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1. Definitions and notation. Let e be a positive integer, e > 2, and
fix ζe, a primitive eth root of unity. Let K = Q(ζe). Let p be a prime not
dividing e and r an integer such that pr ≡ 1 mod e. Let r0 be the least
positive integer such that pr0 ≡ 1 mod e. Note that r0 | r. Let Fq be the
finite field with q = pr elements. Let γ be a generator of the cyclic group F∗q .
Define a multiplicative character χe = χ : F∗q → Q(ζe) by χ(γ) = ζe. We
extend it by χ(0) = 0 to a map from Fq to Q(ζe). For two integers m and n
the Jacobi sum J(χm, χn) is defined by

J(χm, χn) =
∑

α∈Fq
χm(α)χn(1− α).

Note that some authors prefer to define the trivial character to have value 1
at 0, but in this paper we do not: if k is divisible by e we have χk(0) = 0 (so
our Jacobi sum is J∗ of [6, p. 79]). The order of the Jacobi sum is the least
common multiple of the orders of χm and χn. The dimension of the Jacobi
sum is e.

2. Introduction. We will treat two important problems in the the-
ory of Jacobi sums over finite fields. The first problem is that of giving a
Diophantine system (of equations and congruences) whose unique solution
determines a particular Jacobi sum. The other problem is that of giving
algorithms for fast computation of Jacobi sums.

Up to a root of unity, the value of any Jacobi sum of two characters
over a finite field is easy to describe and to compute. We give a method for
finding the correct root of unity in all cases and show how this solves both
problems above.

Starting with Gauss a lot of work has been done on finding Diophantine
systems characterizing the coefficients (with respect to some basis of Z[ζe])
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of Jacobi sums. At first all work on the problem dealt with one e at a time.
See the notes on Chapter 3 in [6] for an excellent summary. The first work
giving Diophantine systems for an infinite number of e was that of Evans.
In [10] he gives Diophantine systems for the coefficients of Jacobi sums with
e any power of 2, m = 1, n = e/2 and r = 1. In [1] Acharya and Katre give
Diophantine systems for all e equal to a prime or twice a prime and any m,
n and r, but with r0 = 1.

Our main theorem (see Theorem 10) generalizes these results in that it
allows any e, m, n, r and r0.

Thaine [19] has also given an unrelated characterization of the cyclotomic
numbers (and therefore the Jacobi sums) for any e, m and n, but r = 1. His
characterization is not given as a Diophantine system but is given in terms
of a system of Diophantine equations and the irreducibility of a certain
polynomial.

The problem of giving algorithms for fast computation of Jacobi sums has
a much shorter history. It became of much more interest when it was realized
that such algorithms are applicable to primality testing and cryptosystems.
See [2], [15], [8] and [21].

In fact we will not contribute to the speed of these algorithms, but we
will show how to recursively reduce the problem of computing all Jacobi
sums to the known computations. We show how to compute any of the
Jacobi sums treated in our main theorem, faster than just naively summing
the defining series, in the case where q is greater than φ(e)φ(e).

3. Known results on Jacobi sums. The following theorems are well
known. We only state what we need; for other results see [6].

Theorem 1. (1) If both m and n are congruent to zero modulo e, then
J(χm, χn) = q − 2.

(2) If exactly one of m and n is congruent to zero modulo e, then we
have J(χm, χn) = −1.

(3) If m is nonzero modulo e and m+ n is congruent to zero modulo e,
then J(χm, χn) = −χm(−1).

Proof. See [6, Theorem 2.1.1] but recall that our Jacobi sums are called
J∗ in [6]. See the note above [6, Theorem 2.5.1].

Theorem 2. If e does not divide any of m, n, or m+ n, then

|J(χm, χn)| = q1/2.

Proof. This is a well-known consequence of the expression of a Jacobi
sum in terms of Gauss sums. See [6, Theorem 2.1.3].

Recall that r0 is the least positive integer such that pr0 ≡ 1 mod e. Let
q0 = pr0 and f0 = (q0 − 1)/e. Let p be a prime ideal in Z[ζe] above the



Jacobi sums over finite fields 3

prime p. Let χp be the power residue character from Z[ζe]/p to Q(ζe), that
is, for α ∈ Z[ζe], α 6∈ p, χp(α + p) = ζke where ζke is the unique power of ζe
such that

ζke ≡ α(q0−1)/e mod p.

See [6] or [11, Proposition 14.2.1].
Let E be the multiplicative group of reduced residues modulo e. For

k ∈ E let σk ∈ Gal(K/Q) be such that σk(ζe) = ζke , and define pk to
be σk(p). Let D denote a set of coset representatives of the multiplicative
quotient group

E/{1, p, p2, . . . , pr0−1}.
If we want to make the dependence of D on e explicit, we will write De.
Note that D has φ(e)/r0 elements and recall that

pZ[ζe] =
∏

k∈D
pk.(1)

For any integer c 6≡ 0 mod e, let L(c) denote the least positive integer
congruent to c mod e. For any power q = pr of q0 let f = (q−1)/e and write
the base p expansion of L(c)f as

L(c)f = c0 + c1p+ . . .+ cr−1p
r−1, 0 ≤ ci < p.

Define
se,q(c) = c0 + c1 + . . .+ cr−1.

Theorem 3. Let m, n and m+ n be integers not divisible by e. Then

J(χmp , χ
n
p)Z[ζe] =

∏

k∈D
p
r0+(se,q0(mk+nk)−se,q0(mk)−se,q0(nk))/(p−1)
k−1 ,

where k−1 is taken modulo e.

Proof. This is [6, Corollary 11.2.4].

If γ is a generator of F∗q , then γ(q−1)/(q0−1) is a generator of F∗q0 . Let
γ0 = γ(q−1)/(q0−1). We define a multiplicative character χ : Fq0 → Z[ζe], by

χ(γ0) = ζe, χ(0) = 0.

Theorem 4. Let m, n and m+ n be integers not divisible by e. Then

J(χm, χn) = (−1)r/r0−1J(χm, χn)r/r0.

Proof. Note that NFq/Fq0 (γ) = γ(q−1)/(q0−1) = γ0, and so,

χ(α) = χ(NFq/Fq0 (α)).

Therefore this theorem is just [6, Corollary 11.5.3].
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4. The prime factorization of J(χm, χn). Note that γ(q−1)/e is a
primitive eth root of unity in Fq and as e | pr0−1 we see that xe−1 |xpr0−1−1,
so that γ(q−1)/e is in fact in Fq0 . As r0 is the least positive integer such that
e | pr0 − 1, Fq0 = Fp(γ(q−1)/e). Let β =

∑r0
k=0 βkx

k, βr0 = 1 be the minimal
polynomial of γ(q−1)/e over Fp. Let B =

∑r0
k=0 bkx

k be a polynomial in Z[x]
such that each of the bk, when reduced modulo p, equals βk.

Lemma 1. One, and only one, of the primes, p, above p in Z[ζe] divides
the ideal generated by B(ζe). The polynomial B can be chosen in such a way
that p divides (B(ζe)) to only the first power.

Proof. By what is sometimes called Kummer’s Theorem, if Φe (the eth
cyclotomic polynomial) factors as

∏g
k=1Bk modulo p then the primes above

p in Z[ζe] are given by the ideals (p,Bk(ζe)) (see [14, Theorem 27] or [9,
Theorem 4.8.13]). Clearly β is one of these Bk. For the second part of the
theorem note that if p2 divides (B(ζe)) then only p to the first power divides
the ideal generated by B(ζe) + p.

The first part of this lemma generalizes Lemma 2 in [18]. For the rest of
this paper, let p be the prime given by the lemma.

Lemma 2. There exists an isomorphism θ : Fq0 → Z[ζe]/p such that

χ(γ0) = χp(θ(γ0)).

Proof. As r0 is the least positive integer such that e | pr0−1, we see that
Fq0 ∼= Fp[x]/(β). As p was chosen such that p = (p,B(ζe)) we have

Fq0 ∼= Fp[x]/(β) ∼= Z[x]/(p, Φe, B) ∼= Z[ζe]/p.

Let θ be this composition of isomorphisms. We see that θ maps γ(q−1)/e to
ζe. Note that γ(q0−1)/e

0 = γ(q−1)/e. Applying θ we obtain θ(γ0)(q0−1)/e = ζe.
But, by the definition of χp, this gives

χp(θ(γ0)) = ζe = χ(γ0).

Theorem 5. Let m, n and m+ n be integers not divisible by e. Then

J(χm, χn)Z[ζe] =
∏

k∈D
p
r+(se,q(mk+nk)−se,q(mk)−se,q(nk))/(p−1)
k−1 .

Proof. Using Lemma 2 we can easily prove that J(χm, χn) = J(χmp , χ
n
p).

Now Theorems 4 and 3 give

J(χm, χn)Z[ζe] =
∏

k∈D
p
r+ r

r0
(se,q0(mk+nk)−se,q0(mk)−se,q0(nk))/(p−1)

k−1 .

In order to complete the proof it will suffice to prove that
r

r0
se,q0(c) = se,q(c)(2)
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for any c 6= 0 mod e. Note that

f

f0
= 1 + pr0 + p2r0 + . . .+ pr−r0 ,

and L(c)f0 < pr0 . So we can easily write down the base p expansion of
L(c)f in terms of the base p expansion of L(c)f0. Then (2) follows from the
definition of s.

5. The sum I(m,n). We define a generalized Jacobi sum, I(m,n), and
see how it is related to the Jacobi sum J(χm, χn).

Define the ring R by

R = Z[x]/(xe − 1).

For α ∈ Fq, χ(α) = ζie for some integer i uniquely determined modulo e. So
for any character χ : Fq → Q(ζe) we define a map χ0 : Fq →R by

χ0(α) = xi, χ0(0) = 0.

Let Φd be the dth cyclotomic polynomial. Note that, by mapping x to ζe,
R/(Φe(x)) is isomorphic to Z[ζe]. We therefore have a canonical map,

% : R → Z[ζe].

Note that χ = % ◦ χ0 recovers the original character from χ0.
Define the sum I(m,n) ∈ R to be

I(m,n) =
∑

α∈Fq
χm0 (α)χn0 (1− α).

Then the Jacobi sum J(χm, χn) is just %(I(m,n)).
Conversely, we can recover I(m,n) from the Jacobi sums of dimensions

dividing e. For each positive divisor d of e let ζd be a primitive dth root
of unity and let χd be the character that sends γ to ζd. For each positive
divisor d of e let Jd ∈ Z[x] be a polynomial such that if we reduce modulo
Φd and then identify x with ζd, we get J(χmd , χ

n
d).

In what follows we want to apply the Chinese Remainder Theorem to
congruences modulo Φd for positive d | e. It is important to keep in mind
that the Φd are only relatively prime in Q[x], not Z[x]. So from now on it
is important to distinguish between polynomials in Z[x] and polynomials in
Q[x]. Let Im,n ∈ Z[x] be a polynomial of degree less than e such that if we
consider Im,n as an element of R it equals I(m,n). Note that

Im,n ≡ Jd mod Φd for all positive d | e.(3)

As
∏
d|e Φd = xe − 1 and the Φd generate relatively prime ideals in Q[x],

the Chinese Remainder Theorem shows that Im,n is uniquely determined
by (3).
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Theorem 6. If Im,n =
∑e−1

i=0 aix
i then

e−1∑

i=0

ai = q − 2,

and
e−1∑

i=0

iai ≡
{

0 mod e if e is odd ,
q−1

2 (gcd(m, e) + gcd(n, e)) mod e if e is even.

Proof. Let f = (q − 1)/e. Set gm = gcd(m, e) and gn = gcd(n, e). Now∑

α∈Fq
(1− χm0 (α))(1− χn0 (1− α)) ≡ 0 mod (x− 1)2.

Multiplying out the argument of the sum and noting that the only values
χk takes are powers of ζgcd(k,e)

e and that each of these is taken the same
number of times, we get

q −
e/gm−1∑

i=0

gmfx
igm −

e/gn−1∑

i=0

gnfx
ign + I(m,n) ≡ 0 mod (x− 1)2.

Or, considering this equation as an equation in Z[x], we have

(4) q −
e/gm−1∑

i=0

gmfx
igm −

e/gn−1∑

i=0

gnfx
ign +

e−1∑

i=0

aix
i

= P (x− 1)2 +Q(xe − 1),

for some polynomials P and Q in Z[x]. If we evaluate this equation at x = 1
we immediately get

∑e−1
i=0 ai = q − 2. Differentiating (4) with respect to x,

we get

−
e/gm−1∑

i=0

ig2
mfx

igm−1 −
e/gn−1∑

i=0

ig2
nfx

ign−1 +
e−1∑

i=0

iaix
i−1

= P ′(x− 1)2 − 2P (x− 1) +Q′(xe − 1) +Qexe−1.

Evaluation at x = 1 yields

−g2
mf

e/gm−1∑

i=0

i− g2
nf

e/gn−1∑

i=0

i+
e−1∑

i=0

iai = eQ(1).

So
e−1∑

i=0

iai = eQ(1) + f
(e− gm)e

2
+ f

(e− gn)e
2

= eQ(1) +
q − 1

2
(2e− gm − gn)

= e(Q(1) + q − 1)− q − 1
2

(gm + gn).
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Note that if e is odd, then both gm and gn must be odd and so gm + gn is
even. Then, as e | q − 1, the result follows. If e is even then p must be odd
and so − q−1

2 ≡
q−1

2 mod e, and we are done.

We want to show that if we know the Jd for 0 < d < e, d | e and we know
Je up to a root of unity, then this theorem can be used to find the correct
root of unity. First we need some lemmas.

Lemma 3. Suppose t is a positive divisor of lcm(2, e). Let ζt be a prim-
itive tth root of unity in K = Q(ζe). Then

NK/Q(ζt − 1) =
{
lφ(e)/φ(t) if t is a power of the rational prime l,
1 if t is not a prime power.

Here φ is the Euler totient function.

Proof. For any α ∈ K define n(α)=NQ(α)/Q(α), and recall that NK/Q(α)
= n(α)[K:Q(α)]. By [6, Theorem 2.1.9]

n(ζt − 1) =
{
l if t is a power of l,
1 otherwise.

But [K : Q] = φ(e) and [Q(ζt) : Q] = φ(t), and so the result follows.

Define
Ψe =

∏

d|e, 0<d<e
Φd.

Note that ΨeΦe = xe − 1 and that Ψe has degree e− φ(e).

Lemma 4. Let l be a rational prime dividing e; then lφ(e)/(l−1) is the
exact power of l dividing NK/Q(Ψe(ζe)).

Proof. We write

Ψe =
( ∏

d|e/l
Φd

)( ∏

d|e, d<e, d-e/l
Φd

)
= (xe/l − 1)

( ∏

d|e, d<e, d-e/l
Φd

)
.

From Lemma 3 we see that NK/Q(ζe/le − 1) = lφ(e)/(l−1). If d is such that
d | e, d < e and d - e/l, then there exists some prime l′ 6= l such that l′ | e
and d | e/l′. Then Φd |xe/l

′ − 1, and so, again by Lemma 3, NK/Q(Φd(ζe)) is
relatively prime to l.

Define e0 to be the product of all the primes dividing e.

Lemma 5. Ψe(ζe) divides e0 in Z[ζe].

Proof. Note that Ψe =
∏
d|e,d<e Φd divides

∏

l prime, l|e

∏

d|e/l
Φd =

∏

l prime, l|e
xe/l − 1.
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As ζe/le is a primitive lth root of unity, Lemma 3 says ζe/le − 1 | l. The result
follows.

Corollary 1. There exist polynomials S and G in Z[x] such that

SΨe +GΦe = e0.

Proof. This is just a restatement of the lemma.

Let e2 = lcm(e, 2) and assume i is an integer such that 0 ≤ i < e2.
By the division algorithm in Z[x] define the polynomial R ∈ Z[x] to be the
unique polynomial of degree less than φ(e) such that

R =
{

((−x)i − 1)SJe −QΦe if e is odd,
(xi − 1)SJe −QΦe if e is even,

(5)

for some Q ∈ Z[x] (and S as in the corollary).
Define

Im,n,i = Im,n +
1
e0
RΨe.(6)

Theorem 7. Im,n,i is the unique polynomial in Q[x] of degree less than
e such that

Im,n,i ≡
{

(−x)iJe mod Φe if e is odd ,
xiJe mod Φe if e is even,

and
Im,n,i ≡ Jd mod Φd for all d | e with 0 < d < e.

Proof. This follows directly from the definitions: By the Chinese Re-
mainder Theorem there can be at most one such polynomial, so we only
have to show that Im,n,i satisfies the conditions. But if e is odd then

Im,n,i = Im,n +
1
e0
RΨe

≡ Je +
1
e0

((−x)i − 1)JeSΨe mod Φe (by (3) and (5))

≡ Je + Je((−x)i − 1) mod Φe (by Corollary 1)

≡ (−x)iJe mod Φe.

The case e even is similar. That Im,n,i ≡ Jd mod Φd for d < e follows from
the fact that Φd |Ψe, (6) and (3).

Note that Im,n,0 = Im,n.

Theorem 8. If Im,n,i has integer coefficients then either i = 0 or e is a
power of a prime l and e2 | il.

Proof. Note that, as Im,n ∈ Z[x], Im,n,i has integer coefficients if and
only if all coefficients of RΨe are divisible by e0. This in turn is true if and
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only if all coefficients of R are divisible by e0 (Ψe is monic). If all coefficients
of R are divisible by e0, then by reducing (5) modulo Φe, we see that

e0 | (ζie2 − 1)S(ζe)J(χm, χn) in Z[ζe]

where ζe2 is a primitive e2th root of 1. Or, taking norms,

NK/Q(e0) |NK/Q(ζie2 − 1)NK/Q(S(ζe))NK/Q(J(χm, χn)) in Z.(7)

Now suppose that e has at least two distinct prime divisors. Then (for a
given i 6= 0) by Lemma 3 we can find a rational prime l dividing e such
that l is relatively prime to NK/Q(ζie2 − 1). Also l is relatively prime to
NK/Q(J(χm, χn)) by Theorem 5. So we see that NK/Q(l) = lφ(e) must divide
NK/Q(S(ζe)). Recall that S(ζe) = e0/Ψe(ζe) and by Lemma 4 the power with
which l occurs in NK/Q(Ψe(ζe)) is positive. This proves that if e has at least
two distinct prime divisors, Im,n,i has integer coefficients only if i = 0.

Now suppose e = la for some positive integer a. Then, as before, if l
is relatively prime to NK/Q(ζie2 − 1), Im,n,i cannot have integer coefficients.
Note that ζie2 is a primitive tth root of unity, where

t =
e2

gcd(i, e2)
.

Only if t is a power of l, is NK/Q(ζie2 − 1) not relatively prime to l. In this
case, as S(ζe) = e0/Ψe(ζe), we see that (7) only holds if the power of l
dividing NK/Q(ζie2 − 1) is greater than or equal to the power of l dividing
Ψe(ζe). That happens (by Lemma 3 and Corollary 1) only if

φ(e)
φ(t)

≥ φ(e)
l − 1

,

that is, t ≤ l, implying e2 | il.
Theorem 9. Let Im,n =

∑e−1
k=0 akx

k. Suppose Im,n,i has integer coeffi-
cients and Im,n,i =

∑e−1
k=0 a

′
kx

k. Then
e−1∑

k=0

ka′k ≡
e−1∑

k=0

kak mod e,

only if i = 0.

Proof. For each d dividing e define, using the Chinese Remainder The-
orem, a polynomial Td ∈ Q[x] such that

Td ≡
{

0 mod Φd0 for all d0 | e, d0 6= d,
1 mod Φd.

Then

(8) Im,n ≡
∑

d|e
TdJd mod xe − 1,
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(9) Im,n,i ≡
{

(−x)iTeJe +
∑

d|e, d<e TdJd mod xe − 1 if e is odd,
xiTeJe +

∑
d|e, d<e TdJd mod xe − 1 if e is even.

Now assume that Im,n,i has integer coefficients and that i is not zero.
Theorem 8 then shows that e = lb for some prime l and some positive integer
b, and i is some multiple of e2/l. If e is odd, then l is odd, but e2 is even,
and so i must be even. This shows that we can replace (−x)i by xi. If d | lb
and d < lb, Φd divides xe2/l − 1, which divides xi − 1. Also ΦdTd is divisible
by xe − 1. This shows that xe − 1 divides (xi − 1)Td and

TdJd ≡ xiTdJd mod xe − 1,

if d < e. And so
Im,n,i ≡ xiIm,n mod xe − 1.

Now, as the I’s have integer coefficients and xe − 1 is monic, we see that
this implies that there exists a polynomial, Q, in Z[x] (not just Q[x]) such
that

Im,n,i − xiIm,n = Q(xe − 1).

Differentiating this with respect to x and substituting x = 1 we get
e−1∑

k=0

ka′k − iIm,n(1)−
e−1∑

k=0

kak = eQ(1).

By Theorem 6, Im,n(1) = q− 2 and this is congruent to −1 modulo e. As Q
has integer coefficients we therefore have

e−1∑

k=0

ka′k −
e−1∑

k=0

kak ≡ −i mod e.

As noted before, if e is odd, i must be even, so if i ≡ 0 mod e then i ≡
0 mod 2e. As i < 2e and i was assumed nonzero, this is a contradiction. If e
is even, then i < e and again we see i cannot be zero modulo e.

Lemma 6. Suppose j and d are divisors of e. Then

xe − 1
xj − 1

≡
{ e

j mod Φd if d | j,
0 mod Φd if d - j.

Proof. Suppose d | j. Then

xe − 1
xj − 1

= xe−j + xe−2j + . . .+ xj + 1

≡ e

j
mod xd − 1 ≡ e

j
mod Φd.

On the other hand, if d - j, then Φd -xj − 1, but Φd |xe− 1, so Φd divides the
quotient of xe − 1 by xj − 1.
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Define

εg(k) =
{

1 if g | k,
0 if g - k.

Also let
gm = gcd(e,m), gn = gcd(e, n),

g = gcd(e,m+ n), g0 = gcd(gm, gn).

We can now state and prove the main theorem.

Theorem 10. There is a unique polynomial H ∈ Z[x] such that H(x) =
a0 + a1x + a2x

2 + . . . + ae−1x
e−1 and the coefficients satisfy the following

three conditions:

(i) (a)
e−1∑

j=0

a2
j = q + g0ef

2 − f(gm + gn + g),(10)

(b) for k = 1, . . . , e− 1
e−1∑

j=0

ajaj−k = εg0(k)g0ef
2 − εgm(k)fgm − εgn(k)fgn − εg(k)fg

where we consider the subscripts of the a’s modulo e.
(ii) We have

e−1∑

k=0

kak ≡
{

0 mod e if e is odd ,
q−1

2 (gm + gn) mod e if e is even.

(iii) For every d dividing e let Bd ∈ Z[x] be such that its reduction modulo
p is the minimal polynomial of γ(q−1)/d over Fp and

∏
k∈Dd Bd(ζ

k
d ) is not

divisible by p2 in Z[ζd]. Then H(ζd) must satisfy the following conditions:

(a) if none of m, n and m+ n are divisible by d, then

q |H(ζd)
∏

k∈Dd
Bd(ζk

−1

d )(sd,q(mk)+sd,q(nk)−sd,q(mk+nk))/(p−1),

where k−1 is taken modulo d,
(b) if m ≡ −n 6≡ 0 mod d, then

H(ζd) = −χmd (−1),

(c) if exactly one of m and n is divisible by d, then

H(ζd) = −1,

(d) if both m and n are divisible by d, then

H(ζd) = q − 2.
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If H is the unique polynomial satisfying these three conditions, then

H(ζe) = J(χm, χn).

Proof. By (1) and Lemma 1, the condition that
∏
k∈Dd Bd(ζ

k
d ) is not

divisible by p2 in Z[ζd] is equivalent to p2 not dividing the ideal generated
by Bd(ζd). In particular, as pointed out in the proof of Lemma 1, it is always
possible to find such Bd.

We will prove that H = Im,n is a unique solution to the three conditions
stated. First we show that (i) is equivalent to (12) below.

Note that for k = 0, 1, . . . , e− 1,
e−1∑

j=0

ajaj−k

is the coefficient of xk in H(x)H(xe−1) reduced modulo xe − 1. Therefore
(i) is equivalent to

(11) H(x)H(xe−1)

≡ g0ef
2 x

e − 1
xg0 − 1

−gmf
xe − 1
xgm − 1

−gnf
xe − 1
xgn − 1

−gf x
e − 1
xg − 1

+ef+1 mod xe−1.

Suppose that d | e. If d |m and d |n then d divides g0, gm, gn and g, so by
Lemma 6, (11) implies

H(x)H(xe−1) ≡ e2f2−ef −ef −ef +ef +1 = (ef −1)2 = (q−2)2 mod Φd.

If d |m but d -n, then d - g0, d | gm, d - gn, and d - g, so again by Lemma 6,
(11) implies

H(x)H(xe−1) ≡ −ef + ef + 1 = 1 mod Φd.

Similarly if d |n but d -m or d |m+ n but d -m, then

H(x)H(xe−1) ≡ 1 mod Φd.

Finally if d divides none of m, n or m+ n then d divides none of g0, gm, gn
or g and so

H(x)H(xe−1) ≡ ef + 1 = q mod Φd.

So we have shown that for every d dividing e,

(12) H(ζd)H(ζd)

=





(q − 2)2 if d |m and d |n,
1 if d divides exactly one of m, n or m+ n,
q if d divides none of m, n or m+ n,

where the bar denotes complex conjugation.
Conversely, this gives the value of H(x)H(xe−1) modulo Φd for every

d | e, so that it implies (11). Condition (i) is therefore equivalent to (12).
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Assume we set H = Im,n. Then, by Theorems 1 and 2, H = Im,n sat-
isfies (i). By Theorem 6 it also satisfies (ii). If d does not divide m, n or
m + n, then, by Theorem 5, Lemma 1 and the identity

∏
k∈Dd prk = qZ[ζd]

we see that (iii)(a) holds. The other parts of (iii) hold by Theorem 1. So we
see that there is at least one H satisfying (i)–(iii).

We will show, by induction, that if H satisfies the conditions of the
theorem, then H(ζd) = J(χmd , χ

n
d) for every d | e. For d = 1, (iii)(d) and

Theorem 1(1) give
H(ζ1) = q − 2 = J(χm1 , χ

n
1 ).

Now fix some d with d | e. Let Hd(x) =
∑d−1

j=0 bjx
j and suppose that

Hd ≡ H mod xd− 1. Then if H satisfies the conditions of the theorem, then
Hd satisfies the conditions of the theorem rewritten with H replaced by Hd

and e replaced by d. For (i) this follows from the equivalence of (i) and (12).
For condition (ii) it follows on noticing that bj =

∑e/d−1
k=0 aj+kd. Condition

(iii) is clear.
Thus, to complete the induction it suffices to show that if H(ζd) =

J(χmd , χ
n
d) for all d such that d | e and d < e, then H(ζe) = J(χm, χn).

If e divides any one ofm, n orm+n this follows immediately from (iii)(b),
(c), (d). Now suppose e divides none of m, n or m + n. As we remarked,
only p, to the first power, of all the primes above p in Z[ζe] divides (Be(ζe))
so that (iii)(a) implies

∏

k∈D
p
r+(se,q(mk+nk)−se,q(mk)−se,q(nk))/(p−1)
k−1 |H(ζe)Z[ζe].

By Theorem 5 there exists an (integral) ideal, a, such that H(ζe)Z[ζe] =
J(χm, χn)a. By Theorem 2 and (12) we get aa = Z[ζe]. It follows that the
ideals generated by J(χm, χn) andH(ζe) are equal, or that there exists a unit
u ∈ Z[ζe] such that H(ζe) = uJ(χm, χn). By Theorem 2 and (12) this unit
has absolute value 1. Then, by [6, Theorem 2.1.13], u must be some power of
ζe if e is even and some power of −ζe if e is odd. In other words, by Theorem
7, we have shown that there exists an integer i such that H = Im,n,i. As H
has integer coefficients and satisfies (ii), Theorem 9 implies that i = 0, or
H = Im,n, as required.

Some remarks:

1. Condition (i) of the theorem gives a system of Diophantine equations
with only a finite number of solutions (clearly even (i)(a) has only a finite
number of solutions). Conditions (ii) and (iii) then give congruence condi-
tions ruling out all but one of the finite number of solutions. This unique
solution gives the Jacobi sum.

2. Condition (i) can be seen as a generalization of [20, Proposition 1c)].
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3. Of course (iii) takes the value of the primitive root γ into account. We
therefore do not have any “sign ambiguities” as discussed by D. H. Lehmer
[13] in his review of Whiteman’s paper [22].

4. As mentioned by Lehmer in [13], “many problems in cyclotomy can
tolerate these ambiguities” so that it is of interest to characterize the Jacobi
sums up to the choice of γ (this turns out to be up to conjugacy). Can we re-
place our condition (iii) with a nicer condition if we allow these ambiguities?
For the case of e being a prime or twice a prime and r0 = 1 see condition
(v) of the main theorem of [1].

5. Let h = γ(q−1)/e. Then he/d = γ(q−1)/d and Bd is the minimal polyno-
mial of he/d over Fp. Let rd be the least positive integer such that d | prd−1.
Then Bd modulo p has degree rd, in fact Bd(x) reduced modulo p is given by

rd∏

i=1

(x− hpie/d).

As he = 1, we see that this expression only depends on p modulo e. In par-
ticular for all p with p fixed modulo e, the coefficients of Bd reduced modulo
p are given by fixed polynomials in h.

6. Note that in (iii)(a) the divisibility condition requires divisibility in
Z[ζd], but q divides an algebraic integer in Z[ζd] if and only if q divides all the
coefficients of such an algebraic integer expressed as a linear combination
of a Z-basis of Z[ζd]. So this condition can be written as φ(d) divisibility
conditions on linear combinations of the aj . By the previous remark the
coefficients, in turn, are polynomials in h = γ(q−1)/e. So we see that, for
fixed e, m, n and p mod e our three conditions can be given as an explicit
Diophantine system (of equations and congruences) in the variables a1 to
ae−1, h and q. See the examples in the next section.

7. For a fixed e and q the cyclotomic numbers can be given in terms
of the J(χm, χn) (see [6, Theorem 2.5.1 and (11.6.5)]). So in a sense our
theorem solves the main problem of cyclotomy by giving a Diophantine
system characterizing the cyclotomic numbers. Of course much of the work
that has been done on the cyclotomic problem involves reducing the number
of variables by finding relations between different Jacobi sums. We have not
touched this aspect of the problem. On the other hand if the title of a
paper announces that it gives the cyclotomic numbers of a certain order it
is usually done in terms of such a minimal set of variables, often with no
Diophantine system satisfied by these variables given. So this work can be
seen as complementing such a paper.

6. Examples of the main theorem

6.1. e = 15. Suppose e = 15, m = n = 1 and p is any prime such that
p ≡ 1 mod 15. Then r0 = 1; let r = 1 also. Let γ be a generator of the cyclic
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group F∗p and let h be an integer such that h ≡ γ(p−1)/15 and h15 − 1 is not
zero modulo p2. Then if a0, . . . , a14 satisfy (i), (ii) of the theorem and the
congruences below, J(χ, χ) =

∑14
k=0 akζ

k
15. Condition (iii)(a) with d = 15

turns into the following 8 congruences.

(h−h2−h3 +h4)a0 + (−1 +h+h2−h3)a4 + (−1 +h2)a5−a6−h2a7−h4a8

+ (1− h+ h3 − h4)a9 + (1− h+ h3 − h4)a10 + a11 + h2a12 + h4a13

+ (−h2 + h4)a14 ≡ 0 mod p,

(−h+h3)a0 + (h−h2−h3 +h4)a1 + (1−h−h2 +h3)a4 + (h−h3)a5 +h2a6

+(−1+h2)a7+(−h2+h4)a8+(−1+h−h3)a9+(−h+h3−h4)a11+(1−h2)a12

+ (h2 − h4)a13 + h2a14 ≡ 0 mod p,

h2a0+(−h+h3)a1+(h−h2−h3+h4)a2+(1−h−h2+h3)a5+(h−h3)a6+h2a7

+(−1+h2)a8+(−h2+h4)a9+(−1+h−h3)a10+(−h+h3−h4)a12+(1−h2)a13

+ (h2 − h4)a14 ≡ 0 mod p,

(h−h3)a0 +h2a1 +(−h+h3)a2 +(h−h2−h3 +h4)a3 +(−1+h+h2−h3)a4

+ (−1 + h2)a5 + (−h− h2 + h3)a6 + (h− h2 − h3)a7 + (h2 − h4)a8

+(−h+h2+h3−h4)a9+(1−h−h2+h3)a10+(h−h3)a11+h2a12+(−h+h3)a13

+ (1− 2h2 + h4)a14 ≡ 0 mod p,

(1− h− h2 + h3)a0 + (h− h3)a1 + h2a2 + (−h+ h3)a3 + (1− 2h2 + h4)a4

+(h−h3)a5 +h2a6 +(−h+h3)a7 +(h−h2−h3 +h4)a8 +(−1+h+h2−h3)a9

+ (−1 + h2)a10 + (−h− h2 + h3)a11 + (h− h2 − h3)a12 + (h2 − h4)a13

+ (−h+ h2 + h3 − h4)a14 ≡ 0 mod p,

(1− h− h2 + h3)a1 + (h− h3)a2 + h2a3 + (−1 + h2)a4 + (−h2 + h4)a5

+ (−1 + h− h3)a6 + (−h+ h3 − h4)a8 + (1− h2)a9 + (h2 − h4)a10 + h2a11

+ (−h+ h3)a12 + (h− h2 − h3 + h4)a13 ≡ 0 mod p,

(1− h− h2 + h3)a2 + (h− h3)a3 + h2a4 + (−1 + h2)a5 + (−h2 + h4)a6

+ (−1 + h− h3)a7 + (−h+ h3 − h4)a9 + (1− h2)a10 + (h2 − h4)a11 + h2a12

+ (−h+ h3)a13 + (h− h2 − h3 + h4)a14 ≡ 0 mod p,

(1− h− h2 + h3)a3 + (1− h2)a4 + a5 + h2a6 + h4a7 + (−1 + h− h3 + h4)a8

+ (−1 + h− h3 + h4)a9 − a10 − h2a11 − h4a12 + (h2 − h4)a13

+ (−h+ h2 + h3 − h4)a14 ≡ 0 mod p.
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Condition (iii)(a) with d = 5 says that the following 4 congruences must
hold:
(h3+h6)a0−h3a1+h3a2+(−1−h3)a3+(1−h6)a4+(h3+h6)a5−h3a6+h3a7

+ (−1− h3)a8 + (1− h6)a9 + (h3 + h6)a10 − h3a11 + h3a12 + (−1− h3)a13

+ (1− h6)a14 ≡ 0 mod p,

(1+h3)a0 +h6a1−a3 +(−h3−h6)a4 +(1+h3)a5 +h6a6−a8 +(−h3−h6)a9

+ (1 + h3)a10 + h6a11 − a13 + (−h3 − h6)a14 ≡ 0 mod p,

a1+(h3+h6)a2+(−1−h3)a3−h6a4+a6+(h3+h6)a7+(−1−h3)a8−h6a9+a11

+ (h3 + h6)a12 + (−1− h3)a13 − h6a14 ≡ 0 mod p,

h3a0−h3a1+(1+h3)a2+(−1+h6)a3+(−h3−h6)a4+h3a5−h3a6+(1+h3)a7

+ (−1 + h6)a8 + (−h3− h6)a9 + h3a10− h3a11 + (1 + h3)a12 + (−1 + h6)a13

+ (−h3 − h6)a14 ≡ 0 mod p.
Finally, (iii)(a) with d = 3 says that the following 2 congruences must

hold:
(−1−h5)a0 +a1 +h5a2 + (−1−h5)a3 +a4 +h5a5 + (−1−h5)a6 +a7 +h5a8

+ (−1− h5)a9 + a10 + h5a11 + (−1− h5)a12 + a13 + h5a14 ≡ 0 mod p,

−a0−h5a1 +(1+h5)a2−a3−h5a4 +(1+h5)a5−a6−h5a7 +(1+h5)a8−a9

− h5a10 + (1 + h5)a11 − a12 − h5a13 + (1 + h5)a14 ≡ 0 mod p.

Condition (iii)(d) is just
14∑

k=0

ak = p− 2.

This example completes [7], [17] where the cyclotomic numbers of order
15 are given in terms of the coefficients of J(χ, χ) and a few other variables,
but where no Diophantine system is given for the coefficients of J(χ, χ).

6.2. e = 7. We would like to give an example with r0 > 1, but unfor-
tunately the smallest nontrivial example occurs with e = 7 (see [4]), so this
example is also rather big. Suppose e = 7,m = n = 1 and p is any prime such
that p ≡ 2 mod 7. Then r0 = 3; let r = 3 also. Let γ be a generator of the
cyclic group F∗p3 and set h = γ(p3−1)/7. Choose integers b2 and b1 such that

b2 = −h4 − h2 − h,(13)

b1 = h6 + h5 + h3,(14)

0 6≡ b2 − b1 − 1 mod p2.(15)
Then we can take B7(x) = x3 + b2x

2 + b1x − 1. The integer b2 − b1 − 1 in
(15) is the coefficient of x2 in B7(x)B7(x3) reduced modulo Φ7, and so (15)
ensures that B7(ζ7) is not divisible by the square of a prime above p in Z[ζ7].
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If a0, . . . , a6 satisfy (i) and (ii) of the theorem and the congruences below,
J(χ, χ) =

∑6
k=0 akζ

k
7 .

Condition (iii)(a) with d = 7 requires that the following 6 congruences
hold:

(−1+2b1 +3b21 +4b2−2b1b2−b22 +b1b22)a0 +(−1−4b1−b21−2b2−2b1b2−b21b2
+3b22)a1+(3+2b1−b31+b2+2b1b2+b21b2−2b22)a2+(−3−b1+b21+b31−b2−2b1b22)a3

+ (2 + b1− b21− b2−2b21b2− b22 + 2b1b22)a4 + (−3 + b1 + b2 + 2b21b2 + b22− b32)a5

+ (3− b1 − 2b21 − 2b2 + 2b1b2 − b1b22 + b32)a6 ≡ 0 mod p3,

(2+b1+b21+2b2−b22+b32)a0+(−2−2b1+2b21+2b2−4b1b2−b21b2+2b22+b1b22)a1

+ (2− 2b1 − b21 − b31 − b2 + b22)a2 + (b1 + b21 + 2b1b2 + b21b2 − 2b22 − 2b1b22)a3

+ (−1 + b31 − 2b2 − 2b21b2 − b22)a4 + (−1 + 2b1 − b21 + 2b1b22 − b32)a5

+ (−2b21 − b2 + 2b1b2 + 2b21b2 + b22 − b1b22)a6 ≡ 0 mod p3,

(−1 + 2b1 + b21 + 3b2 + 2b21b2)a0 + (1− 3b1 − 2b1b2 − b21b2 + 2b22 + b32)a1

+ (1 + 2b21 − b31 + 3b2 − 2b1b2 + b1b
2
2)a2 + (−1− 3b1 − 2b2 + b22 − 2b1b22)a3

+ (2 + 2b1 − b2 + 2b1b2 − b21b2 − 3b22)a4 + (−4 + b1 + b31 − b2 − b32)a5

+ (2 + b1 − 3b21 − 2b2 + 2b1b2 + b1b
2
2)a6 ≡ 0 mod p3,

(1 + 3b1 + 2b2 − b22 + 2b1b22)a0 + (−2− 2b1 + b2 − 2b1b2 + b21b2 + 3b22)a1

+ (4− b1 − b31 + b2 + b32)a2 + (−2− b1 + 3b21 + 2b2 − 2b1b2 − b1b22)a3

+ (1− 2b1 − b21 − 3b2 − 2b21b2)a4 + (−1 + 3b1 + 2b1b2 + b21b2 − 2b22 − b32)a5

+ (−1− 2b21 + b31 − 3b2 + 2b1b2 − b1b22)a6 ≡ 0 mod p3,

(−2 + 2b1 + b21 + b31 + b2 − b22)a0 + (−b1 − b21 − 2b1b2 − b21b2 + 2b22 + 2b1b22)a1

+ (1− b31 + 2b2 + 2b21b2 + b22)a2 + (1− 2b1 + b21 − 2b1b22 + b32)a3

+ (2b21 + b2 − 2b1b2 − 2b21b2 − b22 + b1b
2
2)a4 + (−2− b1 − b21 − 2b2 + b22 − b32)a5

+ (2 + 2b1 − 2b21 − 2b2 + 4b1b2 + b21b2 − 2b22 − b1b22)a6 ≡ 0 mod p3,

(1 + 4b1 + b21 + 2b2 + 2b1b2 + b21b2− 3b22)a0 + (−3− 2b1 + b31− b2− 2b1b2− b21b2
+2b22)a1+(3+b1−b21−b31+b2+2b1b22)a2+(−2−b1+b21+b2+2b21b2+b22−2b1b22)a3

+(3− b1− b2−2b21b2− b22 + b32)a4 +(−3+ b1 +2b21 +2b2−2b1b2 + b1b
2
2− b32)a5

+ (1− 2b1 − 3b21 − 4b2 + 2b1b2 + b22 − b1b22)a6 ≡ 0 mod p3.

As before (iii)(d) is just
6∑

k=0

ak = p3 − 2.

It is tempting to plug (13) and (14) into these expressions, but it is
important to lift to Z when we do and not right at the end.
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7. Fast computation of Jacobi sums. Giving Diophantine conditions
satisfied by the coefficients of Jacobi sums or the cyclotomic numbers are
of a mostly theoretical interest. They certainly do not make it any easier to
compute these entities. But the ideas used in this paper can in fact be used
to compute some Jacobi sums faster than naively summing their defining
series, in particular when q is much bigger than e. The point is that we can
use lattice reduction techniques to quickly find the value of a Jacobi sum up
to a root of unity and then we can use Theorem 9 to find the correct root
of unity.

The central observation that makes this possible (apparently due to H.
Lenstra) is the following. Note that

q =
∏

k∈D
p
r+(se,q(mk+nk)−se,q(mk)−se,q(nk))/(p−1)
k−1

is a principal ideal with λ = J(χm, χn) as a generator, and that this gen-
erator has all its archimedean absolute values equal to

√
q. Let T be the

trace from Z[ζe] to Z. If we think of q as a free Z-module then T (ab), for a
and b in q, defines a symmetric bilinear form. The corresponding quadratic
form T (aa) is clearly positive definite. So we can think of q as a lattice ([9,
Definition 2.5.2]).

As before, let σk, for any k ∈ E, be the embeddings of K into C. The
archimedean absolute values are then given by

|α|k =
√
σk(α)σk(α).

For any α ∈ Z[ζe] set xk = |α|k for every k ∈ E. We have q = λZ[ζe], so if
β = λα with α ∈ Z[ζe] is any element in the lattice q we have

T (ββ) =
∑

k∈E
|λα|2k = q

∑

k∈E
x2
k.

Note that
∏
k∈E xk = N(α)2 ≥ 1, and under this constraint, the minimum

of
∑

k∈E x
2
k occurs when all xk = 1. So we see that λ is a shortest vector in

the lattice q and that the other shortest vectors are λ multiplied by a root
of unity in Z[ζe]. So we can find J(χm, χn) up to a root of unity by finding
a shortest vector in the lattice q.

First we need to compute a basis for q. This can be done by first de-
composing p into prime ideals in the ring Z[ζe] by factoring Φe modulo p,
using (say) Berlekamp’s algorithm (see [5] or [9, Section 3.4]). This takes
probabilistic polynomial time, or deterministic polynomial time if the ERH
is assumed. By Kummer’s theorem [9, Theorem 4.8.13], [14, Theorem 27]
such a factorization gives us two generators for each of the ideals above p.
Using these it is an easy (and polynomial time) matter to find a Z-basis
for q (see [9, Section 4.7.2]).

Finding shortest vectors in a lattice of fixed dimension can be done in
polynomial time in the size of the input, that is, in our case, time polynomial
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in log q. The running time is exponential in the dimension of the lattice
(something like O(dd), where d = φ(e) is the dimension of the lattice, see
[12]). For a more detailed discussion and some notes on implementing a very
similar algorithm [8] is recommended.

We can now recursively compute any Jacobi sum as follows. If e = 1,
then by Theorem 1, the Jacobi sum is just q− 2. Now assume that we have
already computed all the Jacobi sums J(χmd , χ

n
d) for all d | e with d < e.

Then we use the algorithm above to find J(χm, χn) up to a root of unity,
say given by J . Then for each i, 0 ≤ i < lcm(e, 2), we can compute a
polynomial Ii ∈ Q[x] of degree less than e such that

Ii(ζe) =
{

(−ζe)iJ if e is odd,
ζieJ if e is even,

Ii(ζd) = J(χmd , χ
n
d) if d | e and 0 < d < e.

This computation can be done by precomputing the polynomials Td as in
the proof of Theorem 9 (by finding the inverse of (xe − 1)/Φd mod Φd and
multiplying by (xe − 1)/Φd) and then computing Ii similarly to (9).

By Theorem 9, for only one i, 0 ≤ i < lcm(e, 2), will Ii =
∑e−1

k=0 akx
k

have integer coefficients and satisfy
e−1∑

k=0

kak =
{

0 mod e if e is odd,
q−1

2 (gm + gn) mod e if e is even.

For this i we get J(χm, χn) =
∑e−1

k=0 akζ
k
e .

So we have seen that if q is on the order of φ(e)φ(e) or bigger, then
the above algorithm will compute the Jacobi sum faster than just summing
up its defining series. The algorithm was implemented in GP ([3]) and can
compute Jacobi sums with φ(e) < 20, q < 1050 in less than 2 minutes. The
case e = 29 and q < 1020 also took about 2 minutes. The case e = 90,
p = 15217 and r = r0 = 12 took less than 15 seconds. These times could
certainly be improved if we made use of the fact that p itself is usually
principal (see [8]). So we see that this algorithm gives a practical method
for computing Jacobi sums with φ(e) up to about 30.

There is a lot of interest in computing Jacobi sums fast because of its
application to primality testing (see [15], [16]). It should be noted though
that for this application the Jacobi sum is only needed up to a root of
unity and furthermore Jacobi sums over finite rings are also used. For an
application to cryptosystems, see [8].
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