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On products of eigenforms

by

Eknath Ghate (Mumbai)

1. Introduction. In [5] we observed that, apart from sixteen (1)
exceptions, the product of two level one eigenforms is not an eigenform.
This observation was also made independently by W. Duke [4]. The purpose
of this note is to investigate whether the product of eigenforms can be an
eigenform when the level is square-free.

Let Mk(Γ1(N)) denote the space of modular forms of weight k ≥ 1 and
level N ≥ 1. Let Sk(Γ1(N)) denote the subspace of cusp forms, and let
Ek(Γ1(N)) denote the subspace of those modular forms that are orthogonal
to Sk(Γ1(N)) with respect to the Petersson inner product. Thus we have

Mk(Γ1(N)) = Sk(Γ1(N))⊕ Ek(Γ1(N)).

These spaces may be decomposed according to nebentypus:

Mk(Γ1(N)) =
⊕

χ

Mk(N,χ),

Sk(Γ1(N)) =
⊕

χ

Sk(N,χ),(1)

Ek(Γ1(N)) =
⊕

χ

Ek(N,χ),

as χ varies through all Dirichlet characters mod N .
Each of the spaces in (1) has an explicit basis consisting of modular

forms that are eigenvectors of all the Hecke operators Tn with n coprime
to N .

For Sk(N,χ) this basis is constructed from newforms of lower level in
the usual manner. Let M be a positive integer divisible by the conductor
c(χ) of χ. We say that f ∈ Sk(M,χ) is primitive if it is a newform, it is an
eigenvector of all the Hecke operators of level M , and it is normalized so
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(1) In [5] the exceptional cases were miscounted as fifteen; the relation E14 = E4E10

should have been included in equation (1) of [5].
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that the q-term in its q-expansion is 1. Then the set of cusp forms
⋃

M

⋃

Q

{f(Qz) | f is a primitive element of Sk(M,χ)},

where M varies through all positive integers satisfying M |N and c(χ) |M ,
and Q varies through all positive integers dividing N/M , forms a basis of
Sk(N,χ) consisting of common eigenforms of all the Hecke operators Tn
with n coprime to N .

A similar explicit basis consisting of modular forms that are eigenvectors
of all the Hecke operators Tn for n coprime to N exists for Ek(N,χ) as well.
We refer the reader to Theorem 2 in the text for its description.

Let B denote the explicit basis of Mk(Γ1(N)) obtained as above. We
shall say that an element of Mk(Γ1(N)) is an almost everywhere eigenform
(or a.e. eigenform for short) if, up to a scalar multiple, it is an element of B.

The purpose of this note is to shed some light on the following question
which was asked by D. Prasad:

Question 1. Let k > l ≥ 1 and N ≥ 1 be integers. Say g ∈Ml(Γ1(N))
and h ∈ Mk−l(Γ1(N)) are a.e. eigenforms. When is gh ∈ Mk(Γ1(N)) an
a.e. eigenform?

There are three cases to consider:

A. g ∈ Sl(Γ1(N)) and h ∈ Sk−l(Γ1(N)),
B. g ∈ Sl(Γ1(N)) and h ∈ Ek−l(Γ1(N)),
C. g ∈ El(Γ1(N)) and h ∈ Ek−l(Γ1(N)).

Since the property of being an a.e. eigenform imposes stringent condi-
tions on the q-expansion of a modular form and since the convolution prod-
uct of q-expansions is unlikely to preserve these conditions one expects that
the answer to Question 1 is “rarely”. This is corroborated by the following
theorem, which may be considered a summary of the results proved in the
main body of the paper (see Proposition 2 and Theorems 3 and 4).

Theorem 1. Say N is square-free. Let g and h be a.e. eigenforms of
weight l ≥ 3 and k − l ≥ 3, and nebentypus ψ and χ respectively. Then:

1. In Case A, gh is never an a.e. eigenform.
2. In Case B, assume that g is a newform and dimSnew

k (N,ψχ) ≥ 2.
Then gh is not an a.e. eigenform.

3. In Case C, assume that l 6= k/2 and that ψ and χ are primitive
characters. Assume that

dimSnew
k (N,ψχ) ≥

{
1 when gh ∈ Ek(N,ψχ),
2 when gh ∈ Sk(N,ψχ).

Then gh is not an a.e. eigenform.
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The proof of Theorem 1 uses the Rankin–Selberg method and the fact
that when N is square-free the Atkin–Lehner involutions act transitively on
the set of Eisenstein series.

We now make some comments on the hypotheses of Theorem 1.
The restriction that the weights of g and h be larger than 3 arises because

of technical reasons (Eisenstein series of weight 1 and 2 behave slightly dif-
ferently than Eisenstein series of weight larger than 3) as well as conceptual
ones (the Rankin–Selberg L-function may vanish at the point of interest
when the weight is 1 or 2).

In Case B the theorem is false if g is not a newform. For example if E4 is
the unique normalized Eisenstein series of level one, ∆12 is the Ramanujan
Delta function and ∆16 is the unique cusp form of level one and weight 16,
then the identity

∆12(z) ·E4(z) = ∆16(z)

of eigenforms will propagate to S16(Γ0(N)) for arbitrary N by simply sub-
stituting Nz for z. Thus it makes sense to require g to be a newform.

In Case C we remind the reader that even though g and h are Eisenstein
series it is possible that gh is a cusp form. For instance if

g = f3(z, χ−3, 1) ∈ E3(3, χ−3) and h = f5(z, 1, χ−3) ∈ E5(3, χ−3)

(here χ−3 is the quadratic character of conductor 3; see Theorem 2 for
the other notation) then g vanishes exactly at the cusp ∞ whereas h van-
ishes exactly at the cusp 0. Since there are only two cusps for Γ1(3) we see
that gh ∈ S8(Γ0(3)) must be a cusp form. (It is in fact an eigenform since
S8(Γ0(3)) has dimension 1.)

In Case C the assumption that ψ and χ are primitive is made, as in
Case B, to exclude from consideration identities in level N which have
propagated from smaller levels (example: if Ek is the unique normalized
Eisenstein series of level one and weight k then E4(Nz)E6(Nz) = E10(Nz)
in E10(Γ0(N)) for all N).

The assumption that l 6= k/2 in Case C is more serious and interesting.
It arises since the (twisted) L-function of a cusp form of weight k may vanish
at the center of the critical strip. In this case the method of proof of this
paper fails. However one can work around this in special cases by a direct
comparison of Fourier coefficients. When N = 1 this was done in [5]. When
N is arbitrary we only sketch the strategy for doing this in general. As an
application of this circle of ideas we prove a result which gives a criterion for
the non-vanishing of certain (twisted) standard L-functions at the center of
the critical strip (see Theorem 5 and its corollaries).

We end this paper with some examples of a.e. eigenforms which can be
written as products of a.e. eigenforms of smaller weight.
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2. Rankin–Selberg method. In this section we briefly review the
Rankin–Selberg method since it is at the heart of the proof of Theorem 1.
A reference is Shimura [9].

Let N ≥ 1 and k > l ≥ 1 be integers. Let χ and ψ be Dirichlet characters
mod N . Say that f =

∑
anq

n ∈ Sk(N,χ) and g ∈ Ml(N,ψ). Let fc(z) =
f(−z) =

∑
n anq

n. Then some standard integration shows

I(s, f, g) :=
∞�

0

1�

0

fc(z)g(z)ys−1 dx dy = (4π)−sΓ (s)D(s, f ⊗ g),

where

D(s, f ⊗ g) =
∞∑

n=1

anbn
ns

is the Rankin product L-function of f and g. Now let D = Γ0(N)\H. Then
another standard unwinding argument shows that

I(s, f, g) =
���

D

fc(z)g(z)Ek−l,χψ(s+ 1− k, z)yk
dx dy

y2 ,

where

Ek,ω(s, z) =
∑

Γ0(N)∞\Γ0(N)

ω(d)
(cz + d)k|cz + d|2s(2)

is the Eisenstein series with parameter s. If f1 ∈ Sk(Γ1(N)) and f2 ∈
Mk(Γ1(N)) let

(f1, f2) =
���

D

f1(z)f2(z) yk
dx dy

y2

be the usual Petersson inner product of f1 and f2. Specializing the two
expressions above for I(s, f, g) at s = k − 1 yields the important identity

(4π)1−kΓ (k − 1)D(k − 1, f ⊗ g) = (fc, gEk−l,χψ),(3)

where Ek−l,ω ∈ Ek−l(N,ω) is a modular form (except in the case when both
k − l = 2 and ω = 1) which is described in more detail in Section 3.

3. Eisenstein series on Γ1(N). In this section we recall some facts
about Eisenstein series on Γ1(N) for an arbitrary integer N ≥ 1. Further
details can be found in Chapters 2, 4, and 7 of Miyake’s book [8].

Let t be the number of inequivalent cusps for Γ1(N). If N ≥ 3, then
−1 6∈ Γ1(N), and so we may further classify the cusps as regular or irregular
(see page 19 of [8]). Let u denote the number of regular cusps and v the
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number of irregular cusps (for N ≥ 3). We have (cf. [8], Theorem 4.2.9):

t =





1 if N = 1,
2 if N = 2,
2 if N = 3 (0 and ∞ are both regular),
3 if N = 4 (0, ∞ are regular, 1/2 is irregular),
1
2

∑
0<d|N

φ(d)φ(N/d) if N ≥ 5 (all cusps are regular).

The number of cusps is closely connected to the dimension of the space of
Eisenstein series. In fact we have (cf. [8], Theorems 2.5.2 and 2.5.3):

dim Ek(Γ1(N)) =





t if k ≥ 4 is even,
t− 1 if k = 2,
u if k ≥ 3 is odd and N ≥ 3,
u/2 if k = 1 and N ≥ 3,
0 if k ≥ 1 is odd and N = 1, 2.

(4)

Note that in the generic case, namely k ≥ 3 and N ≥ 5, the dimension is

t = u =
1
2

∑

0<d|N
φ(d)φ(N/d).

In fact it is easy to explicitly write down a basis of a.e. eigenforms of
Ek(Γ1(N)) (see [8], Theorems 4.7.1 and 4.7.2):

Theorem 2. Let χ1 and χ2 be Dirichlet characters mod M1, respectively
M2, such that χ1χ2(−1) = (−1)k with k ≥ 1. Assume that

• if k = 2 and χ1 = χ2 = 1, then M1 = 1 and M2 is a prime number ,
• otherwise, χ1 and χ2 are primitive characters.

Then there is an element f = fk(z, χ1, χ2) =
∑∞

n=0 anq
n ∈ Ek(M,χ), with

M = M1M2 and χ = χ1χ2, characterized by the properties

• L(s, f) = L(s, χ1)L(s− k + 1, χ2), and
• the constant term of f is

a0 =





0 if k ≥ 2 and χ1 6= 1, or
if k = 1 and both χ1 6= 1 and χ2 6= 1,

(M − 1)/24 if k = 2 and χ1 = 1, χ2 = 1,
−Bk,χ/(2k) otherwise.

The modular form fk(z, χ1, χ2) ∈ Ek(M,χ) is an eigenvector for all the
Hecke operators of level M . Modulo the relation f1(z, χ1, χ2) = f1(z, χ2, χ1)
when k = 1, the set of elements

fk(Qz, χ1, χ2)

with QM1M2 |N , and χ1, χ2, M1, M2 satisfying the conditions above, form a
basis of Ek(N,χ) consisting of common eigenforms of all the Hecke operators
Tn of level N , with n coprime to N .
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We leave it to the reader to check (cf. pages 179–181 of [8]) that, by an
explicit counting argument, one recovers (2) the formula (4).

Not all the Eisenstein series fk(Qz, χ1, χ2) ∈ Ek(N,χ) of Theorem 2
appear in the Rankin–Selberg method. In fact those that do are essentially
those coming from the cusp at ∞. Let us make this more precise. Fix an
integer k ≥ 1 and a Dirichlet character ω mod N . Then the Eisenstein series
that appear in the Rankin–Selberg method are of the form

Ek,ω(z) =
∑

Γ0(N)∞\Γ0(N)

ω(d)
(cz + d)k

=
1
2

∑

c≡0 (N)
(c,d)=1

ω(d)
(cz + d)k

.(5)

Except for the case k = 2 and ω = 1, Ek,ω(z) is a holomorphic function
of z, and so defines an element

Ek,ω ∈Mk(N,ω).

Actually, when k = 1 or 2 (and ω is arbitrary) the series (5) may not
converge absolutely. It is defined instead by a well known trick of Hecke:
one considers the Eisenstein series in (2),

Ek,ω(s, z) =
∑

Γ0(N)∞\Γ0(N)

ω(d)
(cz + d)k|cz + d|2s ,

shows that it has an analytic continuation to a right half plane containing
s = 0, and then one sets

Ek,ω(z) = Ek,ω(0, z).

When k = 2 and ω = 1, the specialization E2,1(z) so obtained is non-
holomorphic in z. However one knows that for each prime p,

E
(p)
2 (z) = E2,1(z)− pE2,1(pz)

is a holomorphic function of z, and so defines an element of M2(N, 1) for
each p |N . Further details can be found in Chapter 7 of [8].

We now identify the Eisenstein series that appear in the Rankin–Selberg
method in terms of the basis of a.e. eigenforms given in Theorem 2:

(2) There are some minor typos in the formula for the dimension of Ek(Γ1(N)) on
page 181 of [8]. The second entry should read k = 2, rather than k ≥ 2. Moreover the first
two entries of the formula do not make sense when N = 4, and should be replaced by

dim Ek(Γ1(4)) =

{
3 if k ≥ 4 is even,
2 if k ≥ 3 is odd,
2 if k = 2,

as predicted by the formula (4).
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Lemma 1. 1. Assume that k ≥ 3. We have

Ek,ω(z) = − 2k
Bk,ω

· fk(Qz, χ0, χ2),

where χ0 is the principal character of level M1 = 1, χ2 is the primitive
character of conductor M2 associated to ω, and Q = N/M2.

2. When k = 2 and ω = 1, we have

E
(p)
2 (z) = −8π2 · f2(z, χ0, 1p)

where 1p is the trivial character of level M2 = p.

Proof. Assume momentarily that ω is primitive of level N . By (7.1.13)
and (7.1.30) of [8], we see that

Ek,ω(z) = − 2k
Bk,ω

· fk(z, χ0, ω),

as desired. The constant of proportionality was computed using Theorem
3.3.4(1) of [8]. More generally, if ω is associated to the primitive character
χ2 of level M2, then substituting c = c′Q with Q = N/M2 in (5) above, we
have

Ek,ω(z) =
1
2

∑

c′≡0 (M2)
(c′,d)=1

χ2(d)
(c′Qz + d)k

= Ek,χ2(Qz) = − 2k
Bk,χ2

· fk(Qz, χ0, χ2)

since (Q, d) 6= 1⇒ (N, d) 6= 1⇒ ω(d) = 0. This proves the first statement.
Actually the proof given here should work for all k ≥ 1 except the case when
k = 2 and ω = 1 but we do not pursue this point here.

For the second statement we simply refer the reader to Lemma 7.2.19
of [8].

Let us close this section with the following corollary to Theorem 2:

Corollary 1. The tuples (k,N, χ) for which dim Ek(N,χ) = 1, along
with an explicit generator , are as follows (here p denotes a prime):

Table 1. Tuples (k,N,χ) with dim Ek(N,χ) = 1

Weight Level Nebentypus Generator

k = 1 N = pm, N 6= 2 χ is primitive, odd E1,χ

k = 2 N = p χ = 1 E
(p)
2

k ≥ 4 is even N = 1 χ = 1 Ek,χ0

4. Atkin–Lehner involutions. Let N be an arbitrary integer, and let
Q |N be such that

(Q,N/Q) = 1.(6)
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Then there is an Atkin–Lehner involution wQ defined by

wQ =
(
Qx y
Nv Qw

)
(7)

where x, y, v, w∈Z satisfy x≡ 1 mod N/Q, y ≡ 1 mod Q and det(wQ) =Q.
wQ acts on the space Mk(N,χ) in the usual way: if f ∈Mk(N,χ) then

f |wQ(z) = det(wQ)k/2j(wQ, z)−kf(wQz).

Decompose χ = χQ · χN/Q into its Q and N/Q parts. It is well known (see
Proposition 1.1 of [1]) that the Atkin–Lehner involution wQ maps

wQ : Mk(N,χQ · χN/Q)→Mk(N,χQ · χN/Q)

and that it takes cusp forms to cusp forms. Moreover, since wQ commutes,
up to a constant, with Tn for all n with (n,N) = 1, it takes a.e. eigenforms
to a.e. eigenforms (see Proposition 1.2 of [1]). In fact wQ takes primitive
cusp forms (of level N) to primitive cusp forms (up to multiplication by a
constant). On the other hand the following proposition describes how the
a.e. eigenforms of Theorem 1 are permuted under the wQ.

Proposition 1. Let k ≥ 3. Let fk(z, χ1, χ2) ∈ Ek(N,χ) be an a.e.
eigenform as in Theorem 2. Let wQ be the Atkin–Lehner involution defined
in (7). Write Q1 = (Q,M1) and Q2 = (Q,M2) and decompose

χ1 = χQ1χM1/Q1 and χ2 = χQ2χM2/Q2

into their Q and prime-to-Q parts. Set

α =
χQ2(−M2/Q2)χM2/Q2(Q2)

χQ1(M2/Q2)χM1/Q1(Q2)
.

Then

fk(z, χ1, χ2)|wQ = Qk/2Q−k2 · α · fk
(

Qz

Q1Q2
, χQ2

χM1/Q1 , χQ1
χM2/Q2

)
.

Proof. For the primitive characters χ1 and χ2 as above consider the
Eisenstein series

Ek(z, χ1, χ2) =
∑

c,d

χ1(c)χ2(c)
(cz + d)k

,

where the sum is over all non-zero integers c and d. By (7.1.13) of [8] we
have

fk(z, χ1, χ2) = (const) ·Ek(M2z, χ1, χ2).(8)

We compute
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fk(z, χ1, χ2)|wQ
= Qk/2j(wQ, z)−kf(wQz, χ1, χ2)

= Qk/2(const) · (Nvz +Qw)−kEk(M2wQz, χ1, χ2)

= Qk/2(const) · (Nvz +Qw)−k
∑

c,d

χ1(c)χ2(d)
(
cM2

Qxz+y
Nvz+Qw + d

)k

= Qk/2(const) ·
∑

c,d

χ1(c)χ2(d)

Qk2
((
cxQ2 + dNQ2

M2Q
v
)(M2Qz

Q2
2

)
+
(
cM2
Q2
y + d Q

Q2
w
))k .

Make the change of variables
(
c′

d′

)
=

(
Q2x

NQ2
M2Q

v

M2
Q2
y Q

Q2
w

)(
c

d

)
.

Then the change of variables matrix has determinant Qxw − N
Q vy = 1.

Moreover

c′≡ cQ2 mod M1/Q1 since M1/Q1 | (NQ2)/(QM2) and x≡ 1 mod M1/Q1,

c′ ≡ − dQ2/M2 mod Q2 since −Nv/Q ≡ 1 mod Q2,

d′ ≡ cM2/Q2 mod Q1 since Q1 |Q/Q2 and y ≡ 1 mod Q1, and

d′ ≡ d/Q2 mod M2/Q2 since Qw ≡ 1 mod M2/Q2.

The above congruences imply that

χ1(c) = χQ1(c) · χM1/Q1(c)

= χQ1(d′)χQ1(M2/Q2)−1 · χM1/Q1(c′)χM1/Q1(Q2)−1,

χ2(d) = χQ2(d) · χM2/Q2(d)

= χQ2(c′)χQ2(−M2/Q2) · χM2/Q2(d′)χM2/Q2(Q2).

Thus we have

fk(z, χ1, χ2)|wQ

= Qk/2Q−k2 α(const) ·
∑

c′,d′

χQ1(d′)χM1/Q1(c′)χQ2(c′)χM2/Q2(d′)
(
c′M2Qz

Q2
2

+ d′
)k

= Qk/2Q−k2 α(const) ·Ek
(
QM2z

Q2
2
, χQ2χM1/Q1 , χQ1χM2/Q2

)

= Qk/2Q−k2 α · fk
(

Qz

Q1Q2
, χQ2χM1/Q1 , χQ1χM2/Q2

)
,

where the last line follows from (8). Replacing χ2 with χ2 yields the propo-
sition.
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5. Case A. In this section we observe that when the level is square-free
the product of two cuspidal a.e. eigenforms is never an a.e. eigenform. We
have:

Proposition 2. Say that k > l ≥ 1 are integers and that N ≥ 1 is
a square-free integer. Say g ∈ Sl(Γ1(N)) and h ∈ Sk−l(Γ1(N)) are a.e.
eigenforms. Then gh is NOT an a.e. eigenform.

Proof. Say that

gh = f(9)

is an a.e. eigenform. Write f(z) = f0(Qz) where M |N , Q | (N/M) and
f0 ∈ Sk(M,χ) is a primitive element. Since N is square-free, condition (6) is
automatically satisfied for any divisor Q of N . Let wQ be the Atkin–Lehner
involution defined in (7). We compute

f |wQ = Qk/2(Nvz +Qw)−kf
(

Qxz + y

Nvz +Qw

)

= Q−k/2(Nvz/Q+ w)−kf0

(
Qxz + y

Nvz/Q+ w

)

= Q−k/2χ(w)f0(z),

since (
Qx y

Nv/Q w

)
∈ Γ0(M).

Thus, applying wQ to (9) we get g|wQh|wQ = f0 up to a constant. Clearly
this is impossible: both g|w and h|w are cusp forms so that the q-expansion
of their product begins with q2; on the other hand since f0 is primitive its
q-expansion begins with q.

6. Case B. Fix integers k > l ≥ 1 and N ≥ 1, and mod N characters
ψ and ω. Suppose that g ∈ Sl(N,ψ) and h ∈ Ek−l(N,χ) are a.e. eigenforms.
We wish to know whether gh is an a.e. eigenform. We first investigate the
case where h = Ek−l,ω is the Eisenstein series in (5).

Proposition 3. Suppose that l ≥ 1 and k− l ≥ 3. Say that g ∈ Sl(N,ψ)
is an a.e. eigenform and that h = Ek−l,ω ∈ Ek−l(N,ω). If g is a newform
and dimSnew

k (N,ψω) ≥ 2, then gh is NOT an a.e. eigenform.

Proof. First note that the map

f(z) =
∑

n

anq
n 7→ fc(z) = f(−z) =

∑

n

anq
n(10)

induces a bijection between the primitive forms in Sk(N,ψω) and those
in Sk(N,ψω). Now suppose, towards a contradiction, that gh is an a.e.
eigenform. Then, by the hypothesis on the dimension of Sk(N,ψω), we may



Products of eigenforms 37

pick a primitive form fc ∈ Sk(N,ψω) distinct from gh. The Rankin–Selberg
method (see (3)) yields

Γ (k − 1)(4π)1−kD(k − 1, f ⊗ g) = (fc, gEk−l,ω)

where D(s, f ⊗ g) is the Rankin product L-function of f and g. The right
hand side vanishes, by choice of fc. On the other hand the left hand side
does not. Indeed, since f and g are primitive, D(s, f, g) has an Euler product
decomposition which converges absolutely in the region <(s) > (k + l)/2 and
k − 1 is in this region since k − l ≥ 3.

Theorem 3. Suppose that l ≥ 3 and k − l ≥ 3. Let g ∈ Sl(N,ψ) and
h ∈ Ek−l(N,χ) be a.e. eigenforms. Assume that N is square-free and that g
is a newform. If dimSnew

k (N,ψχ) ≥ 2 then gh is NOT an a.e. eigenform.

Proof. In the notation of Theorem 2 we may write h = fk−l(Qz, χ1, χ2),
where Q |N/M1M2. Since N is square-free, condition (6) is automatically
satisfied for any divisor of N . In particular let w = wN/QM2 be the Atkin–
Lehner involution defined in Section 4. By Proposition 1 and Lemma 1 we
have

h|w = fk(Qz, χ1, χ2)|wN/QM2
= fk

(
Nz

M1M2
, χ0, χ1χ2

)
= Ek−l,χ1χ2

,(11)

where χ0 is the principal character and all equalities hold up to a constant.
The formula (11) allows us to reduce the proof of the theorem to Propo-

sition 3. Indeed, suppose, towards a contradiction, that gh is an a.e. eigen-
form. Since the Atkin–Lehner involutions take a.e. eigenforms to a.e. eigen-
forms, g|wh|w is an a.e. eigenform. Admittedly, it lies in the twisted space
Sk(N,ψQM2ψN/QM2

· χ1χ2), which nonetheless still satisfies

dimSnew
k (N,ψQM2ψN/QM2

· χ1χ2) ≥ 2.

Applying Proposition 3 (with g replaced by g|w, ψ by ψQM2 · ψN/QM2
, and

ω = χ1χ2) shows that this is impossible since g|w is a newform. This com-
pletes the proof of the theorem.

7. Case C. Fix integers k > l ≥ 1, and mod N Dirichlet character ψ
and ω. Suppose that g ∈ El(N,ψ) and h ∈ Ek−l(N,χ) are a.e. eigenforms.
We wish to know whether gh is an a.e. eigenform.

As in Case B, we begin our discussion with the case when h = Ek−l,ω is
the Eisenstein series in (5).

Proposition 4. Suppose that k > l≥ 1. Let g = fl(z, ψ1, ψ2) ∈ El(N,ψ)
be an a.e. eigenform as in Theorem 2 with ψ = ψ1ψ2 primitive. Let h =
Ek−l,ω ∈ Ek−l(N,ω) with ω 6= 1 when k − l = 2. Assume that

dimSnew
k (N,ψω) ≥

{
1 if gh ∈ Ek(N,ψω),
2 if gh ∈ Sk(N,ψω).

(12)
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Assume additionally that one of the following conditions hold :

1. k − l ≥ l + 1,
2. k ≥ 3 and there is a primitive form f ∈ Sk(N,ψω) such that L(k/2,

f ⊗ ψ2) 6= 0,
3. k = 2 and there is a primitive form f ∈ S2(N,ψω) such that both

L(1, f ⊗ ψ1) 6= 0 and L(1, f ⊗ ψ2) 6= 0.

Then gh ∈Mk(N,ψω) is NOT an a.e. eigenform.

Proof. Suppose, towards a contradiction, that gh ∈Mk(N,ψω) is an a.e.
eigenform. Then it would have to lie in either Ek(N,ψω) or in Sk(N,ψω). In
either case, the hypothesis (12) on the dimension of Snew

k (N,ψω) allows us
to pick a primitive eigenform fc ∈ Sk(N,ψω) distinct from gh, which is the
complex conjugate of a primitive eigenform f ∈ Sk(N,ψω). As usual (see
(3)) we have the identity

Γ (k − 1)(4π)1−kD(k − 1, f, g) = (fc, gEk−l,ω).(13)

Since we have assumed that ψ is primitive, g is a common eigenform of all
the Hecke operators. Thus D(s, f, g) has an Euler product expansion which
yields

D(k − 1, f, g) =
L(k − 1, f ⊗ ψ1)L(k − l, f ⊗ ψ2)

L(k − l, ω)
,(14)

where the equality is up to some bad Euler factors.
For reasons of parity k− l = 1⇒ ω 6= 1. So the denominator of the right

hand side of (14) is a non-zero finite number.
An Euler product argument shows that L(s, f ⊗ θ) 6= 0 in the region

<(s) > (k + 1)/2 for any mod N Dirichlet character θ. By Proposition 2 of
[9] one can actually extend this slightly: one has L((k + 1)/2, f ⊗ θ) 6= 0 as
well.

Using this we see that if any of the hypothesis 1, 2 or 3 of Proposition 4
hold, then the numerator on the right hand side of (14) is non-zero as well, for
a suitable choice of f . For instance k−l ≥ l+1 implies that k−l ≥ (k + 1)/2
and that k − 1 ≥ (k + 1)/2 so that both the L-values in the numerator do
not vanish. This yields the desired contradiction since the right hand side
of (13) vanishes.

Theorem 4. Suppose that l ≥ 3 and k − l ≥ 3. Let g = fl(z, ψ1, ψ2) ∈
El(N,ψ) and h = fk−l(z, χ1, χ2) ∈ Ek−l(N,χ) be a.e. eigenforms as in Theo-
rem 2 with ψ and χ primitive. Assume that N is square-free and that l 6= k/2.
If

dimSnew
k (N,ψχ) ≥

{
1 when gh ∈ Ek(N,ψχ),
2 when gh ∈ Sk(N,ψχ),

then gh is NOT an a.e. eigenform.
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Proof. As in the proof of Theorem 3 we may twist h by the Atkin–Lehner
involution w = wN/M2 (note that now Q = 1) to assume that h = Ek−l,χ1χ2

.
If k− l ≥ l+ 1, then since g|w would continue to have primitive nebentypus,
the theorem would follow from Proposition 4. If k − l 6≥ l + 1, switch the
roles of g and h (note we are assuming that both χ and ψ are primitive) so
that we would be done in the case l ≥ k− l+ 1 as well. This leaves only the
case k − l = l which we have excluded by the hypothesis l 6= k/2.

Note that Theorem 4 gives no information when l = k/2. However, as was
done in [5] when N = 1, one could attempt to give a direct ad hoc argument
when l = k/2. We sketch the strategy now assuming for simplicity that
l ≥ 3. The question is whether, in the notation of Theorem 2, one can have
a relation of the form (up to a constant)

fk/2(Q′z, ψ1, ψ2)fk/2(Qz, χ1, χ2) = f,(15)

with f an a.e. eigenform. There are two cases to consider now. Either both
the Eisenstein series on the left hand side of (15) do not vanish at a common
cusp (in which case f is an Eisenstein series) or not (in which case f is a
cusp form).

In the former case, we may always twist by an Atkin–Lehner involution
(at least if N is square-free) to assume that the two Eisenstein series above
do not vanish at∞. Thus we may assume that ψ1 = χ1 = 1. If we normalize
all the q-expansions so that the constant terms of each of the eigenforms in
(15) is 1, an inspection of the q term yields

1
Bk/2,ψ

+
1

Bk/2,χ
=

2
Bk,ψχ

.(16)

Presumably, this relation does not hold very often, in which case neither can
the relation (15). For instance when N = 1 the relation (16) becomes

Bk = Bk/2(17)

with k ≡ 0 mod 4, which only holds for k = 8 (B8 = B4), explaining why
E2

4 = E8 is the unique identity of the form E2
k/2 = Ek where Ek is the

unique normalized Eisenstein series of weight k.
In the latter case (ψ1 6= 1 or χ1 6= 1) a similar argument might be carried

out by looking at, say, the q2 term of (15).

8. Non-vanishing of L-functions. As an application of some of the
arguments presented in the previous sections we give a criterion for the
non-vanishing of twists of standard L-functions at the center of the critical
strip. More precisely we prove:

Theorem 5. Let N ≥ 1 be an arbitrary integer and let k ≥ 6 be an even
integer. Assume that ψ and χ are mod N Dirichlet characters such that ψ
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and ψχ are primitive. If

Ek/2,ψ ·Ek/2,χ 6∈ Ek(N,ψχ),(18)

then there is a primitive form f ∈ Sk(N,ψχ) such that

L(k/2, f ⊗ ψ) 6= 0.

Proof. This follows immediately from the proof of Proposition 4. Set
g = Ek/2,ψ = fk/2(z, 1, ψ). Then the hypothesis (18) and the fact that ψχ
is primitive implies that dimSnew

k (N,χψ) ≥ 1. Further (18) implies that
there exists a primitive form fc ∈ Snew

k (N,χψ) (for some primitive form
f ∈ Snew

k (N,χψ)) such that (fc, gEk/2,χ) 6= 0. Then (13) and (14) imply
that L(k/2, f ⊗ ψ) 6= 0, as desired.

In special cases, (18) is easy to check. For instance, various authors have
already observed that the level one version of Theorem 5 can be used to
prove:

Corollary 2 ([7], [3]). If k ≡ 0 mod 4 and k > 8 then there exists a
primitive cusp form of level N = 1 and weight k such that L(k/2, f) 6= 0.

Proof. As already noted, (17) fails for such k implying that (18) holds.

Explicit versions of Theorem 5 may be deduced for arbitrary level. The
following corollary gives an example when N is prime.

Corollary 3. Say that N = p is prime and that k ≥ 6 is an even
integer. Let ψ and α be distinct primitive characters of level p. Suppose that
the system of equations

(19)



−Bk,α/(2k) 0

1 1
1 + α(2)2k−1 α(2) + 2k−1



[
x
y

]

=




Bk/2,ψ

k
·
Bk/2,ψα

k

−
Bk/2,ψ

k
−
Bk/2,ψα

k

1−
Bk/2,ψ

k
(1 + ψα(2)2k/2−1)−

Bk/2,ψα

k/2
(1 + ψ(2)2k/2−1)




is inconsistent. Then there exists a primitive cusp form f ∈ Sk(p, α) such
that L(k/2, f ⊗ ψ) 6= 0.

Proof. We apply Theorem 5 with χ replaced by ψα. The Eisenstein series
fk(z, 1, α) and fk(z, α, 1) give a basis of Ek(N,α). An inspection of the first
three terms in the q-expansion of the relation
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Ek/2,ψ ·Ek/2,ψα = x · fk(z, 1, α) + y · fk(z, α, 1)

gives the system of equations (19) for unknowns x and y. Thus if the system
(19) is inconsistent, (18) holds, and the corollary follows.

9. Examples. In this section we give examples of a.e. eigenforms that
are products of a.e. eigenforms of smaller weight. We do not impose any
restriction on the weights of the eigenforms or on their level since we expect
that the results proven in this paper should generalize. In particular we do
not expect any such relations in Case A, even for arbitrary level.

So we start with Case B. Let us assume that g is a newform. Recall that
Theorem 3 does not apply when the dimension of the space S of cusp forms
in which the product lies has new part of dimension one. In particular it
does not apply if S has dimension one. Table 2 lists all the spaces Sk(N,χ)
of dimension one, for k > 1, along with a decomposition, if possible, of a
generator ∆k(N,χ) of Sk(N,χ) into a product of an a.e. eigen-cusp form
and an a.e. eigen-Eisenstein series of smaller weight.

Here are some remarks on reading Table 2:

•We have written ∆k(N) for the generator ∆k(N,χ) when χ = 1. When
possible we have identified it in terms of the Ramanujan Delta function∆(z).
• All the identities hold only up to a constant (for which see Theorem 2).
• The notation used for the nebentypus χ is the same as that used in

the modular forms calculator HECKE (more about HECKE below) and is self
explanatory. Warning: this notation only identifies χ up to Galois conjugacy,
but this suffices for our purposes since dimSk(N,χ) = dimSk(N,χσ) for
σ ∈ Gal(Q/Q).
• Even when the Galois conjugacy class of χ is larger than one, we have

listed only the identity for χ; the identities for the conjugate characters are
obtained in an obvious manner.
• Since there are no general formulas for the dimensions of the weight

1 spaces (and we are not aware of any tables in the literature) we have
omitted these spaces from the table. For this reason, we have also not listed
the weight 2 spaces of dimension one (there are twenty-nine such spaces up
to Galois conjugacy whose levels range between N = 11 and N = 49).

Table 2 was compiled, in part, manually, using well known formulas for
the dimensions of spaces of cusp forms. It was completed using the modular
forms calculator HECKE designed by W. Stein which computes dimensions
using the trace formula in Hijikata [6]. Stein has also tabulated the dimen-
sions of the spaces Sk(N,χ) for N ≤ 400 using the alternative formula given
in Cohen–Oesterlé [2]. The package HECKE as well as various tables can be
found at Stein’s home page [10].
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Table 2. Tuples (k,N, χ) with dimSk(N,χ) = 1

Weight Level Nebentypus Product of cusp form and Eisenstein series?

k = 1 N = ??

k = 2 Twenty-nine Cases

k = 3 N = 7 χ = χ2

k = 3 N = 8 χ = χ2,2

k = 3 N = 9 χ = χ6

k = 3 N = 10 χ = χ4

k = 3 N = 11 χ = χ2 ∆3(11, χ2) = ∆2(11)E1,χ2

k = 3 N = 11 χ = χ10 ∆3(11, χ10) = ∆2(11)E1,χ10

k = 3 N = 12 χ = χ1,2

k = 3 N = 13 χ = χ12 ∆3(13, χ12) = ∆2(13, χ6)E1,χ4

k = 3 N = 16 χ = χ2,1 ∆3(16, χ2,1) = ∆2(16, χ1,4)E1,χ2,4

= ∆2(16, χ1,4)E1,χ2,4

k = 4 N = 5 χ = 1 ∆4(5) = (∆(z)∆(5z))1/6

k = 4 N = 6 χ = 1 ∆4(6) = (∆(z)∆(2z)∆(3z)∆(6z))1/12

k = 4 N = 7 χ = 1 ∆4(7) = ∆3(7, χ2)E1,χ2

k = 4 N = 7 χ = χ3 ∆4(7, χ3) = ∆3(7, χ2)E1,χ6

k = 4 N = 8 χ = 1 ∆4(8) = ∆3(8, χ2,2)E1,χ2,2

k = 4 N = 9 χ = 1 ∆4(9) = ∆3(9, χ6)E1,χ6

k = 5 N = 4 χ = χ2

k = 5 N = 5 χ = χ4

k = 5 N = 7 χ = χ2 ∆5(7, χ2) = ∆3(7, χ2)E(7)
2

k = 6 N = 3 χ = 1 ∆6(3) = (∆(z)∆(3z))1/4

k = 6 N = 4 χ = 1 ∆6(4) = ∆5(4, χ2)E1,χ2

k = 6 N = 5 χ = 1 ∆6(5) = ∆4(5)E(5)
2

k = 7 N = 3 χ = χ2 ∆7(3, χ2) = ∆6(3)E1,χ2

k = 8 N = 2 χ = 1 ∆8(2) = (∆(z)∆(2z))1/3

k = 8 N = 3 χ = 1 ∆8(3) = ∆7(3, χ2)E1,χ2 = ∆6(3)E(3)
2

k = 10 N = 2 χ = 1 ∆10(2) = ∆8(2)E(2)
2

k ≥ 12 N = 1 χ = 1 Twelve identities: see display (5) of [5]

Let us now turn our attention to Case C. We impose the restriction that
both g and h have primitive nebentypus (but allow the case l = k/2). Recall
that Theorem 4 does not treat the following exceptional cases:

(i) gh ∈ Sk(N,ψω) and dimSnew
k (N,ψω) ≤ 1,

(ii) gh ∈ Ek(N,ψω) and dimSnew
k (N,ψω) = 0.
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Let us discuss each of these cases in turn.
In case (i) let us suppose that dimSk(N,ψω) = 1. With this restriction

clearly gh is an a.e. eigenform. Many of the entries in Table 2 can be written
as a product of Eisenstein series. It would be too time consuming to give an
exhaustive list of these relations. We content ourselves with an example: the
cusp form ∆6(3), which could not be written as a product of an a.e. eigen-
cusp form and an a.e. eigen-Eisenstein series within the limits of Table 2,
can be written as the product of two a.e. eigen-Eisenstein series. Namely,
we have

∆6(3) = f3(z, χ2, 1)f3(z, 1, χ2).

As for case (ii), one would have to go through the (finite) list of tuples
(k,N, χ) for which there are no primitive cusp forms, identifying by inspec-
tion which elements of Ek(N,χ) can be written as products of Eisenstein
series of lower weight. Again it would be too time consuming to tabulate all
such relations completely. We merely point out that Table 1 gives an exam-
ple of such a relation when the level is larger than one. Indeed, if p ≡ 3 mod 4
and S2(Γ0(p)) = 0, that is, when p = 3 or 7, we have

E2
1,χ−p = E

(p)
2 ,

up to a constant. Here χ−p is the odd quadratic character of conductor p.
In the case p = 3, this was already reflected in the entry (8, 3, 1) of Table 2
(there χ−3 was called χ2).
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