)2
p=1(mod4) (p 1) p=—1(mod4) (p 1) p>82 (p 1)
5<p<82 5<p<82
1 3p—1
- I (g7 I (-555)
p=1(mod 4) p=—1(mod4)
5<p<82 5<p<82
1 —3.025 1 —3.025
< I (-57m) (-5)
p=1(mod 4) (p N 1) p=—1(mod4) (p N 1)
5<p<82 3<p<82
1 3.025 3.025
X H (1 — m) > 1.11571 - (0.6601 . 5) > 0.7582465536,
p=3

where we have used the well known result [] ~3(1-1/(p — 1)2) = 0.6601. ...
By (3.14), (3.15) and the above estimate, we get the lemma.
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4. Proof of Theorem. We need the following lemmas.

LEMMA 6. Let A(N,k)={n>2:n=N-=-2"1—...—2%} with k > 100.
Then for odd N, we have

Y nx=(2/3-27")NLE

neA(N,k)
n#2 (mod 3)
Proof. Let ((v)) mean that vy, ..., satisfies
(4.1) 1<w,...,v <logy(N/kL), N —2"1 —...—2" =0 (mod3).

Then n > N — N/L, and

V1 Vg N
(4.2) > nz((zy):)(N—Q — =2 )z(N—I>(%1.

neA(N,k)
n=0 (mod 3)

For odd ¢, let £(q) be the order of 2 in the multiplicative group of integers
modulo g. Let

H(d,N,K) = jj{(z/l,...,yK) 1<y <e(d), d|N - Zzw}.
When d = 3, €(3) = 2, and it is an easy exercise to check that

2% = (=DF), 31N,

1
H(3,N,K) = { §(2K + (=D¥), 3|N.

Thus if K > 100 we have

H(3, N, K)e(3) K > 5 (1-27%),
and
1
> 1> H(3,N,k)([loga(N/kL) /e(3)] - 2)F > 3 (1—279) Lk
(@)
Hence
(4.3) > onx(1/3-2"P)NL"
neA(N,k)
n=0 (mod 3)
Similarly,
(4.4) > nx(1/3-2"P)NL"
neA(N,k)
n=1 (mod 3)

From this and (4.3) we get the lemma.
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LEMMA 7 (Lemma 3 of [5]). Let f(a) and h(a) be as in (2.4). Then

1 2
X |f(a)h(a)[da < ¢ 71T_6 NL*,
0

where

24.101-1.62 -log?2
c1§(3 0 - 620767 _ 8 ;;g >(1+6)9.

LEMMA 8. Let g(a) and h(a) be as in (2.4). Then

| lg()h(@)]* dor < 12.3685¢0N L?,

m

cozn(l—ﬁ> = 0.6601....

p=>3

where

Proof. This is actually Lemma 10 of [2]. By (8.14) of [9], we can replace
(41) of [2] by C2 < 1.94, and then by the proof of Lemma 9 of [2] the

assertion follows.

Now we prove the Theorem. Let €, be as defined in (2.12), and 9t and
m as in (2.6) and (2.7) with P, @ determined in (2.2). Then (2.3) becomes

1
(45)  R(N) = | fAa)g(@h*(@e(~aN)da= | + | + |
0 M mNEL  m\Ex

For the major arcs, by Lemma 4 we have

46) | fA(@g(a)h*(a)e(-aN) da
n

= 3 | Pgl@)e(-an) da

neA(N,k) M

:<Z+0(1)> > &(n, P+ ONLF )

neA(N,k)

m k—1
> —
> 2.27473966<4 + o(1)>{ S n} +O(NLFY)
neA(N,k)
n#2 (mod 3)
> 1.516492 % NI,

where we have used Lemmas 5 and 6.
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For the second integral in (4.5), by Dirichlet’s lemma on rational approx-
imation, any o € m can be written as

a 1
(4.7) a:6+ﬁv |ﬁ|§m,

for some integers a,q with 1 < a < ¢ < N3/%, (a,q) =1.If ¢ < P = N'/6-¢,
since a € m, we have PL'® < N|qa — al; otherwise we have ¢ > P; hence
q+ N|ga — a| > P for any a € m. By Lemma 1,

1/2—1/16+¢
max|f(a)| < N :
By Theorem 3.1 of Vaughan [10],
1-1/124¢
max |g(a)| < N :
Therefore

(48) S < N*E(0.9108)N275/24+€Lk < ]\71757
mnNEy

where we have used Lemma 3 for A = 0.9108.
For the last integral in (4.5), with the definition of £,, and Lemmas 7
and 8, by Cauchy’s inequality we have

(49 | <o (§ Feh(@) da) ([ la(@h(@) 2 da) "
m\Ex 0 m
< 21616AF3 % NLF.
Combining this with (4.6) and (4.8), we get
(4.10) R(N) > % NL*(1.516492 — 21616)\"73).
When k > 106, for A = 0.9108, by the above estimate we have
R(N) > 0.

This means that every large odd integer N can be written in the form of
(1.2) for k > 106.
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