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On the mean square weighted L2 discrepancy
of randomized digital (t,m, s)-nets over Z2

by

Josef Dick (Sydney) and Friedrich Pillichshammer (Linz)

1. Introduction. We study distribution properties of point sets in the
s-dimensional unit cube [0, 1)s. There are various measures for the equidistri-
bution of such point sets (see for example [7, 10, 11, 16, 19]). The one we con-
sider here is based on the following function. For a set PN = {x0, . . . ,xN−1}
of points in the s-dimensional unit cube [0, 1)s the discrepancy function is
defined as

∆(t1, . . . , ts) =
AN ([0, t1)× · · · × [0, ts))

N
− t1 · · · ts,

where 0 ≤ tj ≤ 1 and AN ([0, t1)×· · ·× [0, ts)) denotes the number of indices
n with xn ∈ [0, t1)× · · · × [0, ts).

The discrepancy function measures the difference of the portion of points
in an axis parallel box containing the origin and the volume of this box.
Hence it is a measure of the irregularity of distribution of a point set in
[0, 1)s. There are of course other functions which serve a comparable pur-
pose, though this function has drawn a great deal of attention as various
connections with applications have been pointed out, notably in numeri-
cal integration of functions (see for example [19, 29]). Further, we can use
different norms of the discrepancy function, again yielding different quality
measures. Amongst those norms especially the L2 norm and the L∞ norm
are of considerable interest and have been studied extensively (see for ex-
ample [19, 29]). In the following we introduce some notation and define the
weighted L2 discrepancy of a point set, which will be the focus of this paper.

Let D = {1, . . . , s}. For u ⊆ D let γu be a non-negative real number, |u|
the cardinality of u and for a vector x ∈ [0, 1)s let xu denote the vector from
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[0, 1)|u| containing all components of x whose indices are in u. Further let
dxu =

∏
j∈u dxj and let (xu, 1) be the vector from [0, 1)s with all components

whose indices are not in u replaced by 1. Then the weighted L2 discrepancy
of PN is defined as (see [29])

L2,N,γ(PN ) =
(∑

u⊆D
u6=∅

γu

�

[0,1]|u|

∆((xu, 1))2 dxu

)1/2
.(1)

This is a generalization of the classical L2 discrepancy. By choosing γD = 1
and γu = 0 for all u ⊂ D we obtain the classical L2 discrepancy and if
we choose γu = 1 for all u ⊆ D we obtain the unweighted L2 discrepancy.
Note that in this definition we also include the lower dimensional projections
(see [9]). In [17] it has been pointed out that the classical L2 discrepancy
of N copies of the point (1, . . . , 1) can almost yield the best value if the
dimension is high compared to N . (Note that the L2 discrepancy does not
change by considering point sets in [0, 1]s rather than [0, 1)s.) Such a point
set is obviously not well distributed in an intuitive sense. Including the
lower dimensional projections much reduces this effect. The weights γu are
then introduced to modify the importance of the discrepancy of the projec-
tions, with the intention to adjust the measure to the usage of the point set
(see [6, 29]). For example it has been observed that in many applications
the higher dimensional projections are considerably less important than the
lower dimensional ones.

There is a well known formula for the classical L2 discrepancy of a point
set by Warnock (see for example [16]), which can easily be generalized to
a formula for the weighted L2 discrepancy. This formula is given in the
following proposition (for a hint on how to prove this formula see for example
[15] or [16]).

Proposition 1. Let PN = {x0, . . . ,xN−1} be a point set in [0, 1)s.
Then

L2
2,N,γ(PN )

=
∑

u⊆D
u6=∅

γu

[
1

3|u|
− 2
N

N−1∑

n=0

∏

j∈u

1− x2
n,j

2
+

1
N2

N−1∑

n,m=0

∏

j∈u

min(1−xn,j , 1−xm,j)
]
,

where xn,j is the jth component of xn.

As the choice of weights is determined by the task (for example, approx-
imating the integral of a function) and therefore not known a priori, we wish
to find point sets which “work well” for many (if not all) choices of weights.

Several construction methods for point sets in the unit cube with good
distribution properties are known. The method considered here builds on
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the concept of (t,m, s)-nets. A detailed theory of such nets was developed
in Niederreiter [18] (see also [19, Chapter 4] for a survey). The (t,m, s)-nets
in base b provide sets of bm points in the half-open s-dimensional unit cube
which are extremely well distributed if the quality parameter t is “small”.
The details are given in the following definition.

Definition 1. Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. Then a set
P of bm points in [0, 1)s forms a (t,m, s)-net in base b if every subinterval
J =

∏s
j=1[ajb−dj , (aj + 1)b−dj) of [0, 1)s with integers dj ≥ 0 and 0 ≤ aj <

bdj for 1 ≤ j ≤ s and of volume bt−m contains exactly bt points of P .

We wish to have a small value of the quality parameter t. Unfortunately
the optimal value t = 0 is not possible for all parameters s ≥ 1 and b ≥ 2.
Niederreiter [18] proved that if a (0,m, s)-net in base b exists, then s−1 ≤ b.
Faure [8] provided a construction of (0,m, s)-nets in prime base p ≥ s − 1
and Niederreiter [18] extended Faure’s construction to prime power bases
pr ≥ s − 1. So for example a (0,m, s)-net in base 2 only exists if s = 2 or
s = 3.

In practice all concrete constructions of (t,m, s)-nets in a base b are based
on a general construction scheme which is based on the concept of digital
point sets. In this paper we only deal with the case b = 2, i.e., we only con-
sider (t,m, s)-nets in base 2 and hence we introduce the digital construction
only for this special case. For a general definition see for example [12, 13] or
[19]. (It has been observed that a small base b and higher t-value yield better
point sets than choosing a high base b such that we can achieve t = 0. It
appears therefore that the case b = 2 might actually be the most important
one.) In the following let Z2 denote the finite field with two elements.

Definition 2. Let s ≥ 1, m ≥ 1 and 0 ≤ t ≤ m be integers. Choose
s m ×m matrices C1, . . . , Cs over Z2 with the following property: for any
integers d1, . . . , ds ≥ 0 with d1 + · · ·+ ds = m− t the system of

the first d1 rows of C1, together with
...

the first ds−1 rows of Cs−1, together with

the first ds rows of Cs

is linearly independent over Z2.
Consider the following construction principle for sets of 2m points in

[0, 1)s: represent n, 0 ≤ n < 2m, in base 2, n = n0 + n12 + · · ·+ nm−12m−1,
and multiply the matrix Cj , 1 ≤ j ≤ s, with the vector ~n = (n0, . . . , nm−1)T

of digits of n in Z2,

Cj~n =: (y(j)
1 , . . . , y(j)

m )T .
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Now we set

x(j)
n :=

y
(j)
1

2
+ · · ·+ y

(j)
m

2m

and
xn = (x(1)

n , . . . , x(s)
n ).

The point set {x0, . . . ,x2m−1} is called a digital (t,m, s)-net over Z2 and
the matrices C1, . . . , Cs are called the generating matrices of the digital net.

Note that any digital (t,m, s)-net over Z2 is a (t,m, s)-net in base 2
as shown by Niederreiter [19]. Further it follows from Definition 2 that any
d-dimensional projection of a digital (t,m, s)-net over Z2 is a digital (t,m, d)-
net over Z2.

For practical applications it is often useful to have a random element in
the point set used (see [16]). On the other hand, we wish to preserve the
structure which a point set already has. That is in this case, we wish to
randomize a (t,m, s)-net so that the resulting point set is again a (t,m, s)-
net with the same quality parameter t. Several randomization methods for
(t,m, s)-nets have been introduced (see [16, 22, 32]). The method considered
in this paper is a digital shift of depth m (see also [16]). The aim of the
paper is then to analyze the expected value of the weighted L2 discrepancy
of digitally shifted digital (t,m, s)-nets.

In the following we introduce the digital shift of depth m for the one-
dimensional case. For higher dimensions each coordinate is randomized in-
dependently and therefore one just needs to apply the one-dimensional ran-
domization method to each coordinate independently.

Let P2m = {x0, . . . , x2m−1} be a digital (t,m, 1)-net over Z2 generated
by the matrix C. Let

xn =
xn,1

2
+
xn,2
22 + · · ·

be the dyadic digit expansion of xn. In [5] a randomization method was
considered which uses a digital shift σ = σ1/2+σ2/22 + · · ·, where σ ∈ [0, 1)
was chosen randomly. Here we modify this method in the following way:
first we choose the digits σ1, . . . , σm ∈ {0, 1} i.i.d. Then we define

zn,i ≡ xn,i + σi (mod 2) for i = 1, . . . ,m

with zn,i ∈ {0, 1}. Further, for n = 0, . . . , 2m − 1, we choose δn ∈ [0, 1/2m)
i.i.d. Then the randomized point set P̃2m = {z0, . . . , z2m−1} is given by

zn =
zn,1
2

+ · · ·+ zn,m
2m

+ δn.

This means we apply the same digital shift to the first m digits, whereas
the following digits are shifted independently for each xn. Therefore we call
it a digital shift of depth m (see again [16]).



Mean square weighted L2 discrepancy 375

Sometimes we will write “digital shift” or simply “shift” instead of “digi-
tal shift of depth m”. When we use a digital shift of depth m′ in conjunction
with digital (t,m, s)-nets we always assume that m′ = m.

For arbitrary s ≥ 1 it can be shown that a (t,m, s)-net in base 2 ran-
domized by a digital shift of depth m independently in each coordinate is
again a (t,m, s)-net in base 2 with the same quality parameter t. As this
result is not essential for the following we omit the proof. Similar results
have been shown before (see for example [5, 22]).

We conclude this section with an outline of the paper. In the subsequent
section we introduce Walsh functions, which will be the main tool for the
analysis of the L2 discrepancy. Several useful properties of these functions
will be recalled.

In Section 3 we prove three main results. The first one is a formula
for the mean square weighted L2 discrepancy of randomized digital nets.
The formula is exact and involves a function of the generating matrices of
the digital net. We then use this result to derive an exact formula for the
mean square weighted L2 discrepancy of randomized digital (0,m, s)-nets
in dimensions 2 and 3, which is in this case independent of the generating
matrices. The convergence order is best possible and we compare the con-
stant of the leading term with the lower bound given by Roth [27]. The third
result is an upper bound on the mean square weighted L2 discrepancy of
randomized digital nets in dimension s > 3. The difference between s > 3
and s = 2, 3 is that s > 3 implies that t > 0. Therefore the exact value of the
mean square weighted L2 discrepancy depends on the generating matrices.
Still we can obtain an upper bound for this case which is independent of
the generating matrices and only depends on the weights, the t-value, the
number of points and the dimension s. This bound is of a simple form and
easily computable. Again, the convergence order is best possible.

In Section 4 we deal with the classical L2 discrepancy. In 1954 Roth [27]
proved that the L2 discrepancy of any point set in [0, 1)s consisting of
N elements is at least c1(s)(logN)(s−1)/2N−1, with a constant c1(s) =
2−2s−4((s−1)!)−1/2. In 1980 Roth [26] also showed that there exists a set of
N elements in [0, 1)s with L2 discrepancy of at most c2(s)(logN)(s−1)/2N−1,
with a constant c2(s) depending only on the dimension s. (See also [1] for
variations of Roth’s result. For dimension s = 2 this was proven by Daven-
port [4] already in 1956. Quite recently, Chen and Skriganov [2] gave concrete
examples—not only existence results as Roth did—of point sets in arbitrary
dimensions which achieve the minimal order of the L2 discrepancy.) There-
fore the exact dependence on N is known. Here we are interested in the
constant c1(s) of the lower bound of Roth. In a first result we extract the
constant of the leading term from the previous calculations in Section 3. By
a construction of Niederreiter–Xing [21] we know that for any m and s there
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always exists a digital (5s,m, s)-net over Z2. With an appropriate shift we
find that such point sets have an L2 discrepancy of at most

(logN)(s−1)/2

N

22s

(log 2)(s−1)/2((s− 1)!)1/2
+O

(
(logN)(s−2)/2

N

)
.

The constant 22s(log 2)−(s−1)/2((s − 1)!)−1/2 improves a result by Hicker-
nell [9] considerably and seems to be the best known constant of this kind.

Secondly, we prove an upper bound on the classical L2 discrepancy of
shifted Niederreiter–Xing nets (see [20]). We consider a sequence of shifted
digital nets, where the number N of points is relatively small compared to
the dimension. For this sequence of shifted digital nets we obtain an upper
bound which shows that Roth’s [27] lower bound is also best possible in the
dimension s.

2. Walsh functions. In this section we introduce Walsh functions,
which will be the main tool in our analysis of the mean square weighted
L2 discrepancy. Again we confine ourselves to base 2 (for more information
see [3, 24, 25, 30]). In the following let N0 denote the set of non-negative
integers.

Definition 3. For a non-negative integer k with base 2 representation

k = κa−12a−1 + · · ·+ κ12 + κ0,

with κi ∈ {0, 1}, we define the Walsh function walk : [0, 1)→ {−1, 1} by

walk(x) := (−1)x1κ0+···+xaκa−1 ,

for x ∈ [0, 1) with base 2 representation x = x1/2 + x2/22 + · · · (unique in
the sense that infinitely many of the xi must be zero).

Definition 4. For dimension s≥2, x1, . . . , xs∈ [0, 1) and k1, . . . , ks∈N0
we define walk1,...,ks : [0, 1)s → {−1, 1} by

walk1,...,ks(x1, . . . , xs) :=
s∏

j=1

walkj (xj).

For vectors k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈ [0, 1)s we write

walk(x) := walk1,...,ks(x1, . . . , xs).

We introduce some notation. By ⊕ we denote the digitwise addition
modulo 2, i.e., for x =

∑∞
i=w xi/2

i and y =
∑∞

i=w yi/2
i we have

x⊕ y :=
∞∑

i=w

zi
2i
, where zi := xi + yi (mod 2).

In the following proposition we summarize some basic properties of
Walsh functions.
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Proposition 2. (a) For all k, l ∈ N0 and all x, y ∈ [0, 1) we have

walk(x) · wall(x) = walk⊕l(x), walk(x) · walk(y) = walk(x⊕ y).

(b) We have
1�

0

wal0(x) dx = 1,
1�

0

walk(x) dx = 0 if k > 0.

(c) For all k, l ∈ Ns0 we have the following orthogonality properties:
�

[0,1]s

walk(x) wall(x) dx =
{

1 if k = l,

0 otherwise.

(d) For any f ∈ L2([0, 1)s) and any σ ∈ [0, 1)s we have
�

[0,1)s

f(x) dx =
�

[0,1)s

f(x⊕ σ) dx.

(e) For any integer s ≥ 1 the system {walk1,...,ks : k1, . . . , ks ≥ 0} is a
complete orthonormal system in L2([0, 1)s).

Proof. The proofs of (a)–(c) are straightforward ([24]). For (d) see [3,
Lemma 1] or [24, Corollary 4] and for (e) see [3] or [24, Satz 1].

Let {x0, . . . ,x2m−1} be a digital net over Z2 generated by the m × m
matrices C1, . . . , Cs over Z2. For xn = (xn,1, . . . , xn,s) and xn,j = xn,j,1/2 +
· · ·+ xn,j,m/2m, 1 ≤ j ≤ s, 0 ≤ n < 2m, we identify xn with

(xn,1,1, . . . , xn,1,m, . . . , xn,s,1, . . . , xn,s,m) ∈ Zms2

and we define

xn ⊕ xh := (xn,1,1 + xh,1,1, . . . , xn,s,m + xh,s,m) ∈ Zms2 .(2)

The subsequent lemma follows easily from the construction of digital nets.

Lemma 1. Any digital net {x0, . . . ,x2m−1} over Z2 is a subgroup of
(Zms2 ,⊕).

The following lemma will be very useful for our investigation. It was
already shown in [5], but for completeness we include a proof.

Lemma 2. Let {x0, . . . ,x2m−1} be a digital (t,m, s)-net over Z2 gen-
erated by the m × m matrices C1, . . . , Cs over Z2. Then for all integers
0 ≤ k1, . . . , ks < 2m we have

2m−1∑

n=0

walk1,...,ks(xn) =
{

2m if CT1 ~k1 + · · ·+ CTs
~ks = ~0,

0 otherwise,

where for 0 ≤ k < 2m with k = κ0 + κ12 + · · · + κm−12m−1 we write
~k = (κ0, . . . , κm−1)T ∈ Zm2 and ~0 denotes the zero vector in Zm2 .
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Proof. By (2) we have

walk1,...,ks(xn ⊕ xh) = walk1,...,ks(xn) walk1,...,ks(xh)

and hence walk1,...,ks is a character on (Zms2 ,⊕). From Lemma 1 we know
that the digital net {x0, . . . ,x2m−1} is a subgroup of (Zms2 ,⊕) and so

2m−1∑

n=0

walk1,...,ks(xn) =
{

2m if walk1,...,ks(xn) = 1 ∀n = 0, . . . , 2m − 1,

0 otherwise.

Now walk1,...,ks(xn) = 1 for all n = 0, . . . , 2m − 1 iff
s∑

j=1

(~kj|~xn,j) = 0 ∀n = 0, . . . , 2m − 1

(here (·|·) denotes the usual inner product in Zm2 ). This means by the defi-
nition of the net that

s∑

j=1

(~kj|Cj~n) = 0 ∀n = 0, . . . , 2m − 1

and this is satisfied iff CT1
~k1 + · · ·+ CTs

~ks = ~0, as claimed.

3. On the mean square weighted L2 discrepancy of randomized
nets. In the following subsection we prove a formula for the mean square
weighted L2 discrepancy of randomized digital nets. This formula depends
on the generating matrices of the digital net. Subsequently we use this for-
mula to derive the exact value of the mean square weighted L2 discrepancy
for digital (0,m, s)-nets over Z2 for s = 2, 3. Next we obtain a bound for the
general case, that is, for the mean square weighted L2 discrepancy of digital
(t,m, s)-nets over Z2.

3.1. A formula for the mean square weighted L2 discrepancy of random-
ized nets. The aim of this subsection is to prove the following theorem.

Theorem 1. Let P2m be a digital (t,m, s)-net over Z2 with generating
matrices C1, . . . , Cs. Let P̃2m be the point set obtained after applying an
i.i.d. random digital shift of depth m independently to each coordinate of
each point of P2m. Then the mean square weighted L2 discrepancy of P̃2m is
given by

E[L2
2,2m,γ(P̃2m)]

=
∑

u⊆D
u6=∅

γu

[
1

2m+|u|

(
1−

(
1− 1

3 · 2m
)|u|)

+
1

3|u|
∑

v⊆u
v6=∅

(
3
2

)|v|
B(v)

]
,
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where for v = {v1, . . . , ve} we have

B(v) =
2m−1∑

k1,...,ke=1
CTv1

~k1+···+CTve~ke=~0

e∏

j=1

ψ(kj),

with ψ(k) = 1/(6 · 4r(k)) and r(k) such that 2r(k) ≤ k < 2r(k)+1.

The proof of this theorem is based on the Walsh series representation of
the formula for the L2 discrepancy given in Proposition 1. As we will see
later, the function ψ in the theorem above is related to the Walsh coefficients
of a certain function appearing in the formula for the L2 discrepancy. We
need several lemmas.

Lemma 3. Let x1, x2 ∈ [0, 1) and let z1, z2 ∈ [0, 1) be the points obtained
after applying an i.i.d. random digital shift of depth m to x1 and x2. Then

E[walk(z1) wall(z2)] =
{

walk(x1 ⊕ x2) if 0 ≤ k = l < 2m,

0 otherwise.

Proof. Let xn = xn,1/2+xn,2/22 + · · · for n = 1, 2. Further let σ1, . . . , σm
∈ {0, 1} be i.i.d. and for n = 1, 2 let δn = δn,m+1/2m+1 + δn,m+2/2m+2 + · · ·
∈ [0, 1/2m) be i.i.d. Then define zn,i ≡ xn,i + σi (mod 2) for i = 1, . . . ,m
and zn = zn,1/2 + · · ·+ zn,m/2m + δn for n = 1, 2.

First let k, l ∈ N, more precisely, let k = ku2u + · · · + k12 + k0 and
l = lv2v + · · ·+ l12+ l0 be the dyadic expansions of k and l with ku = lv = 1.
Further set ku+1 = ku+2 = · · · = 0 and also lv+1 = lv+2 = · · · = 0. Then

(3) E[walk(z1) wall(z2)]

= (−1)k0x1,1+···+km−1x1,m(−1)l0x2,1+···+lm−1x2,m

× 1
2

1∑

σ1=0

(−1)(k0+l0)σ1 · · · 1
2

1∑

σm=0

(−1)(km−1+lm−1)σm

× 1
2

1∑

δ1,m+1=0

(−1)kmδ1,m+1
1
2

1∑

δ1,m+2=0

(−1)km+1δ1,m+2 · · ·

× 1
2

1∑

δ2,m+1=0

(−1)lmδ2,m+1
1
2

1∑

δ2,m+2=0

(−1)lm+1δ2,m+2 · · · .

(The product above consists only of finitely many factors as ku+1 = ku+2 =
· · · = 0 and for κ ≥ max(m,u+1) we have 1

2

∑1
δ1,κ+1=0(−1)kκδ1,κ+1 = 1. The

same argument holds for the last line in the equation above.)
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First we consider the case where u ≥ m. We have

1
2

1∑

δ1,u+1=0

(−1)kuδ1,u+1 = 0

and therefore E[walk(z1) wall(z2)] = 0. The same holds if v ≥ m. Now
assume that there is an ω ∈ {0, . . . ,m−1} such that kω 6= lω. Then kω+lω ≡
1 (mod 2) and

1
2

1∑

σω+1=0

(−1)(kω+lω)σω+1 = 0.

Therefore in this case E[walk(z1) wall(z2)] = 0. Now let k = l and k ∈
{0, . . . , 2m − 1}. It follows from (3) that

E[walk(z1) walk(z2)] = (−1)k0(x1,1+x2,1)+···+km−1(x1,m+x2,m)

and the result follows.

In the following lemma we calculate the Walsh coefficients of the function
|z1−z2|. This function appears in the formula for the L2 discrepancy through
the equation min(z1, z2) = 1

2(z1 + z2 − |z1 − z2|).
Lemma 4. Let z1, z2 ∈ [0, 1). Then

|z1 − z2| =
∞∑

k,l=0

τ(k, l) walk(z1) wall(z2),

where τ(0) := τ(0, 0) = 1/3 and τ(k) := τ(k, k) = −1/(6 · 4r(k)) for k > 0.
For k > 0, r(k) denotes the unique integer r such that 2r ≤ k < 2r+1.

Proof. As |z1 − z2| ∈ L2([0, 1)2) it follows from Proposition 2 that the
function |z1 − z2| can be represented by Walsh functions. We have

τ(k, l) =
1�

0

1�

0

|z1 − z2|walk(z1) wall(z2) dz1 dz2.

As wal0(z) = 1 for all z ∈ [0, 1), we have

τ(0, 0) =
1�

0

1�

0

|z1 − z2| dz1 dz2 =
1
3
.

Let now k = l > 0 and k = kr2r + · · · + k12 + k0, where r is such that
kr = 1, u = ur2r + · · ·+ u12 + u0 and v = vr2r + · · ·+ v12 + v0. Then

τ(k, k) =
1�

0

1�

0

|z1 − z2|walk(z1 ⊕ z2) dz1 dz2
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=
2r+1−1∑

u=0

2r+1−1∑

v=0

(−1)k0(ur+vr)+···+kr(u0+v0)

×
(u+1)/2r+1�

u/2r+1

(v+1)/2r+1�

v/2r+1

|z1 − z2| dz1 dz2.

We have the following equalities: if 0 ≤ u < 2r+1, then

(u+1)/2r+1�

u/2r+1

(u+1)/2r+1�

u/2r+1

|z1 − z2| dz1 dz2 =
1

3 · 23(r+1)
,

and for 0 ≤ u, v < 2r+1, u 6= v, we have

(u+1)/2r+1�

u/2r+1

(v+1)/2r+1�

v/2r+1

|z1 − z2| dz1 dz2 =
|u− v|
23(r+1)

.

Thus

τ(k, k) =
2r+1−1∑

u=0

1
3 · 23(r+1)

+
2r+1−1∑

u=0

2r+1−1∑

v=0
u6=v

(−1)k0(ur+vr)+···+kr(u0+v0) |u− v|
23(r+1)

=
1

3 · 22(r+1)
+

1
23r+2

2r+1−2∑

u=0

2r+1−1∑

v=u+1

(−1)k0(ur+vr)+···+kr(u0+v0)(v − u).

We define
θ(u, v) = (−1)k0(ur+vr)+···+kr(u0+v0)(v − u).

In order to find the value of the double sum in the expression for τ(k, k) let
u = ur2r + · · ·+u12 and v = vr2r + · · ·+v12, where v > u. We now consider
the sum of θ(u, v), θ(u+ 1, v), θ(u, v + 1) and θ(u + 1, v + 1). Observe that
u and v are even, that is, u0 = v0 = 0, and k = kr2r + · · ·+ k12 + k0, where
r is such that kr = 1. We obtain

|θ(u, v) + θ(u+ 1, v) + θ(u, v + 1) + θ(u+ 1, v + 1)|
= (v − u)− ((v + 1)− u)− (v − (u+ 1)) + ((v + 1)− (u+ 1))

= 0.

After applying this procedure we are left with the following terms:

θ(0, 1), θ(2, 3), . . . , θ(2r+1 − 2, 2r+1 − 1).

Observe that in all cases we have v − u = 1, hence ui = vi for i = 1, . . . , r
and u0 = 0 and v0 = 1. Therefore

(−1)k0(ur+vr)+···+kr−1(u1+v1)+kr(u0+v0) = −1.
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Thus we obtain

τ(k, k) =
1

3 · 22(r+1)
+

1
23r+2

2r+1−2∑

u=0
2|u

(−1) =
1

3 · 22(r+1)
− 2r

23r+2 = − 1
6 · 22r .

Lemma 5. Let x1, x2 ∈ [0, 1) and let z1, z2 ∈ [0, 1) be the points obtained
after applying an i.i.d. random digital shift of depth m to x1 and x2.

(a) We have

E[z1] =
1
2
, E[z2

1] =
1
3
.

(b) We have

E[|z1 − z2|] =
2m−1∑

k=0

τ(k) walk(x1 ⊕ x2),

where τ(0) = 1/3 and τ(k) = −1/(6 · 4r(k)) for k > 0. For k > 0,
r(k) denotes the unique integer r such that 2r ≤ k < 2r+1.

(c) We have

E[min(1− z1, 1− z2)] =
1
2

(
1−

2m−1∑

k=0

τ(k) walk(x1 ⊕ x2)
)
.

Proof. (a) The proof of these two formulae is straightforward.
(b) In Lemma 4 it was shown that

|z1 − z2| =
∞∑

k,l=0

τ(k, l) walk(z1) wall(z2),

where τ(k) = τ(k, k) = −1/(6 · 4r(k)) for k > 0 and τ(0, 0) = 1/3. (We do
not need to know τ(k, l) for k 6= l for our purposes here.) The result now
follows from the linearity of the expectation value and Lemma 3.

(c) This result follows from (a) and (b) together with the formula

min(z1, z2) =
1
2

(z1 + z2 − |z1 − z2|).
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let P̃2m = {z0, . . . ,z2m−1} and zn = (zn,1, . . . , zn,s).
From Proposition 1, Lemma 5 and the linearity of expectation we get

E[L2
2,2m,γ(P̃2m)] =

∑

u⊆D
u6=∅

γu

[
1

3|u|
− 2

2m

2m−1∑

n=0

∏

j∈u

1− E[z2
n,j]

2

+
1

22m

2m−1∑

n,h=0

∏

j∈u

E[min(1− zn,j , 1− zh,j)]
]



Mean square weighted L2 discrepancy 383

=
∑

u⊆D
u6=∅

γu

[
− 1

3|u|
+

1
22m

2m−1∑

n=0

∏

j∈u

E[1− zn,j]

+
1

22m

2m−1∑

n,h=0
n6=h

∏

j∈u

E[min(1− zn,j, 1− zh,j)]
]
.

Now we use Lemma 5 again to obtain

E[L2
2,2m,γ(P̃2m)] =

∑

u⊆D
u6=∅

γu

[
− 1

3|u|
+

1
2m

1
2|u|

+
1

22m

2m−1∑

n,h=0
n6=h

∏

j∈u

1
2

(
1−

2m−1∑

k=0

τ(k) walk(xn,j ⊕ xh,j)
)]
.

We have

∏

j∈u

(
1−

2m−1∑

k=0

τ(k) walk(xn,j ⊕ xh,j)
)

= 1 +
∑

w⊆u
w6=∅

w={w1,...,wd}

(−1)|w|

×
2m−1∑

k1=0

· · ·
2m−1∑

kd=0

τ(k1) · · · τ(kd) walk1,...,kd(xn,w1 ⊕ xh,w1 , . . . , xn,wd ⊕ xh,wd).

Thus

E[L2
2,2m,γ(P̃2m)] =

∑

u⊆D
u6=∅

γu

[
− 1

3|u|
+

1
2m

1
2|u|

+
1

22m

2m−1∑

n,h=0
n6=h

1
2|u|

+
1

2|u|
1

22m

2m−1∑

n,h=0
n6=h

∑

w⊆u
w6=∅

w={w1,...,wd}

(−1)d

×
2m−1∑

k1=0

· · ·
2m−1∑

kd=0

d∏

i=1

τ(ki) walki(xn,wi ⊕ xh,wi)
]
.

We have
2m−1∑

k=0

τ(k) =
1
3
−
m−1∑

r=0

2r+1−1∑

k=2r

1
6 · 4r =

1
3 · 2m ,
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and therefore

∑

w⊆u
w6=∅

(−1)|w|
2m−1∑

k1,...,k|w|=0

|w|∏

i=1

τ(ki) =
∑

w⊆u
w6=∅

(
− 1

3 · 2m
)|w|

=
|u|∑

r=1

(|u|
r

)(
− 1

3 · 2m
)r

=
(

1− 1
3 · 2m

)|u|
− 1.

By adding and subtracting this in the above expression we obtain

E[L2
2,2m,γ(P̃2m)] =

∑

u⊆D
u6=∅

γu

[
1

2|u|
− 1

3|u|
+
(

1−
(

1− 1
3 · 2m

)|u|) 1
2m

1
2|u|

+
1

2|u|
1

22m

2m−1∑

n,h=0

∑

w⊆u
w6=∅

w={w1,...,wd}

(−1)d

×
2m−1∑

k1,...,kd=0

d∏

i=1

τ(ki) walki(xn,wi ⊕ xh,wi)
]
.

Since τ(0) = 1/3 we have

1
22m

1
2|u|

2m−1∑

n,h=0

∑

w⊆u
w6=∅

(−1)|w|τ(0)|w| =
1

3|u|
− 1

2|u|
.

Hence

E[L2
2,2m,γ(P̃2m)]

=
∑

u⊆D
u6=∅

γu

[
1

2|u|
− 1

3|u|
+
(

1−
(

1− 1
3 · 2m

)|u|) 1
2m

1
2|u|

+
1

3|u|
− 1

2|u|

+
1

2|u|
1

22m

∑

w⊆u
w6=∅

w={w1,...,wd}

(−1)d

×
2m−1∑

k1,...,kd=0
(k1,...,kd)6=(0,...,0)

2m−1∑

n,h=0

d∏

i=1

τ(ki) walki(xn,wi ⊕ xh,wi)
]
.
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From the group structure of digital nets (see Lemma 1) and from Lem-
ma 2 it follows that for any digital net {x0, . . . ,x2m−1} generated by the
m×m matrices C1, . . . , Cs, we have

1
22m

2m−1∑

n,h=0

walk1,...,ks(xn ⊕ xh) =
1

2m

2m−1∑

n=0

walk1,...,ks(xn)

=
{

1 if CT1 ~k1 + · · ·+ CTs
~ks = ~0,

0 otherwise.

Since the d-dimensional projection of a digital (t,m, s)-net is again a digital
(t,m, d)-net (see Introduction) we get (with w = {w1, . . . , wd})

2m−1∑

k1,...,kd=0
(k1,...,kd)6=(0,...,0)

2m−1∑

n,h=0

d∏

j=1

τ(kj) walkj (xn,wj ⊕ xh,wj )

= 22m
2m−1∑

k1,...,kd=0
(k1,...,kd)6=(0,...,0)

CTw1
~k1+···+CTwd~kd=~0

d∏

i=1

τ(ki)

= 22m
∑

v⊆w
v6=∅

v={v1,...,ve}

1
3|w|−|v|

2m−1∑

k1,...,ke=1
CTv1

~k1+···+CTve~ke=~0

e∏

j=1

τ(kj).

As
∏e
j=1 τ(kj) = (−1)e

∏e
j=1 ψ(kj) we have

2m−1∑

k1,...,kd=0
(k1,...,kd)6=(0,...,0)

2m−1∑

n,h=0

d∏

j=1

τ(kj) walkj (xn,wj ⊕ xh,wj ) =
22m

3|w|
∑

v⊆w
v6=∅

(−3)|v|B(v).

Thus we obtain

E[L2
2,2m,γ(P̃2m)] =

∑

u⊆D
u6=∅

γu

[
1

2m+|u|

(
1−

(
1− 1

3 · 2m
)|u|)

+
1

2|u|
∑

w⊆u
w6=∅

(
−1

3

)|w| ∑

v⊆w
v6=∅

(−3)|v|B(v)
]
.

Let now u, v, with ∅ 6= v ⊆ u ⊆ D, be fixed. Then v ⊆ w ⊆ u is equivalent
to (w \ v) ⊆ (u \ v), provided that v ⊆ w. Therefore, for |v| ≤ w ≤ |u|, there
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are
(|u|−|v|
w−|v|

)
sets w such that |w| = w and v ⊆ w ⊆ u. Hence

∑

w⊆u
w6=∅

(
−1

3

)|w| ∑

v⊆w
v6=∅

(−3)|v|B(v) =
∑

v⊆u
v6=∅

|u|∑

w=|v|

(|u| − |v|
w − |v|

)(
−1

3

)w
(−3)|v|B(v)

=
∑

v⊆u
v6=∅

|u|−|v|∑

w=0

(|u| − |v|
w

)(
−1

3

)w
B(v)

=
∑

v⊆u
v6=∅

(
2
3

)|u|−|v|
B(v),

and the result follows.

3.2. The mean square weighted L2 discrepancy of randomized digital
(0,m, s)-nets over Z2 for s = 2, 3. In this subsection we calculate the exact
value of the mean square weighted L2 discrepancy of randomized digital
(0,m, s)-nets for s = 2, 3. We have the following theorem.

Theorem 2. For s = 2, 3 let Ps,2m be a digital (0,m, s)-net over Z2. Let
P̃s,2m be the point set obtained after applying an i.i.d. random digital shift
of depth m independently to each coordinate of each point of Ps,2m . Then
the mean square weighted L2 discrepancy of P̃s,2m for s = 2 is given by

E[L2
2,2m,γ(P̃2,2m)] =

γ{1,2}
24

m

22m +
1

22m

(
γ{1}

6
+
γ{2}

6
+

5γ{1,2}
36

)

and for s = 3 the mean square weighted L2 discrepancy is given by

E[L2
2,2m,γ(P̃3,2m)] = γ{1,2,3}

(
1

192
m2

22m +
23
576

m

22m +
19
216

1
22m

)

+(γ{1,2} + γ{1,3} + γ{2,3})
(

1
24

m

22m +
5
36

1
22m

)

+(γ{1} + γ{2} + γ{3})
1
6

1
22m .

Proof. Let C1 and C2 denote the generating matrices of the digital
(0,m, 2)-net over Z2. For s = 2 we obtain from Theorem 1

(4) E[L2
2,2m,γ(P̃2,2m)]

=
∑

u⊆{1,2}
u6=∅

γu

[
1

2m+|u|

(
1−

(
1− 1

3 · 2m
)|u|)

+
1

3|u|
∑

v⊆u
v6=∅

(
3
2

)|v|
B(v)

]
,
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where for v = {v1, . . . , ve} we have

B(v) =
2m−1∑

k1,...,ke=1
CTv1

~k1+···+CTve~ke=~0

e∏

j=1

ψ(kj),

with ψ(k) = 1/(6 · 4r(k)) and r(k) such that 2r(k) ≤ k < 2r(k)+1.
First we note that, as C1 and C2 generate a (0,m, 2)-net, they are regular.

Therefore B(v) = 0 for |v| = 1. Thus for |u| = 1 the addend in (4) is 1
22m

γu

6 .
Now let u = {1, 2}. We have

γ{1,2}
2m+|u|

(
1−

(
1− 1

3 · 2m
)|u|)

=
γ{1,2}
6 · 22m −

γ{1,2}
36 · 23m .

In the following we calculate B({1, 2}). Since the generating matrices
C1 and C2 of a digital (0,m, 2)-net over Z2 must be regular, and since
multiplying C1 and C2 by a regular matrix A does not change the point
set (only its order) we may assume in the following that C1 is the m ×m
identity matrix. Hence

CT1
~k1 + CT2

~k2 = ~0 iff ~k1 = CT2
~k2 =: ~k1(k2).

Now we use the definition of ψ to get
2m−1∑

k1,k2=1
CT1

~k1+CT2 ~k2=~0

ψ(k1)ψ(k2) =
1
36

2m−1∑

k2=1

1
4r(k1(k2))

1
4r(k2)

=
1
36

m−1∑

u=0

1
4u

2u+1−1∑

k2=2u

1
4r(k1(k2))

.

Consider the innermost sum in the above expression. We have

Σ(u) :=
2u+1−1∑

k2=2u

1
4r(k1(k2))

=
m−1∑

w=0

1
4w

2u+1−1∑

k2=2u
r(k1(k2))=w

1.

From [14, proof of Theorem 1] we find that

2u+1−1∑

k2=2u
r(k1(k2))=w

1 =





0 if u+ w ≤ m− 2,

1 if u+ w = m− 1,

2u+w−m if u+ w ≥ m.

Thus

Σ(u) =
1

4m−1−u +
m−1∑

w=m−u

2u+w−m

4w
=

6 · 4u
4m

− 2 · 2u
4m
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and therefore
2m−1∑

k1,k2=1
CT1

~k1+CT2 ~k2=~0

ψ(k1)ψ(k2) =
1
36

m−1∑

u=0

1
4u

(
6 · 4u
4m

− 2 · 2u
4m

)

=
m

6 · 4m −
1

4m
2
36

2
(

1− 1
2m

)

=
m

6 · 4m −
1

9 · 4m +
4

36 · 23m .

Now we insert this result in equation (4) to get

E[L2
2,2m,γ(P̃2,2m)] =

1
22m

(
γ{1}

6
+
γ{2}

6
+
γ{1,2}

6

)
−

γ{1,2}
36 · 23m

+
γ{1,2}

4

(
m

6 · 4m −
1

9 · 4m +
4

36 · 23m

)

=
γ{1,2}

24
m

22m +
1

22m

(
γ{1}

6
+
γ{2}

6
+

5γ{1,2}
36

)
,

which is the desired result for s = 2.
We turn to the case where s = 3. Let C1, C2 and C3 denote the generating

matrices of the digital (0,m, 3)-net over Z2. As the quality parameter t is
zero it is clear that C1, C2 and C3 are regular. Hence B(v) = 0 for |v| = 1.
Further, for v ⊆ {1, 2, 3} with |v| = 2 we obtain from the first part of the
proof

B(v) =
m

6 · 4m −
1

9 · 4m +
1

9 · 23m .

So it remains to calculate B({1, 2, 3}). As above we may assume in the
following that C1 is the m×m identity matrix. Hence

CT1
~k1 + CT2

~k2 + CT3
~k3 = ~0 iff ~k1 = CT2

~k2 + CT3
~k3 =: ~k1(k2, k3).

Now we get

B({1, 2, 3}) =
2m−1∑

k1,k2,k3=1
CT1

~k1+CT2 ~k2+CT3 ~k3=~0

ψ(k1)ψ(k2)ψ(k3)

=
1

216

2m−1∑

k2,k3=1
k1(k2,k3)6=0

1
4r(k1(k2,k3))

1
4r(k2)+r(k3)

=
1

216

m−1∑

u,v=0

1
4u+v

2u+1−1∑

k2=2u

2v+1−1∑

k3=2v︸ ︷︷ ︸
k1(k2,k3)6=0

1
4r(k1(k2,k3))

.
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The innermost double sum in the above expression equals

Σ(u, v) :=
2u+1−1∑

k2=2u

2v+1−1∑

k3=2v︸ ︷︷ ︸
k1(k2,k3)6=0

1
4r(k1(k2,k3))

=
m−1∑

w=0

1
4w

2u+1−1∑

k2=2u

2v+1−1∑

k3=2v︸ ︷︷ ︸
r(k1(k2,k3))=w

1.

From [23, proof of Theorem 1] we find that

2u+1−1∑

k2=2u

2v+1−1∑

k3=2v︸ ︷︷ ︸
r(k1(k2,k3))=w

1 =





0 if u+ v + w ≤ m− 3,

1 if u+ v + w = m− 2,

0 if u+ v + w = m− 1,

2u+v+w−m if u+ v + w ≥ m.

Therefore we get

B({1, 2, 3}) =
1

216

m−1∑

u,v,w=0
u+v+w=m−2

1
4m−2 +

1
216

1
2m

m−1∑

u,v,w=0
u+v+w≥m

1
2u+v+w .

For the first sum we have
m−1∑

u,v,w=0
u+v+w=m−2

1
4m−2 =

1
4m−2

(
m

2

)
.

The second sum can be written as
m−1∑

u,v,w=0
u+v+w≥m

1
2u+v+w =

3m−3∑

l=m

1
2l

m−1∑

u,v,w=0
u+v+w=l

1.

Define

f(k) :=
m−1∑

u,v=0
u+v=k

1.

Then we have

f(k) =





k + 1 if 0 ≤ k ≤ m− 1,

2m− k − 1 if m ≤ k ≤ 2m− 2,

0 if k ≥ 2m− 1.

Now we obtain
m−1∑

u,v,w=0
u+v+w=l

1 =
2m−2∑

k=0

f(k)
m−1∑

w=0
k+w=l

1 =
2m−2∑

k=0
0≤l−k≤m−1

f(k) =
min(l,2m−2)∑

k=max(0,l−m+1)

f(k).
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Therefore
3m−3∑

l=m

1
2l

m−1∑

u,v,w=0
u+v+w=l

1 =
3m−3∑

l=m

1
2l

min(l,2m−2)∑

k=max(0,l−m+1)

f(k)

=
3m−3∑

l=m

1
2l

min(l,2m−2)∑

k=l−m+1

f(k)

=
2m−2∑

l=m

1
2l

l∑

k=l−m+1

f(k) +
3m−3∑

l=2m−1

1
2l

2m−2∑

k=l−m+1

f(k).

After some straightforward but tedious calculations we obtain the formula
for B({1, 2, 3}). The result then follows by inserting the above results in the
formula from Theorem 1.

Note that the generating matrices C1, . . . , Cs do not appear in our for-
mula and therefore the mean square weighted L2 discrepancy is the same for
any digital (0,m, s)-net over Z2, for s = 2, 3. This is also true for scrambled
(0,m, s)-nets in a base b (see [9, 16]). Furthermore, the expected value of the
L2 discrepancy of scrambled (0,m, 2)-nets is the same as for (0,m, 2)-nets
which are randomized using a digital shift of depth m (see [16]).

In the following we consider the classical L2 discrepancy, that is, we
choose γD = 1 and γu = 0 for u ⊂ D. We denote this choice of weights by
γc. Roth [27] proved that for any dimension s ≥ 2 there exists a constant
c(s) > 0 such that for any set PN of N points in the s-dimensional unit cube
we have

�

[0,1]s

∆(x)2 dx ≥ c(s) (logN)s−1

N2 .(5)

Therefore we obtain

L2,N,γc(PN ) ≥ c(s)1/2 (logN)(s−1)/2

N
.(6)

(See Section 4 for more details.) Thus Theorem 2 shows that the mean
square L2 discrepancy of randomized digital (0,m, s)-nets over Z2 achieves
the best possible rate of convergence for s = 2 and 3.

In the following we compare the constants. For N = 2m the constant of
[27] can be improved to (see also the subsequent inequality (17))

c(2)1/2 =
3

28
√

log 2
= 0.01407 . . . , c(3)1/2 =

3

210
√

2 log 2
= 0.00298 . . . .

In the following, for s = 2 and 3 and each m ∈ N the set Ps,2m,σm,s is a
digital (0,m, s)-net over Z2 shifted by the digital shift σm,s of depth m. We
obtain the following corollary.
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Corollary 1. For s = 2, 3 there exist sequences (σm,s)m≥1 of digital
shifts of depth m and digital (0,m, s)-nets (Ps,2m)m≥1 over Z2 such that the
sequences (Ps,2m,σm,s)m≥1 of shifted nets satisfy

lim sup
m→∞

2mL2,2m,γc(P2,2m,σm,2)√
log 2m

≤ 1√
24 log 2

= 0.24518 . . .

and

lim sup
m→∞

2mL2,2m,γc(P3,2m,σm,3)
log 2m

≤ 1√
192 log 2

= 0.10411 . . . .

We remark that it might be possible to improve the constant in Corol-
lary 1 by finding the best shift for each digital (0,m, s)-net over Z2.

Note that one can also obtain the constants for the weighted L2 dis-
crepancy: the constant of a weighted lower bound can be obtained from the
definition of weighted L2 discrepancy (1) and (5), and the constant for the
upper bound can be obtained from Theorem 2.

3.3. An upper bound on the mean square weighted L2 discrepancy of
randomized digital (t,m, s)-nets over Z2. In this subsection we derive an
upper bound on the formula of Theorem 1. We have

Theorem 3. Let P2m be a digital (t,m, s)-net over Z2 with t < m. Let
P̃2m be the point set obtained after applying an i.i.d. random digital shift of
depth m independently to each coordinate of each point of P2m. Then the
mean square weighted L2 discrepancy of P̃2m is bounded as follows:

E[L2
2,2m,γ(P̃2m)] ≤ 1

22(m−t)
∑

u⊆D
u6=∅

γu(m− t)|u|−1.

As for the exact value of the mean square weighted L2 discrepancy for
(0,m, s)-nets with s = 2, 3, the generating matrices C1, . . . , Cs do not appear
in the upper bound, which now depends on the quality parameter t only. For
t > 0 the exact value of B(v) (see Theorem 1) depends on the generating
matrices and therefore we prove a bound.

For fixed s ≥ 1 there is a t ≥ 0 such that for every m > t there is a
digital (t,m, s)-net over Z2 (see for example [19]). Thus Theorem 3 shows
that the convergence order of the mean square weighted L2 discrepancy is
best possible by the lower bound by Roth [27] (see (6)).

We need two lemmas for the proof of the above theorem.

Lemma 6. For b > 1 and integers k, t0 > 0, we have
∞∑

t=t0

(
t+ k − 1
k − 1

)
b−t ≤ b−t0

(
t0 + k − 1
k − 1

)(
1− 1

b

)−k
.
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Proof. For completeness we give a short proof of the lemma which is
taken from Matoušek [16]. By the binomial theorem we have

∞∑

t=t0

(
t− t0 + k − 1

k − 1

)
b−t = b−t0

(
1− 1

b

)−k
.

Now use the inequality(
t+ k − 1
k − 1

)/(t− t0 + k − 1
k − 1

)
=

(t+ k − 1)(t+ k − 2) · · · (t− t0 + k)
t(t− 1) · · · (t− t0 + 1)

≤
(
t0 + k − 1
k − 1

)
.

Lemma 7. Let C1, . . . , Cs be the generating matrices of a digital (t,m, s)-
net over Z2. Further define B as in Theorem 1. Then for any v ⊆ D we have

B(v) ≤ 22t

22m

(
8
9

)|v|(
m− t+

1
8

)|v|−1

.

Proof. To simplify the notation we prove the result only for v={1, . . . , s}.
The other cases follow by the same arguments. We have

B({1, . . . , s}) =
1
6s

m−1∑

v1,...,vs=0

1
4v1+···+vs

2v1+1−1∑

k1=2v1

· · ·
2vs+1−1∑

ks=2vs︸ ︷︷ ︸
CT1

~k1+···+CTs ~ks=~0

1.

Now we write

Σ(v1, . . . , vs) :=
2v1+1−1∑

k1=2v1

· · ·
2vs+1−1∑

ks=2vs︸ ︷︷ ︸
CT1

~k1+···+CTs ~ks=~0

1.(7)

For 1 ≤ j ≤ s and 1 ≤ i ≤ m let ~c Tj,i denote the ith row vector of the
matrix Cj .

For 2vj ≤ kj ≤ 2vj+1 − 1, the binary digit expansion of kj is of the form

kj = kj,0 + kj,12 + · · ·+ kj,vj−12vj−1 + 2vj .

Hence the condition in our sum (7) can be written as

~c1,1k1,0 + · · ·+ ~c1,v1k1,v1−1 + ~c1,v1+1(8)

+ ~c2,1k2,0 + · · ·+ ~c2,v2k2,v2−1 + ~c2,v2+1

...

+ ~cs,1ks,0 + · · ·+ ~cs,vsks,vs−1 + ~cs,vs+1 = ~0.

Since by the digital (t,m, s)-net property (see Definition 2) the vectors

~c1,1, . . . ,~c1,v1+1, . . . ,~cs,1, . . . ,~cs,vs+1
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are linearly independent as long as (v1 +1)+ · · ·+(vs+1) ≤ m− t, we must
have

v1 + · · ·+ vs ≥ m− t− s+ 1.(9)

Let now A denote the m × (v1 + · · · + vs) matrix with column vectors
~c1,1, . . . ,~c1,v1, . . . ,~cs,1, . . . ,~cs,vs , i.e.,

A := (~c1,1, . . . ,~c1,v1 , . . . ,~cs,1, . . . ,~cs,vs).
Further let

~f := ~c1,v1+1 ⊕ · · · ⊕ ~cs,vs+1 ∈ Zm2 ,
~k := (k1,0, . . . , k1,v1−1, . . . , ks,0, . . . , ks,vs−1)T ∈ Zv1+···+vs

2 .

Then the linear system (8) can be written as

A~k = ~f(10)

and hence

Σ(v1, . . . , vs) =
∑

~k∈Zv1+···+vs
2

A~k=~f

1 = #{~k ∈ Zv1+···+vs
2 : A~k = ~f }.

By the definition of the matrix A and since C1, . . . , Cs are the generating
matrices of a digital (t,m, s)-net over Z2 we have

rank(A) = v1 + · · ·+ vs if v1 + · · ·+ vs ≤ m− t, and

rank(A) ≥ m− t else.

Let L denote the linear space of solutions of the homogeneous system A~k = ~0
and let dim(L) denote the dimension of L. Then

dim(L) = 0 if v1 + · · ·+ vs ≤ m− t, and

dim(L) ≤ v1 + · · ·+ vs −m+ t else.

Hence if v1 + · · ·+ vs ≤ m− t we find that the system (10) has at most one
solution and if v1+· · ·+vs > m−t the system (10) has at most 2v1+···+vs−m+t

solutions, i.e.,

Σ(v1, . . . , vs) ≤
{

1 if v1 + · · ·+ vs ≤ m− t,
2v1+···+vs−m+t if v1 + · · ·+ vs > m− t.

Together with condition (9) we obtain

B({1, . . . , s}) ≤ 1
6s

m−1∑

v1,...,vs=0
m−t−s+1≤v1+···+vs≤m−t

1
4v1+···+vs(11)

+
1
6s

m−1∑

v1,...,vs=0
v1+···+vs>m−t

1
4v1+···+vs 2v1+···+vs−m+t
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=: Σ1 +Σ2.

Now we have to estimate the sums Σ1 and Σ2. First we have

Σ2 =
1
6s

2t

2m

s(m−1)∑

l=m−t+1

1
2l

m−1∑

v1,...,vs=0
v1+···+vs=l

1 ≤ 1
6s

2t

2m

∞∑

l=m−t+1

(
l + s− 1
s− 1

)
1
2l
,

where we used the fact that for fixed l the number of non-negative integer
solutions of v1 + · · ·+ vs = l is

(
l+s−1
s−1

)
. Now we apply Lemma 6 to obtain

Σ2 ≤
1
6s

2t

2m
1

2m−t+1

(
m− t+ s

s− 1

)
2s =

1
3s

4t

4m
1
2

(
m− t+ s

s− 1

)
.(12)

Finally, since(
m− t+ s

s− 1

)
=

(m− t+ 2)(m− t+ 3) · · · (m− t+ s)
1 · 2 · · · (s− 1)

≤ (m− t+ 2)s−1,

we obtain

Σ2 ≤
1
3s

4t

4m
1
2

(m− t+ 2)s−1.

Now we estimate Σ1. If m− t ≥ s− 1 we proceed similarly to the above
to obtain

Σ1 =
1
6s

m−t∑

l=m−t−s+1

(
l + s− 1
s− 1

)
1
4l
≤ 1

6s
1

4m−t−s+1

(
m− t
s− 1

)(
3
4

)−s
(13)

≤ 8s

9s
4t

4m
1
4

(m− t)s−1

(s− 1)!
.

For this case we obtain

B({1, . . . , s}) ≤ 8s

9s
4t

4m
1
4

(m− t)s−1

(s− 1)!
+

1
3s

4t

4m
1
2

(m− t+ 2)s−1

≤ 8s

9s
4t

4m

(
1
4

(m− t)s−1

(s− 1)!
+

3
8

1
2

(
3
8

(m− t) +
6
8

)s−1)
.

As 3
8(m− t) + 6

8 ≤ m− t+ 1
8 provided that m− t > 0 we have

B({1, . . . , s}) ≤ 4t

4m

(
8
9

)s(
m− t+

1
8

)s−1

,

which is the desired bound.
Now we consider the case where m− t < s− 1. We have

Σ1 =
1
6s

m−t∑

l=0

(
l + s− 1
s− 1

)
1
4l
≤ 1

6s

∞∑

l=0

(
l + s− 1
s− 1

)
1
4l

(14)

=
(

2
9

)s
≤ 1

16
8s

9s
4t

4m
.
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Thus we obtain

B({1, . . . , s}) ≤ 1
16

8s

9s
4t

4m
+

1
3s

4t

4m
1
2

(m− t+ 2)s−1

≤ 8s

9s
4t

4m

(
1
16

+
3
8

1
2

(
3
8

(m− t) +
6
8

)s−1)
.

The result now follows by using the same arguments as above.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We use the formula of Theorem 1 together with
Lemma 7 to obtain

E[L2
2,2m,γ(P̃2m)] ≤

∑

u⊆D
u6=∅

γu

[
1

2m+|u|

(
1−

(
1− 1

3 · 2m
)|u|)

+
1

3|u|
22t

22m

∑

v⊆u
v6=∅

(
4
3

)|v|(
m− t+

1
8

)|v|−1]
.

We have

1
3|u|

∑

v⊆u
v6=∅

(
4
3

)|v|(
m− t+

1
8

)|v|−1

≤ (m− t)−1
(

1
3

+
4
9

(
m− t+

1
8

))|u|

≤
(

5
6

)|u|
(m− t)|u|−1,

provided that m− t > 0. Since for x < y we have ys− xs = sζs−1(y− x) for
a x < ζ < y, we have

1−
(

1− 1
3 · 2m

)|u|
≤ |u|

3 · 2m .

As |u|/2|u| ≤ 1/2 for |u| ≥ 1, we obtain

(15)
1

2m+|u|

(
1−
(

1− 1
3 · 2m

)|u|)
+

1
3|u|

22t

22m

∑

v⊆u
v6=∅

(
4
3

)|v|(
m− t+ 1

8

)|v|−1

≤ 1
22m

[
1
6

+ 22t
(

5
6

)|u|
(m− t)|u|−1

]
≤ 1

22(m−t) (m− t)|u|−1,

and the result follows.

In the following corollary we refine the bound of Theorem 3 by including
the t-values of the lower dimensional projections. Observe that it follows
easily from Definition 2 that any projection of a digital (t,m, s)-net on the
coordinates of ∅ 6= u ⊆ D is again a digital (tu,m, |u|)-net with some tu ≤ t.
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In the following we write “digital ((tu),m, s)-net” for a digital (t,m, s)-
net where the projections on ∅ 6= u ⊆ D have quality parameter tu. The
subsequent corollary can be obtained by using (15).

Corollary 2. Let P2m be a digital ((tu),m, s)-net over Z2 with

max
∅6=u⊆D

tu < m.

Let P̃2m be the point set obtained after applying an i.i.d. random digital shift
of depth m independently to each coordinate of each point of P2m. Then the
mean square weighted L2 discrepancy of P̃2m is bounded as follows:

E[L2
2,2m,γ(P̃2m)] ≤ 1

22m

∑

u⊆D
u6=∅

γu22tu(m− tu)|u|−1.

4. Asymptotics. In this section we investigate the asymptotic be-
haviour of the L2 discrepancy. We consider the classical L2 discrepancy,
that is, γD = 1 and γu = 0 for u ⊂ D. As before we denote these weights
with γc. (We remark that the results in this section, except Subsection 4.2,
can be generalized to arbitrary weights.)

Let log2 denote the logarithm to base 2. By an extension of the result
of Roth [27] to dimension s we find that for any set PN of N points in the
s-dimensional unit cube,

L2,N,γc(PN ) ≥ 1
N

√(blog2Nc+ s+ 1
s− 1

)
1

22s+4 .

For sets of N = 2m points the result can be slightly improved:

L2,2m,γc(P2m) ≥ 1
2m

√(
m+ s+ 1
s− 1

)
3

22s+4 .(16)

From (
m+ s+ 1
s− 1

)
≥ ms−1

(s− 1)!

and m = logN/log 2 it follows that

L2,2m,γc(P2m) ≥ (logN)(s−1)/2

N

3

22s+4(log 2)(s−1)/2
√

(s− 1)!
.(17)

In the following subsection we consider the asymptotic behaviour of the
classical L2 discrepancy of certain shifted (t,m, s)-nets. In Subsection 4.2 we
consider shifted Niederreiter–Xing nets and show that Roth’s lower bound
is essentially best possible in N and s.
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4.1. Asymptotics of the classical L2 discrepancy of shifted digital (t,m, s)-
nets over Z2. In the following, for s ∈ N and m ∈ N the set Pt,s,2m,σm,s is a
digital (t,m, s)-net over Z2 shifted by the digital shift σm,s of depth m. We
obtain

Theorem 4. Let s > 3, 0 ≤ t < m and m− t ≥ s be such that a digital
(t,m, s)-net over Z2 exists. Then there exists a digital shift σm,s of depth m
such that for the shifted net Pt,s,2m,σm,s we have

L2,2m,γc(Pt,s,2m,σm,s) ≤
2t

2m

√(
m− t+ s

s− 1

)(
2
3

)s
+O

(
m(s−2)/2

2m

)
.

Proof. From Theorem 1 we obtain

(18) E[L2
2,2m,γc

(P̃2m)]

=
1

2m+s

(
1−

(
1− 1

3 · 2m
)s)

+
1
3s
∑

v⊆D
v6=∅

(
3
2

)|v|
B(v).

Lemma 7 shows that, in order to find the constant of the leading term, we
only need to consider B({1, . . . , s}). From (11)–(13) we obtain

B({1, . . . , s}) ≤ 22t

22m

(
1
2

1
3s

(
m− t+ s

s− 1

)
+

1
4

8s

9s

(
m− t
s− 1

))
.

As the bound in Theorem 1 was obtained by averaging over all shifts it
follows that there exists a shift which yields an L2 discrepancy smaller than
or equal to this bound. The result follows.

Observe that for large m, apart from the t, the bound in Theorem 4
is similar to (16). We now consider (t, s)-sequences. A (t, s)-sequence in
base 2 is a sequence of points (xn)n≥0 such that for all m > t and l ≥ 0
the set {xn : l2m ≤ n < (l + 1)2m} is a (t,m, s)-net in base 2. A digital
(t, s)-sequence over Z2 is obtained by using ∞ × ∞ generating matrices
C1, . . . , Cs over Z2.

From [21] it follows that for every dimension s there exists a digital (t, s)-
sequence over Z2 such that t ≤ 5s. Thus for all s ≥ 1 and m > 5s there is
a digital (5s,m, s)-net over Z2. (Note that if there is a digital (t,m, s)-net
then also a digital (t+ 1,m, s)-net exists.) Let Ps,5s,2m,σm,s denote a digital
(5s,m, s)-net over Z2 shifted by the digital shift σm,s of depth m. We are
interested in the asymptotic behaviour of the L2 discrepancy. For m much
larger than s and t = 5s, we have

(
m− t+ s

s− 1

)
≤
(

m

s− 1

)
≤ ms−1

(s− 1)!
.
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Further, if N = 2m, then m = logN/log 2. The following corollary now
follows from Theorem 4.

Corollary 3. For every s ≥ 1 and m ≥ 5s there exists a shifted digital
(5s,m, s)-net P5s,s,2m,σm,s over Z2 shifted by the digital shift σm,s of depth
m such that

L2,2m,γc(P5s,s,2m,σm,s)

≤ (logN)(s−1)/2

N

22s

(log 2)(s−1)/2
√

(s− 1)!
+O

(
(logN)(s−2)/2

N

)
,

where N = 2m.

We note that the convergence of O((logN)(s−1)/2N−1) is best possible
(see (17)).

In the remaining part of this subsection we discuss the constant depend-
ing on s. Note that

C(s) :=
22s

(log 2)(s−1)/2
√

(s− 1)!

tends to zero faster than exponentially. The best constant of the leading
term of an upper bound known to the authors was derived by Hickernell [9].
He showed that for scrambled (0,m, s)-nets in base b ≥ s − 1, where b is a
prime power, the constant of the leading term is

A(s) =
(s− s−1)(s−1)/2

6s/2
√

(s− 1)!(log s)(s−1)/2
≈
(

es√
6πs 6s(log s)s−1

)1/2

as s→∞.

The right hand side is obtained by Stirling’s formula. It can easily be checked
that C(s) tends to zero much faster than A(s). Thus our result improves
Hickernell’s considerably.

Compared to (17) our constant C(s) is not quite as good. It is known
that for digital (t, s)-sequences over Z2 we always have

t > s log2
3
2
− 4 log2(s− 2)− 23 for all s ≥ 3,

by a result of Schmid [28]. Hence for digital (t,m, s)-nets obtained from
digital (t, s)-sequences Theorem 4 cannot yield a constant of the form
a−s/2((s − 1)!)−1/2 for some a > 1. On the other hand, for special choices
of m and s the t-value of a digital (t,m, s)-net may be considerably lower
than the t-value of the best (t, s)-sequence. This will be investigated in the
next subsection.

4.2. On the L2 discrepancy of shifted Niederreiter–Xing nets. In this
subsection we derive an upper bound on the classical L2 discrepancy of
shifted Niederreiter–Xing nets (see [20]; see also [31] for a recent survey
article). This enables us to show that (16) is essentially best possible.
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Niederreiter and Xing [20, Corollary 3] showed that for every integer
d ≥ 2 there exists a sequence of digital (tk, tk + d, sk)-nets over Z2 with
sk →∞ as k →∞ such that

lim
k→∞

tk
log2 sk

=
⌊
d

2

⌋
,(19)

and that this is best possible. (We remark that the sequence of digital nets
from the result of Niederreiter and Xing can be constructed explicitly.)
Therefore for any d ≥ 1 there exists a sequence of digital (tk, tk +d, sk)-nets
over Z2 and a kd such that

⌈
tk

log2 sk

⌉
= d and sk ≥ 2d+ 2 for all k ≥ kd.(20)

(Note that if a digital (tk, tk + d, sk)-net exists, then there also exists a
digital (tk + 1, tk + d + 1, sk)-net. Further, for d = 1 there exists a digital
(t, t+ 1, s)-net for all t, s ≥ 1.) For a set P of 2m points in [0, 1)s let

Dm,s(P ) :=
2mL2,2m,γc(P )√(

m+s+1
s−1

) .(21)

The bound in Theorem 3 was obtained by averaging over all shifts. Hence
for any digital (t,m, s)-net there is always a shift σ∗ which yields an L2
discrepancy smaller than or equal to this bound. Let Pk(d) denote a shifted
digital (tk, tk + d, sk)-net over Z2 satisfying (20), which is shifted by such a
shift σ∗. We prove an upper bound on Dtk+d,sk(Pk(d)) for fixed d.

In the following let k ≥ kd. Let v ⊆ {1, . . . , sk} and l := |v|. First we
consider the case where l ≥ d+2. Note that m−t = d for the nets considered
here. Then (12) and (14) yield

B(v) ≤ 1
3l

1
4d

1
2

(
d+ l

d+ 1

)
+

2l

9l
.

For 0 < l ≤ d+ 1 we deduce from (12) and (13) that

B(v) ≤ 1
3l

1
4d

1
2

(
d+ l

d+ 1

)
+

8l

9l
1
4d

1
4

(
d

l − 1

)
.

Therefore

1
3sk

∑

v⊆D
v6=∅

(
3
2

)|v|
B(v)≤ 1

3sk

d+1∑

l=1

(
3
2

)l(sk
l

)(
1
3l

1
4d

1
2

(
d+ l

d+ 1

)
+

8l

9l
1
4d

1
4

(
d

l − 1

))

+
1

3sk

sk∑

l=d+2

(
3
2

)l(sk
l

)(
1
3l

1
4d

1
2

(
d+ l

d+ 1

)
+

2l

9l

)
.
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Now we have

1
3sk

sk∑

l=1

(
3
2

)l(sk
l

)
1
3l

1
4d

1
2

(
d+ l

d+ 1

)
≤ 1

2
1

3sk
1
4d

(
d+ sk
d+ 1

) sk∑

l=0

1
2l

(
sk
l

)

=
1
2

1
2sk

1
4d

(
d+ sk
sk − 1

)

and

1
3sk

d+1∑

l=1

(
3
2

)l(sk
l

)
8l

9l
1
4d

1
4

(
d

l − 1

)
+

1
3sk

sk∑

l=d+2

(
3
2

)l(sk
l

)
2l

9l

=
1

3sk
1

4d+1

d+1∑

l=1

(
sk
l

)(
4
3

)l( d

l − 1

)
+

1
3sk

sk∑

l=d+2

(
sk
l

)
1
3l

≤ 1
3

(
7
12

)d 1
3sk

(
sk

d+ 1

)
+
(

4
9

)sk
,

as maxl=1,...,d+1
(
sk
l

)
=
(
sk
d+1

)
for sk ≥ 2d+ 2. Thus we obtain

1
3sk

∑

v⊆D
v6=∅

(
3
2

)|v|
B(v) ≤ 1

2
1

2sk
1
4d

(
d+ sk
sk − 1

)
+

1
3

(
7
12

)d 1
3sk

(
sk
d+ 1

)
+
(

4
9

)sk
.

Further we have

1−
(

1− 1
3 · 2m

)s
≤ s

3 · 2m .

Hence it follows from the definition of Pk(d) and (18) that

L2
2,2tk+d,γc

(Pk(d)) ≤ 1
2

1
2sk

1
4d

(
d+ sk
sk − 1

)
+

1
3

(
7
12

)d 1
3sk

(
sk
d+ 1

)
(22)

+
(

4
9

)sk
+

sk
3 · 22(tk+d)+sk

.

In order to get a bound onD2
tk+d,sk

(Pk(d)) we need to multiply the inequality

above with 4tk+d
[(
tk+d+sk+1

sk−1

)]−1. For the first term in the bound of (22) we
get

1
2

1
2sk

1
4d

(
d+ sk
sk − 1

)
4tk+d

[(
tk + d+ sk + 1

sk − 1

)]−1

=
1
2

1
2sk

4tk
(d+ sk) · · · (d+ 2)

(tk + d+ sk + 1) · · · (tk + d+ 3)
.

Let r ≥ 1 be an integer to be chosen later. From (19) it follows that for large
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enough k we have rtk < sk. Further, tk > 0. We get
(tk + d+ sk + 1) · · · (tk + d+ 3)

(d+ sk) · · · (d+ 2)
=
(

1 +
tk + 1
d+ sk

)
· · ·
(

1 +
tk + 1
d+ 2

)

≥
r∏

j=1

(
1 +

tk + 1
jtk + d+ 1

)tk
.

Now we have
r∏

j=1

(
1 +

tk + 1
jtk + d+ 1

)
→

r∏

j=1

(
1 +

1
j

)
= r + 1 as tk →∞.

Therefore, for large enough k, we obtain

rtk ≤ (tk + d+ sk + 1) · · · (tk + d+ 3)
(d+ sk) · · · (d+ 2)

and
1
2

1
2sk

1
4d

(
d+ sk
sk − 1

)
4tk+d

[(
tk + d+ sk + 1

sk − 1

)]−1

≤ 1
2

1
2sk

(
4
r

)tk

for all k ≥ K1(r, d), for some well chosen K1(r, d). Further one can show that
the other terms on the right hand side of (22) decay faster than 2−sk(4/r)tk .
From (20) it follows that tk ≥ (d − 1) log2 sk for all k ≥ K2(d). Let r = 8;
then we have (4/r)tk ≤ s1−d

k . Therefore there exists a Kd such that for all
k ≥ Kd we have

D2
tk+d,sk(Pk(d)) ≤ 1

2sk
1

sd−1
k

.

We summarize the result in the following theorem.

Theorem 5. For any d ≥ 1 there exists an integer Kd > 0 and a se-
quence of shifted digital (tk, tk+d, sk)-nets (Pk(d))k≥1 over Z2 with sk →∞
as k →∞ and ⌈

tk
log2 sk

⌉
= d for all k ≥ Kd,

such that for all k ≥ Kd we have

L2,2tk+d,γc
(Pk(d)) ≤ 1

2tk+d

1
2sk/2

1

s
(d−1)/2
k

√(
tk + d+ sk + 1

sk − 1

)
.

We use (21) again. Then by using (16) and the result above we conclude
that for any d > 0 and for all k ≥ Kd we have

3
16

1
22sk

≤ Dtk+d,sk(Pk(d)) ≤ 1
2sk/2

1

s
(d−1)/2
k

.(23)

This shows that Roth’s lower bound is also in s of the best possible form.
The small remaining gap in the constant is not surprising as the result
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in Theorem 5 was obtained by averaging over well distributed point sets.
Some attempts have been made to improve the lower bound of Roth, but
no considerable progress has been achieved (see [17]). For small point sets
there exist other lower bounds which yield numerically better results than
the bound of Roth, but do not show a higher convergence rate (see [17]).

We note that the results in this section are, apart from the digital shift,
constructive as they are based on Niederreiter–Xing constructions of digital
nets and sequences. It would also be desirable to have fully deterministic
point sets with a small L2 discrepancy (like the constructions in [2]). In
our context this amounts to finding an appropriate digital shift for a given
digital (t,m, s)-net. This work remains to be done.
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