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Introduction. The main goal of our work is to prove the following
result:

Main Theorem. Let K be a finitely generated field , A an abelian variety
over K, and e a positive integer. Then the following statements hold for
almost all σ ∈ G(K)e:

(a) Al∞(K̃(σ)) is a finite group for all prime numbers l.
(b) If e ≥ 2 and char(K) = 0, then Ator(K̃(σ)) is a finite group.

Here we say that a field K is finitely generated if it is finitely generated
over its prime field. We denote the separable (resp. algebraic) closure of K
byKs (resp. K̃) and letG(K) = G(Ks/K) be the absolute Galois group ofK.
Each σ ∈ G(K) uniquely extends to an automorphism of K̃ having the same
notation σ. We consider the cartesian product G(K)e of e copies of G(K).
If σ = (σ1, . . . , σe) is in G(K)e and N is a normal extension of K, then
N(σ) is the fixed field in N of σ1, . . . , σe. In particular, K̃(σ) = Ks(σ)ins

is the maximal purely inseparable extension of Ks(σ). In general we denote
the maximal purely inseparable extension of a field M by Mins.

For an abelian variety A which is defined over K (usually abbreviated
to “an abelian variety A over K”) and for each positive integer n let An be
the kernel of multiplying A by n. If M is an extension of K, then An(M) =
{p ∈ A(M) | np = 0}. We use l to denote prime numbers and let Al∞(M) =⋃∞
i=1Ali(M). We also let Ator(M) be the group of all points of A(M) of finite

order.
Finally, we equip G(K)e with the unique Haar measure µK which is

normalized with µK(G(K)) = 1. Then the clause “for almost all σ ∈ G(K)e”
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means as usual “for all but a set of measure 0 of σ in G(K)e”. This ends
the explanation of the Main Theorem.

The Main Theorem solves Part (C) of the Geyer–Jarden Conjecture in
all cases and Part (B) for char(K) = 0.

Conjecture of Geyer–Jarden [GeJ]. Let K be a finitely generated
field , A an abelian variety over K, and e a positive integer. Then the fol-
lowing statements hold for almost all σ ∈ G(K)e:

(A) If e = 1, then there are infinitely many prime numbers l with
Al(Ks(σ)) 6= 0.

(B) If e ≥ 2, there are only finitely many l with Al(Ks(σ)) 6= 0.
(C) If e = 1, then for each l the group Al∞(K̃(σ)) is finite.

Since the intersection of countably many sets of measure 1 is again a
set of measure 1, and since a variety which is defined over K̃ is already
defined over a finite extension of K, it is possible to switch the order of the
quantifiers in the Geyer–Jarden Conjecture (Remark 3.8):

Corollary to the Geyer–Jarden Conjecture. Let K be a finitely
generated field and e a positive integer. Then for almost all σ ∈ G(K)e and
for each abelian variety A over K̃(σ) the following statements hold :

(I) If e = 1, then Ator(K̃(σ)) is infinite.
(II) If e ≥ 2, then Ator(K̃(σ)) is finite.

The main result of [GeJ] is that the Geyer–Jarden Conjecture holds
for elliptic curves. The proof relies on an analysis of the action of G(K)
on An(K̃) and on Al∞(K̃), where A is now an elliptic curve over K. This
action gives rise to representations %A,n : G(K)→ GL(2d,Z/nZ) and %A,l∞ :
G(K) → GL(2d,Zl), where d = 1 = dim(A) (at least if char(K) -n and
char(K) 6= l). The proof distinguishes between five cases. In each of these
cases, the image of G(K) in the corresponding matrix group is known to such
an extent that allows the computation of the probability that an e-tuple of
elements has a common eigenvector.

As the dimension of A grows, the number of types of those represen-
tations grows. Moreover, there are only few cases in the literature where
those representations are described in detail. So, any attempt to prove the
Geyer–Jarden Conjecture should rely on general principles which are less
precise than those used for elliptic curves but powerful enough to yield the
desired result.

Our previous work [JaJ1] uses such principles to prove Part (C) of the
conjecture for every global field K and for l 6= char(K). There is an attempt
in [JaJ1] to prove Part (A) of the conjecture for an arbitrary finitely gen-



Torsion of abelian varieties 17

erated field of positive characteristic. Unfortunately, the proof contains an
error (see [JaJ2]).

In this work we use the same principles as in [JaJ1] in a more careful
way and complete the proof of Part (C) of the conjecture in all cases.

We also use a result of Bogomolov–Serre which asserts that if K is a
number field, then %A,l(G(K)) contains “many” homotheties. This leads
to a proof of Part (B) of the conjecture for number fields. The theory of
good reduction of abelian varieties extends the result to arbitrary finitely
generated extensions of K.

Part (B) of the conjecture in positive characteristic and Part (A) of the
conjecture are still open.

1. Torsion of abelian varieties under good reduction. We enhance
the theory of good reduction of abelian varieties with some ingredients which
are not well documented in the literature. We use it in the next section to
prove Part (C) of the Geyer–Jarden Conjecture.

Let K be a field of characteristic p equipped with a valuation v. Choose
an extension ṽ of v to K̃. Denote reduction of objects at ṽ by a bar. We will
be careful to make only such statements on the reduced objects which will
depend on v but not on ṽ. If we wish to make the reference to v explicit, we
add v as an index. We use the expression “for almost all v” as an abbreviation
for “there exist a1, . . . , an ∈ K× such that for all valuations v of K which
satisfy v(ai) = 0, i = 1, . . . , n”.

Denote the Tate module of an abelian variety A over a field K associated
with a prime number l by Tl(A). By definition, Tl(A) = lim←−Ali(K̃), where
the maps Aln(K̃)→ Aln−1(K̃) are multiplication by l.

Lemma 1.1. Let A be an abelian variety over K and let l be a prime
number. Then, for almost all valuations v of K, reduction at v induces
isomorphisms Aln(K̃)→ Aln(K̃), n = 1, 2, . . . and Tl(A)→ T l(A).

Proof. Shimura and Taniyama prove that for almost all v, A has good re-
duction at v. That is, A is an abelian variety over K [ShT, p. 109, Prop. 25].
Alternatively, one may consider A as a closed algebraic subgroup of Pn
[Mil, p. 113, Thm. 7.1]. Together with the group operations, A is defined
by finitely many polynomials with coefficients in K. The conditions on A
to be an abelian variety translate into elementary statements on the coef-
ficients which should be satisfied over K̃. By elimination of quantifiers for
the elementary theory of algebraically closed fields [FrJ, Thm. 8.3], these
statements remain true over K̃ for almost all v (see also [Jar, §1]).

Suppose A has good reduction at v. It defines a homomorphism ϕ :
A(K̃) → A(K̃) of groups. For each n let ϕn : An(K̃) → An(K̃) be the
corresponding restriction of ϕ.
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Consider points p1, . . . ,pm of A(K̃). Then “p1, . . . ,pm are the distinct
points of order l in A(K̃)” is an elementary statement on K̃. Hence, as in
the preceding paragraph, it remains true for almost all v. In other words,
for almost all v, p1, . . . ,pm are the distinct points of order l in A(K̃). So,
ϕl is bijective.

There exists a nonnegative integer r with Ali(K̃) ∼= (Z/liZ)r for each i.
If l 6= p, then r = 2 dim(A). If l = p, then 0 ≤ r ≤ dim(A) [Mum, p. 64].

Similarly, there exists a nonnegative integer r with Ali(K̃) ∼= (Z/liZ)r for
each i. By the preceding paragraph r = r. So,

(1) |Ali(K̃)| = |Ali(K̃)|, i = 1, 2, . . .

Since ϕl is surjective, Nakayama’s lemma implies that ϕli is surjective.
Hence, by (1), ϕli is bijective.

Finally, taking the inverse limit over all i, the ϕi define an isomorphism
ϕ : Tl(A)→ Tl(A).

For a field K, an abelian variety A over K, and a positive integer n write
K(An) for K(An(K̃)). Also, let K(Al∞) =

⋃∞
i=1 K(Ali).

Corollary 1.2. Let A be an abelian variety over a field K and let l
be a prime number. Then almost all valuations v of K have trivial inertia
groups in K(Al∞)∩Ks. In particular , almost all discrete valuations v of K
are unramified in K(Al∞) ∩Ks.

Proof. Replace K by Kins, if necessary, to assume that K is perfect. It
suffices to prove that each v satisfying the conclusion of Lemma 1.1 has
trivial inertia groups in K(Al∞). Since K(Al∞) =

⋃∞
i=1 K(Ali), it suffices

to prove that for each n, v has trivial inertia groups in N = K(Ali).
We repeat a well known argument. Let w be an extension of v to N . Let

D(w) = {σ ∈ G(N/K) | w(x) ≥ 0 implies v(σx) ≥ 0 for each x ∈ N} be the
decomposition group of w in N/K. Then the map D(w) → G(K(Aln)/K)
given by σ 7→ σ with σ x = σx if x ∈ N and w(x) ≥ 0 is a homomorphism
whose kernel is the inertia group I(w). We prove that I(w) is trivial. (This
will also imply that K(Aln)/K is Galois [Ser3, p. 33, Remarque].)

Indeed, let σ ∈ I(w) and consider p ∈ Aln(K̃). Then σp = σ p = p
and σp ∈ Aln(K̃). By our choice of v, σp = p. We conclude that σ = 1, as
desired.

2. Finiteness of the l-power torsion. In this section we prove
Part (C) of the Geyer–Jarden Conjecture. The proof uses the following con-
dition on a field K:

(C′) Let A be an abelian variety over K and l a prime number. Then
Al∞(K̃(σ)) is finite for almost all σ ∈ G(K).
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Remark 2.1 (Reduction steps). (a) Let A be an abelian variety over
a field K. Let L be a purely inseparable extension of K. Then resKs :
G(L) → G(K) is an isomorphism. If σ′ ∈ G(L) and σ = resKs(σ

′), then
K̃(σ) = L̃(σ′). Hence, Al∞(K̃(σ)) is finite for almost all σ ∈ G(K) if and
only if Al∞(L̃(σ)) is finite for almost all σ ∈ G(L).

(b) The field N = K(Al∞) is a normal extension of K. If l 6= char(K),
then multiplication by li is an étale endomorphism of A [Mum, p. 64, Prop. 2
and p. 74, Cor. 1]. In particular, it is étale over 0. Hence, N/K is Galois. So,
Al∞(M) = Al∞(Mins) for each algebraic extension M of K. In particular,
Al∞(K̃(σ)) = Al∞(Ks(σ)) for each σ ∈ G(K).

If, however, l = char(K), this need not be the case. For example, let
K = Fp((t)) be the field of formal power series in t over Fp and A the Tate
curve over K with period t. By [Roq, p. 19, IV and V], A(L) = L×/〈t〉 for
every finite extension L of K. In particular, K(Ap) = K(t1/p) is a purely
inseparable extension of K of degree p.

The arguments of the first paragraph (of step (b)) also imply that⋃
lAl(M) is finite if and only if

⋃
Al(Mins) is finite.

(c) Let M be an algebraic extension of K. We prove that Tl(A)(M) 6= 0
if and only if Al∞(M) is infinite.

Indeed, if Tl(A)(M) has a nonzero point p, then there is i0 such that for
all i ≥ i0, the ith component pi of p is a nonzero point in Ali(M). Moreover,
lpi+1 = pi and therefore l · ord(pi) = ord(pi+1). Thus, the pi, i ≥ i0, are
distinct.

Conversely, suppose Al∞(M) is infinite. Since each Ali(M) is finite, there
are infinitely many i’s with A∗li(M) = {p ∈ Ali(M) | ord(p) = li} nonempty.
It follows from l · ord(lp) = ord(p) that each of the finite sets A∗li(M) is
nonempty. The same formula implies that multiplication by l maps A∗li+1(M)
into A∗li(M). Hence, lim←−A

∗
li(M) is nonempty [FrJ, Lemma 1.2]. Each point

in the inverse limit is a nonzero point of Tl(A)(M).

Proposition 5.1 of [JaJ1] proves (C′) for every global field K and every
prime number l 6= char(K). Having proved Lemma 1.1 and Corollary 1.2,
the proof of [JaJ1, Prop. 5.1] basically works also for the remaining case
where l = char(K). Since it requires no extra effort, we state and prove the
result over global fields for all l.

Proposition 2.2. Every global field K satisfies condition (C′).

Proof. Let A and l be as in (C′). The field N = K(Al∞) is a normal
extension of K. Let L be the maximal separable subextension of N/K and
K ′ the fixed field in N of Aut(N/K). Then K ′ is a purely inseparable
extension of K, both L/K and N/K ′ are Galois extensions, and resL :
G(N/K ′)→ G(L/K) is an isomorphism.
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We have to prove that almost no σ ∈ G(N/K ′) fixes a nonzero element
of Tl(A) (Remark 2.1(c)). To this end let r be a nonnegative integer with
Tl(A) ∼= Zrl . Then the action of G(N/K ′) on Tl(A) defines an isomorphism
% of G(N/K ′) onto a closed subgroup G of GL(r,Zl). In particular G is an
l-adic Lie group.

Let S be the set of all σ ∈ G(N/K ′) that fix a nonzero element of Tl(A).
Then % maps S onto the set of all g ∈ G for which 1 is an eigenvalue. In
other words, %(S) = {g ∈ G | det(1 − g) = 0}. It follows that %(S) is an
analytic subset of G. As such, %(S) has a boundary of Haar measure zero
in G [Ser2, p. I-8, Exercise; alternatively, use Proposition 4.2]. We conclude
that S is a closed subset of G(N/K ′) with boundary of Haar measure zero.
In addition, S is invariant under conjugation by elements of G(N/K ′). It
follows that resL S is a G(L/K)-invariant closed subset of G(L/K) whose
boundary is of measure 0.

Assume µ(S) > 0. Then µ(resL S) > 0. By Corollary 1.2, almost all
primes of K are unramified in L. As K is global, “almost all” means “all
but finitely many”. Hence by a generalization of the Chebotarev density
theorem [Ser2, I-8, Cor. 2; alternatively, use Proposition 4.3], the set of all
primes p of K such that

(1) p is unramified in L and
(L/K

p

)
⊆ resL S

has a positive Dirichlet density. In particular, the set is infinite. Hence, by
Lemma 1.1, there exists p with the property (1) such that

(2) A has a good reduction at p, and

(3) the maps Aln(K)→ Aln(K̃), n = 1, 2, . . . are bijective.

Let σ ∈ G(L/K) be a Frobenius element over p and extend σ to an
element of Aut(N/K) (also denoted by σ) in the unique possible way. Then
σ ∈ S (by (1)) and therefore σ fixes infinitely many points of Al∞(K̃).
Reduction modulo p maps σ onto the Frobenius automorphism FrobK of
G(K). By (3), FrobK fixes infinitely many points of Al∞(K̃). Each of these
points is in Al∞(K). Hence K is an infinite field. But K, as a residue field of
a global field, must be finite. This contradiction proves that our assumption
is false. We conclude that µ(S) = 0.

Next we prove that the finiteness of Al∞(K̃(σ)) is preserved under
finitely generated extensions of K.

Lemma 2.3. Let G be a closed subgroup of GL(n,Zl). Then

(a) G is finitely generated (as a topological group);
(b) G has an open pro-l subgroup; and
(c) the Frattini subgroup, Φ(G), of G is open.
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Proof. (a) Indeed, the number of generators of G is bounded by a con-
stant which depends only on GL(n,Zl) (and not on G) [DSM, Thm. 5.2 and
the remark that follows the theorem].

(b) The subgroup Γ1 = {g ∈ GL(n,Zl) | g ≡ 1 mod l} of GL(n,Zl) is
an open pro-l group [DSM, p. 87]. Hence, Γ1 ∩G is an open pro-l subgroup
of G.

(c) Let L be an open pro-l subgroup of G. Replace L, if necessary, by the
intersection of its conjugates, to assume that L is normal in G. By (a), L is
finitely generated. Hence, by [FrJ, Lemma 20.36], Φ(L) is an open subgroup
of L. Since Φ(L) ⊆ Φ(G) [FrJ, Lemma 20.4(c)], Φ(G) is open in G.

Lemma 2.4. Let K0 be a countable separably Hilbertian field. Suppose
every finite extension of K0 satisfies Condition (C′). Then every function
field of one variable over K0 satisfies (C′).

Proof. Consider a function field of one variable K over K0, an abelian
variety A over K, and a prime number l. We have to prove that Al∞(K̃(σ))
is finite for almost all σ ∈ G(K).

Use Remark 2.1(a) to replace K0 by K0,ins and K by K ·K0,ins, if neces-
sary, to assume that K0 is perfect. Let N , L, and K ′ be as in the proof
of Proposition 2.2. Then G(L/K) ∼= G(N/L′) is isomorphic to a closed
subgroup of GL(r,Zl) for some nonnegative integer r. As such, the Frat-
tini subgroup of G(L/K) is open (Lemma 2.3). Let K1 be the fixed field
of Φ(G(L/K)) in L. Then K1 is a finite Galois extension of K. Choose a
separating transcendental element t for K/K0. Then K1/K0(t) is a finite
separable extension. Choose a primitive element z for K1/K0(t) and let
f(t,X) = irr(z,K0(t)) ∈ K0(t)[X]. As K0 is separably Hilbertian, there
exists a ∈ K0 such that f(a,X) ∈ K0[X] is irreducible. Choose a prime
divisor p of K/K0 such that t(p) = a. Using Lemma 1.1 and Corollary 1.2
and possibly avoiding finitely many elements of K0, we may assume that a
also satisfies the following conditions:

(4a) K1/K is a Galois extension and [K1 : K] = [K1 : K];
(4b) A has a good reduction at p;
(4c) reduction modulo p gives a bijection Al∞(K̃)→ Al∞(K̃0); and
(4d) p is unramified in L.

Extend p in the unique possible way to a prime divisor p′ of K ′. Then p′

is unramified in N . Let K ′1 = K1K
′. Since K0 is perfect, K ′ = K and

K ′1 = K1. Extend p′ to a prime divisor p′1 of K ′1 and extend p′1 to a prime
divisor P of N . Then G(N/K) is isomorphic to the decomposition group
D(P/p′). The latter is a subgroup of G(N/K ′). By (4a), resK′1 D(P/p′) =
D(p′1/p

′) ∼= G(K1/K) ∼= G(K ′1/K
′). Hence, resK′1 D(P/p′) = G(K ′1/K

′).
Since resK′1 : G(N/K ′) → G(K ′1/K

′) is a Frattini cover [FrJ, p. 299], this
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implies that D(P/p′) ∼= G(N/K ′). Thus, by (4c), reduction modulo p gives
an isomorphism of modules: (G(N/K ′), Al∞(K̃)) ∼= (G(N/K), Al∞(K̃0)).
By assumption, almost all σ ∈ G(N/K) fix only finitely many points in
Al∞(K̃0). We conclude from (4c) that almost all σ ∈ G(N/K ′) fix only
finitely many points of Al∞(K̃).

Proposition 2.5. Condition (C′) holds for every finitely generated
field K.

Proof. We proceed by induction on the absolute transcendence degree
r(K) of K. That is, r(K) = trans.deg(K/Fp) if char(K) = p > 0 and
r(K) = trans.deg(K/Q) + 1 if char(K) = 0.

If r(K) = 0, then K is finite and (C′) is taken care of by [JaJ1, Prop. 4.2].
If r(K) = 1, then K is a global field. Proposition 2.2 proves (C′) in this case.

Let therefore r ≥ 2. Suppose (C′) is true for all finitely generated fields
with absolute transcendence degree r−1. Consider a finitely generated field
K with r(K) = r. Then K is a function field of one variable over a Hilbertian
field K0 [FrJ, Corollary 12.8 and Theorem 12.10]. Since r(K0) = r(K)− 1,
(C′) holds for K0. Hence, by Lemma 2.4, (C′) holds for K.

Since there are only countably many l, it is possible to switch quantifiers
in Proposition 2.5.

Lemma 2.6. Let K be a countable field and e a positive integer. Suppose
every finite extension of K satisfies Condition (C′). Then, for almost all
σ ∈ G(K)e, for every abelian variety A over K̃(σ), and for each l the group
Al∞(K̃(σ)) is finite.

Proof. The proof naturally breaks up into two parts.

Part A: Condition (C′) for an arbitrary e. Let A be an abelian va-
riety over K and let l be a prime number. If σ1, . . . , σe ∈ G(K), then
Al∞(K̃(σ1, . . . , σe)) ⊆ Al∞(K̃(σ1)). Hence,

{σ1 ∈ G(K) | Al∞(K̃(σ1)) is finite} ×G(K)e−1

⊆ {σ ∈ G(K)e | Al∞(K̃(σ)) is finite}.
By assumption, the left hand side has measure 1. Hence, so does the right
hand side.

Part B: Switch of quantifiers. Let L be a finite extension of K, A an
abelian variety over L, and l a prime number. Define

S(L,A, l) = {σ ∈ G(L)e | Al∞(K̃(σ)) is finite}.
By Part (A) applied to L instead of to K, S(L,A, l) has measure 1 in G(L)e.
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Hence, since there are only countably many triples (L,A, l), the set

S = G(K)e r
⋃

L,A,l

[G(L)e r S(L,A, l)]

has measure 1 in G(K)e. If σ ∈ S, A is an abelian variety over K̃(σ), and l
is a prime number, then A is already defined over a finite extension L of K
which is contained in K̃(σ). Then σ ∈ S(L,A, l) and therefore Al∞(K̃(σ))
is finite, as desired.

The combination of Proposition 2.5 and Lemma 2.6 proves a stronger
version of Part (C) of the Geyer–Jarden Conjecture:

Theorem 2.7. Let K be a field which is finitely generated over its prime
field. Let e be a positive integer. Then, for almost all σ ∈ G(K)e, for
every abelian variety A over K̃(σ), and for every prime number l the group
Al∞(K̃(σ)) is finite.

3. Homotheties. In this section we give an alternative proof to Part
(C) of the Geyer–Jarden Conjecture in characteristic 0. This proof is based
on a theorem of Bogomolov–Serre. The same theorem is also the main in-
gredient in the proof of Part (B) of the conjecture in characteristic 0.

Consider a subgroup G of GL(n,Fl) or a closed subgroup G of GL(n,Zl).
We identify each η in F×l (resp. Z×l ) with the corresponding scalar ma-
trix of GL(n,Fl) (resp. GL(n,Zl)) and call it a homothety . This makes F×l
(resp. Z×l ) a subgroup of GL(n,Fl) (resp. GL(n,Zl)). Our main observation
is that if G contains a big chunk of the group of homotheties, then the prob-
ability that an element of G has eigenvalue 1 is small. Lemmas 3.1 and 3.2
below make this statement precise.

Lemma 3.1. Let G be a subgroup of GL(n,Fl), and let

E = {g ∈ G | 1 is an eigenvalue of g}.
Suppose that (F×l : F×l ∩G) ≤ c. Then |E| ≤ nc

l−1 |G|.

Proof. Let H = F×l ∩G. Consider the surjective map f : H × E → HE
given by f(η, e) = ηe. For each g ∈ HE list the elements of f−1(g) as
(η1, e1), . . . , (ηm, em). Then ηiei = g, i = 1, . . . ,m, the ηi are distinct and
each of them is an eigenvalue of g. Since an element of GL(n,Fl) may have
at most n eigenvalues, m ≤ n.

It follows that |H| · |E| ≤ n · |HE|. Since HE ⊆ G, this implies that

|E| ≤ n

|H| |G| =
n

l − 1
(F×l : H)|G| ≤ nc

l − 1
|G|,

as contended.
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We denote the normalized Haar measure of a profinite group G by µG.
In particular µG(G) = 1.

Lemma 3.2. Let G be a closed subgroup of GL(n,Zl) and let

E = {g ∈ G | 1 is an eigenvalue of g}.
Suppose the group H = Z×l ∩ G of all homotheties in G is infinite. Then
µG(E) = 0.

Proof. We prove that for each positive integer r and for all r-tuples
η1, . . . , ηr of distinct elements of H the measure of η1E ∩ . . .∩ ηrE is 0. The
case r = 1 and η1 = 1 will prove that µG(E) = 0.

Indeed, if r ≥ n + 1 and η1, . . . , ηr are distinct elements of H, then
η1, . . . , ηr are distinct eigenvalues of each element of η1E ∩ . . . ∩ ηrE. Since
an element of G has at most n eigenvalues, this implies that η1E ∩ . . .∩ηrE
is empty. In particular its measure is 0.

Suppose now that the above statement is true for r ≥ 2. We prove it for
r− 1. To this end consider r− 1 distinct elements η1, . . . , ηr−1 of H and let
D = η1E ∩ . . . ∩ ηr−1E. Since H is infinite, it has a subsequence ζ1, ζ2, . . .
such that ζk 6= ζjη1/ηi for k = 1, 2, . . . , i = 1, . . . , r−1, and j = 1, . . . , k−1.
It follows for k > j that ζjη1, ζkη1, ζkη2, . . . , ζkηr−1 are r distinct elements
of H. Hence, µG(ζjη1E ∩ ζkη1E ∩ ζkη2E ∩ . . .∩ ζkηr−1E) = 0. The inclusion

ζjD ∩ ζkD ⊆ ζjη1E ∩ ζkη1E ∩ ζkη2E ∩ . . . ∩ ζkηr−1E

then implies that µG(ζjD ∩ ζkD) = 0. Hence,

1 ≥ µG
( ∞⋃

j=1

ζjD
)

=
∞∑

j=1

µG(ζjD) =
∞∑

j=1

µG(D).

We conclude that µG(D) = 0, as contended.

Consider now an abelian variety A of dimension d over a field K. Let
l 6= char(K) be a prime number. The action of G(K) on the Al(K̃)
(resp. Tl(A)) defines (after choosing appropriate bases) representations %A,l :
G(K)→ GL(2d,Fl) (resp. %A,l∞ : G(K)→ GL(2d,Zl)) such that %A,l = πl◦
%A,l∞ , where πl : GL(2d,Zl) → GL(2d,Fl) is reduction modulo l. Let Gl =
%A,l(G(K)) and Gl∞ = %A,l∞(G(K)). Then Gl = πl(Gl∞). So, F×l ∩ Gl ⊇
πl(Z×l ∩Gl∞). It follows that

(1) (F×l : F×l ∩Gl) ≤ (Z×l : Z×l ∩Gl∞).

The homothety condition on a field K. For every abelian variety
A over K there exists a constant c such that for all l

(2a) (Z×l : Z×l ∩Gl∞) ≤ c.



Torsion of abelian varieties 25

Hence, by (1),

(2b) (F×l : F×l ∩Gl) ≤ c.
Proposition 3.3. Let K be a countable field which satisfies the homo-

thety condition. Then the following statements hold for every abelian variety
A over K:

(a) Al∞(K̃(σ)) is finite for each l 6= char(K) and for almost all σ ∈
G(K).

(b) If e ≥ 2, then for almost all σ ∈ G(K)e the set
⋃
lAl(K̃(σ)) is

finite.

Proof. Let A be an abelian variety over K of dimension d.
(a) By the homothety condition, Z×l ∩Gl∞ is an infinite group. Hence, by

Lemma 3.2, the set El∞ = {g ∈ Gl∞ | 1 is an eigenvalue of g} has measure 0
in Gl∞ . Let σ ∈ G(K). Then %A,l∞(σ) ∈ El∞ if and only if there exists p ∈
Tl(A) such that p 6= 0 and σp = p. Hence, by Remark 2.1(c), the set of all
σ ∈ G(K) such that Al∞(Ks(σ)) is infinite is %−1

A,l∞(El∞). So, it is of measure
0. We conclude that for almost all σ ∈ G(K) the group Al∞(Ks(σ)) is finite.
Since l 6= char(K), Al∞(K̃(σ)) coincides with Al∞(Ks(σ)) (Remark 2.1(b)).
So, it is finite.

(b) Suppose now e ≥ 2. Let

El = {g ∈ Gl | 1 is an eigenvalue of g},
Se,l = {σ ∈ G(K)e | ∃a ∈ Al(Ks(σ)) : a 6= 0 and σia = a, i = 1, . . . , e}.

Then Se,l ⊆ %−1
A,l(El)

e. By (2b), (F×l : F×l ∩ Gl) ≤ c and therefore, by Lem-
ma 3.1, |El| ≤ 2dc

l−1 |Gl| for all l 6= char(K). Hence

µG(K)(Se,l) ≤ µGl(El)e ≤
(

2dc
l − 1

)e
.

Since e ≥ 2,
∑

l

µG(K)(Se,l) ≤
∑

l

(2dc)e

(l − 1)e
<∞.

Hence, by Borel–Cantelli [FrJ, Lemma 16.7], almost all σ ∈ G(K)e belong to
only finitely many Se,l. Thus, for almost all σ ∈ G(K)e the set

⋃
lAl(Ks(σ))

is finite. We conclude from Remark 2.1(b) that
⋃
lAl(K̃(σ)) is finite.

Lemma 3.4. Suppose every finite extension of a field K0 satisfies the
homothety condition. Then so does every finitely generated extension of K0.

Proof. Induction on the transcendence degree shows it suffices to con-
sider a finitely generated extension K of K0 of transcendence degree 1
and an abelian variety A over K, and to find c > 0 such that we have
(Z×l : Z×l ∩ %A,l∞(G(K))) ≤ c for all primes l.
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Indeed, replace K0 by its relative algebraic closure in K, if necessary, to
assume that K0 is algebraically closed in K. Choose a prime divisor p of
K/K0 at which A has good reduction. (This holds for almost all p.) Then,
for each l 6= char(K0), the inertia groups over p in K(Al∞) are trivial [SeT,
Thm. 1(b)]. Hence, the reduction map Al∞(K̃)→ Al∞(K̃0) is bijective and
%A,l∞(G(K)) ∼= G(K(Al∞)/K) embeds into %A,l∞(G(K)) ∼= G(K(Al∞)/K).
Hence Z×l ∩%A,l∞(G(K)) ⊆ Z×l ∩%A,l∞(G(K)). Since K is a finite extension
of K0, there exists c > 0 independent of l with (Z×l : Z×l ∩%A,l∞(G(K))) ≤ c
(the homothety condition). It follows that (Z×l : Z×l ∩ %A,l∞(G(K))) ≤ c for
all l 6= char(K).

Condition (B′) on a field K. Let e ≥ 2 be an integer and A an
abelian variety over K. Then

⋃
lAl(Ks(σ)) is finite for almost all σ ∈

G(K)e.

Lemma 3.5. Let K be a countable field and e ≥ 2. Suppose every finite
extension of K satisfies Condition (B′). Then for almost all σ ∈ G(K)e

and for each abelian variety A over K̃(σ) the set
⋃
lAl(K̃(σ)) is finite.

Proof. Let L be a finite extension of K and A an abelian variety over L.
Consider the set

S(L,A) =
{
σ ∈ G(L)e

∣∣∣
⋃

l

Al(L̃(σ)) is finite
}
.

By (B′) and Remark 2.1(b), S(L,A) has measure 1 in G(L)e. Hence, since
there are only countably many pairs (L,A), the set

S = G(K)e r
⋃

L,A

[G(L)e r S(L,A)]

has measure 1 in G(K)e. Here we have identified G(L) with G(Ks ∩L) and
S(L,A) with its restriction to Ks. If σ ∈ S and if A is an abelian variety
over K̃(σ), then A is already defined over a finite extension L of K which is
contained in K̃(σ). Then σ ∈ S(L,A) and therefore

⋃
lAl(L̃(σ)) is finite.

But L̃(σ) = K̃(σ). We conclude that
⋃
lAl(K̃(σ)) is finite.

Lemma 3.6. Let B be an abelian group. For each positive integer n let
Bn = {b ∈ B | nb = 0}. Suppose

⋃
lBl is a finite set and Bl∞ =

⋃∞
i=1 Bli is

a finite group for each l. Then Btor is finite.

Proof. By assumption, there exists l0 with Bl = 0 for all l ≥ l0. Hence,
Bli = 0 for all l ≥ l0 and all i. So, Btor =

⊕
l<l0

Bl∞ is finite.

We are now ready to prove our second main result.

Theorem 3.7. Let K be a finitely generated extension of Q and e a pos-
itive integer. Then the following statements hold for almost all σ ∈ G(K)e
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and for each abelian variety A over K̃(σ):

(a) The group Al∞(K̃(σ)) is finite for each prime number l.
(b) If e ≥ 2, then Ator(K̃(σ)) is finite.

Proof. A theorem of Bogomolov–Serre [Ser1, Thm. 2, or Ser4, p. 92,
Thm. 2] confirms the homothety condition for number fields. Hence, by
Lemma 3.4, the homothety condition holds for every finitely generated ex-
tension K of Q. So, by Proposition 3.3, every finitely generated extension K
of Q satisfies Conditions (B′) and (C′). It follows from Lemmas 3.5 and 2.6
that for almost all σ ∈ G(K)e and for every abelian variety A over K̃(σ)
the following statements are true:

(3a) For each l the group Al∞(K̃(σ)) is finite.
(3a) If e ≥ 2, then

⋃
lAl(K̃(σ)) is finite.

We conclude from Lemma 3.6 that if e ≥ 2, then Ator(K̃(σ)) is finite.

Remark 3.8. The Geyer–Jarden Conjecture implies the Corollary to the
Geyer–Jarden Conjecture. Let K be a finitely generated field and e a posi-
tive integer. The Conjecture implies Condition (C′) for each finite extension
L of K. Hence, by Lemma 2.6,

(4) for almost all σ ∈ G(K)e, for every abelian variety A over K̃(σ) and
for each l the group Al∞(K̃(σ)) is finite.

For e ≥ 2 the Conjecture implies Condition (B′) for every finite extension
L of K. Hence, by Lemma 3.5,

(5) for almost all σ ∈ G(K)e and for every abelian variety A over K̃(σ)
the set

⋃
lAl(K̃(σ)) is finite.

We conclude from (4), (5), and Lemma 3.6 that for e ≥ 2, for almost all
σ ∈ G(K)e and for every abelian variety A over K̃(σ) the group Ator(K̃(σ))
is finite. This is (II) of the Corollary to the Geyer–Jarden Conjecture.

Next we prove (I) of the Corollary. For each finite extension L of K
and each abelian variety A over L the Conjecture and Remark 3.3 imply
that T (L,A) =

{
σ ∈ G(L)

∣∣ ⋃
lAl(L̃(σ)) is infinite} has measure 1 in G(L).

Hence
T = G(K)r

⋃

L,A

[G(L)r T (L,A)]

has measure 1 inG(K). For each σ ∈ T and each abelian variety A over K̃(σ)
the set

⋃
lAl(K̃(σ)) is infinite. Hence, Ator(K̃(σ)) is infinite, as desired.

4. Appendix: Generalization of the Chebotarev density the-
orem. We solve a special case of an exercise that appears on page I-8



28 M. Jacobson and M. Jarden

of [Ser2]. In this exercise we consider an l-adically closed subgroup G of
GL(n,Zl) and a Zariski-closed subset V of Mn which is defined over Ql.
Here Mn is the variety of all n × n matrices. The group G is compact and
has a normalized Haar measure µ. Let ∂(V (Zl) ∩ G) be the boundary of
V (Zl) ∩G. We prove that µ(∂(V (Zl) ∩G)) = 0.

Lemma 4.1. Let W be a Zariski-closed subset of Mn which is defined
over Ql. Suppose that for each n ∈ N and for all g1, . . . ,gn,h1, . . . ,hn ∈ G,

(1) G 6=
n⋃

i=1

gi(W (Zl) ∩G)hi.

Then

(2) µ(W (Zl) ∩G) = 0.

Proof. We prove the lemma by induction on dim(W ). Note that the
assumption of the lemma holds for each Zariski-closed subset of W which is
defined over Ql. If (2) holds for each Ql-irreducible component of W , then
it also holds for W . We may therefore assume W is Ql-irreducible.

If W (Zl) ∩ G is empty, then (2) is certainly true. Otherwise we choose
w ∈ W (Zl) ∩ G. Then we choose by induction pi ∈ G, i = 1, 2, . . . , with
piW 6= pjW if i < j. Indeed, suppose that we have already chosen
p1, . . . ,pn. By (1), we may choose pn+1 ∈ Gr

⋃n
i=1 pi(W (Zl)∩G)w−1. In

particular for each i, there exists no w′ ∈ W (Zl) ∩ G with pn+1w = piw′.
So, piW 6= pn+1W for i = 1, . . . , n.

Let i < j. If g1, . . . ,gr,h1, . . . ,hr are points in G, then

(3)
r⋃

k=1

gk((piW ∩ pjW )(Zl) ∩G)hk ⊆
r⋃

k=1

gkpi(W (Zl) ∩G)hk.

Hence, by (1), G is not equal to the left hand side of (3). Since W is Ql-
irreducible, so is piW . Hence, by the dimension theorem, dim(piW∩pjW ) <
dim(W ). By the induction hypothesis,

µ((piW ∩ pjW )(Zl) ∩G) = 0.

Hence,
µ(pi(W (Zl) ∩G) ∩ pj(W (Zl) ∩G)) = 0.

If µ(W (Zl) ∩G) > 0, then

µ
( ∞⋃

i=1

pi(W (Zl) ∩G)
)

=∞,

which is false. We conclude that (2) is true.

Proposition 4.2. The boundary of V (Zl) ∩G has measure 0 in G.
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Proof. We prove the proposition by induction on dim(V ). By the
decomposition-intersection procedure [FrJ, §19.1] there exist absolutely irre-
ducible subvarieties V1, . . . , Vm of V which are defined over Ql with V (Ql) =⋃m
i=1 Vi(Ql). We may therefore assume V is absolutely irreducible.

Let Vsimp (resp. Vsing) be the Zariski-open (resp. Zariski-closed) sub-
set of V of all simple (resp. singular) points. By the density theorem
[GeJ, Prop. 8.2], each p ∈ Vsimp(Zl)∩G has an open l-adic neighborhood U
in Vsimp(Zl). Hence, U ∩G is an open l-adic neighborhood of p in V (Zl)∩G.
It follows that

(4) ∂(V (Zl) ∩G) ⊆ Vsing(Zl) ∩G.
Denote Vsing by W and observe that dim(W ) < dim(V ).

Suppose first that there exist g1, . . . ,gn,h1, . . . ,hn ∈ G such that

(5) G =
n⋃

i=1

gi(W (Zl) ∩G)hi.

Then

(6) V (Zl) ∩G =
( n⋃

i=1

V ∩ giWhi
)

(Zl) ∩G.

Since dim(
⋃n
i=1 V ∩ giWhi) < dim(V ), an induction hypothesis implies

that the boundary of the right hand side of (6) has measure 0 in G. Hence,
µ(∂(V (Zl) ∩G)) = 0.

If there exist no g1, . . . ,gn,h1, . . . ,hn ∈ G such that (5) holds, then by
Lemma 4.1, µ(W (Zl) ∩G) = 0. Hence, by (4), µ(∂(V (Zl) ∩G)) = 0.

So, µ(∂(V (Zl) ∩G)) is 0 in each case.

Let C be a subset of a group G. We call C a conjugation domain of G if
Cg = C for each g ∈ G.

The conclusion of Proposition 4.2 enters sometimes as an assumption of
the following result.

Proposition 4.3 (The Chebotarev density theorem for infinite exten-
sions). Let N be a Galois extension of a global field K, G = G(N/K), and
µ the normalized Haar measure of G. Suppose almost all prime divisors of
K are unramified in N . Denote by P the set of all nonarchimedean prime
divisors of K which are unramified in N . Let δ be the Dirichlet density
function on P . Consider a conjugacy domain C of G whose boundary has
measure 0 in G. Let C =

{
p ∈ P |

(N/K
p

)
⊆ C

}
. Then δ(C) = µ(C).

Proof. Let C (resp. C0) be the closure (resp. interior) of C. Then both C
and C0 are measurable sets, C0 ⊆ C ⊆ C, and

(7) ∂(C) = C r C0.

Hence, C is measurable and µ(C0) = µ(C) = µ(C).



30 M. Jacobson and M. Jarden

Choose a sequence L1 ⊆ L2 ⊆ . . . of finite Galois extensions of K such
that

⋃∞
i=1 Li = N . For each i let Ci = Res−1

Li
(ResLi C) and

Ci =
{

p ∈ P
∣∣∣∣
(
Li/K

p

)
⊆ ResLi C

}
.

Then ResLi(C) is a conjugacy domain in G(Li/K), C ⊆ Ci, and C ⊆ Ci. By
the Chebotarev density theorem for finite Galois extensions [FrJ, Thm. 5.6],

(8) δ(Ci) =
|ResLi(C)|

[Li : K]
= µ(Ci).

Since Ci is closed (and open), we have C ⊆ C ⊆ . . . ⊆ C3 ⊆ C2 ⊆ C1 and
C =

⋂∞
i=1 Ci. Hence, by (8) and (7),

(9) lim
i→∞

δ(Ci) = µ(C).

Next let D = G r C and D =
{
p ∈ P

∣∣ (N/K
p

)
⊆ D

}
. Then D = P r C.

Observe that D = G r C0 and D0 = G r C. Hence, µ(D0) = µ(D) = µ(D).
For each i let Di = Res−1

Li
(ResLi D) and Di =

{
p ∈ P

∣∣ (Li/K
p

)
⊆ ResLi D

}
.

Replace C by D and C by D in the arguments above to conclude that D ⊆ Di

and µ(D) = limi→∞ δ(Di). Thus,

(10) P rDi ⊆ C and µ(C) = lim
i→∞

δ(P rDi).

It follows from (9) and (10) that for every ε > 0 there is i0 such that for
all i ≥ i0 we have

P rDi ⊆ C ⊆ Ci, δ(P rDi) ≥ µ(C)− ε, δ(Ci) ≤ µ(C) + ε.

This implies that C has Dirichlet density which is equal to µ(C).
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