Units and norm residue symbol

by

BRUNO ANGLÈS (Caen)

Let p be an odd prime number, $p \geq 5$. Let ζ_p be a primitive pth root of unity and consider the following equation:

\[(*) \quad a, b \in \mathbb{Z}, \ ab \neq 0, \ \gcd(a, b) = 1, \ (a - b\zeta_p)\mathbb{Z}[\zeta_p] = I^p, \ I \text{ ideal of } \mathbb{Z}[\zeta_p].\]

Then one can show that the ABC conjecture implies that the above equation has a finite number of solutions, and, if p is large enough, $(*)$ has only the trivial solutions, i.e. $a = 1, \ b = -1,$ and $a = -1, \ b = 1$.

When studying the first case of $(*)$ (i.e. $ab(a + b) \not\equiv 0 \pmod{p}$), G. Terjanian was led to conjecture that the Kummer system of congruences has only the trivial solutions (see [8] and Section 5). In this paper we prove that Eichler’s Theorem applies to Terjanian’s conjecture (Corollary 5.5). More precisely, we prove that if $i(p) < \sqrt{p} - 2$ then Terjanian’s conjecture is true for the prime p, where $i(p)$ is the index of irregularity of p.

Let F be a real subfield of $\mathbb{Q}(\zeta_p)$ and let E_F be the group of units of F. Our aim is to study the Kummer subgroup of E_F:

$$E_F^{\text{Kum}} = \{ \varepsilon \in E_F : \exists a \in \mathbb{Z}, \ \varepsilon \equiv a \pmod{p} \}.$$

We show that there exists a duality between E_F/E_F^{Kum} and the orthogonal of E_F for the norm residue symbol (see Theorem 4.4). A natural problem arises: do we have an equivalence in Kummer’s Lemma (see Section 3)? We show that this question is connected to a class number congruence obtained by T. Metsänkylä (see [4] and Section 6). In particular, we are led to investigate the orthogonal of the group of units of $\mathbb{Q}(\zeta_p)$ for the norm residue symbol and, thus, this leads us to Terjanian’s conjecture.

Finally, we would like to mention the following question which we call the “weak Kummer–Vandiver conjecture”: let E be the group of units of $\mathbb{Q}(\zeta_p)$ and let C be the group of cyclotomic units of $\mathbb{Q}(\zeta_p)$; do we have $E^\perp = C^\perp$ (see Section 4)?

2000 Mathematics Subject Classification: 11R18, 11S31.
1. Notations. Let p be an odd prime number. Let \mathbb{Z}_p be the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers, and \mathbb{C}_p a completion of an algebraic closure of \mathbb{Q}_p. All the finite extensions of \mathbb{Q}_p considered in this paper are contained in \mathbb{C}_p.

Let L/\mathbb{Q}_p be a finite extension. We set:

- O_L — the integral closure of \mathbb{Z}_p in L,
- \mathfrak{p}_L — the maximal ideal of O_L,
- v_L — the normalized discrete valuation on L associated with \mathfrak{p}_L,
- U_L — the group of units of O_L and for $n \geq 1$, $U_L^{(n)} = 1 + \mathfrak{p}_L^n$.

Let L/\mathbb{Q}_p be a finite extension and let L'/L be a finite abelian extension. We denote the local Artin map associated with L'/L by $(\cdot, L'/L)$.

Let ζ_p be a fixed primitive pth root of unity in \mathbb{C}_p. We set $\lambda_p = \zeta_p - 1$ and $K = \mathbb{Q}_p(\zeta_p)$. For $\alpha, \beta \in K^*$, we define the norm residue symbol (α, β) as follows:

$$(\alpha, \beta) = \frac{(\beta, K(\gamma)/K)(\gamma)}{\gamma},$$

where $\gamma \in \mathbb{C}_p$ is such that $\gamma^p = \alpha$.

Let $G = \text{Gal}(K/\mathbb{Q}_p)$. For $a \in \mathbb{Z} \setminus p\mathbb{Z}$ we define σ_a to be the element of G such that $\sigma_a(\zeta_p) = \zeta_p^a$. Recall that we have an isomorphism of groups $(\mathbb{Z}/p\mathbb{Z})^* \rightarrow G$, $\overline{a} \mapsto \sigma_a$. Let \widehat{G} be the set of group homomorphisms between G and \mathbb{Z}_p^*. The Teichmüller character ω is the element $\omega \in \widehat{G}$ such that

$$\omega(\sigma_a) \equiv a \pmod{p}.$$

Recall that \widehat{G} is a cyclic group and that ω is a generator of \widehat{G}.

We view \mathbb{Q} as contained in \mathbb{Q}_p. Let F/\mathbb{Q} be a finite extension, $F \subset \mathbb{C}_p$.

We set:

- $\hat{F} = F\mathbb{Q}_p$,
- O_F — the ring of integers of F,
- E_F — the group of units of O_F,
- $\mathfrak{p}_F = \mathfrak{p}_F \cap O_F$,
- h_F — the class number of F.

If A is a commutative unitary ring, we denote the set of invertible elements of A by A^*. Let $n \geq 1$ be an integer. We denote the group of nth roots of unity in \mathbb{C}_p by μ_n.

2. Some results from Lubin–Tate theory. First, we recall some basic facts from Lubin–Tate theory (see [3], Chapter 8). We consider the following two elements in $\mathbb{Z}_p[[X]]$:

$$T_0(X) = (1 + X)^p - 1 \quad \text{and} \quad L(X) = X^p + pX.$$
Then T and L are Lubin–Tate polynomials. Thus there exist two formal groups $F_T = \mathbb{G}_m$ and F_L in $\mathbb{Z}_p[[X,Y]]$ such that

$$T \circ F_T = F_T \circ T \quad \text{and} \quad L \circ F_L = F_L \circ L.$$

We have two ring homomorphisms: $\mathbb{Z}_p \to \text{End}_{\mathbb{Z}_p} \mathbb{G}_m$, $a \mapsto [a]_T = (1+X)^a - 1$ and $\mathbb{Z}_p \to \text{End}_{\mathbb{Z}_p} F_L$, $a \mapsto [a]_L$. Note that

- $\forall a \in \mathbb{Z}_p$, $[a]_T \equiv [a]_L \equiv aX \pmod{\text{deg 2}}$,
- $F_T(X,Y) = (1+X)(1+Y) - 1$, $F_L(X,Y) \equiv X + Y \pmod{\text{deg } p}$,
- $\forall a \in \mathbb{Z}_p$, $[a]_L \equiv aX \pmod{\text{deg } p}$, $\forall \varepsilon \in \mu_{p-1}$, $[\varepsilon]_L = \varepsilon X$.

We set

$$\log_T(X) = \lim_{n \geq 1} \frac{1}{p^n} [p^n]_T \in \mathbb{Q}_p[[X]],$$

$$\log_L(X) = \lim_{n \geq 1} \frac{1}{p^n} [p^n]_L \in \mathbb{Q}_p[[X]].$$

Note that

$$\log_T(X) = \sum_{n \geq 1} (-1)^{n+1} \frac{X^n}{n} \quad \text{and} \quad \log_L(X) \equiv X \pmod{\text{deg } p}.$$

We denote the inverses of \log_T and \log_L by \exp_T and \exp_L respectively. We set $f_p(X) = \exp_T \circ \log_L$ and $g_p(X) = \exp_L \circ \log_T$. Then f_p and g_p are elements of $\mathbb{Z}_p[[X]]$ and we have:

- $f_p(X) \equiv g_p(X) \equiv X \pmod{\text{deg } 2}$,
- $\forall a \in \mathbb{Z}_p$, $f_p \circ [a]_L = [a]_T \circ f_p$ and $g_p \circ [a]_T = [a]_L \circ g_p$,
- $f_p \circ F_L = F_T \circ f_p$ and $g_p \circ F_T = F_L \circ g_p$,
- $f_p \circ g_p = g_p \circ f_p = X$.

Let v_p be the p-adic valuation on \mathbb{C}_p such that $v_p(p) = 1$. Set $D = \{ \alpha \in \mathbb{C}_p : v_p(\alpha) > 0 \}$. Then T induces a new structure of \mathbb{Z}_p-module for D and we denote this \mathbb{Z}_p-module by D_T; the same holds for L and we denote D equipped with the structure of \mathbb{Z}_p-module induced by L by D_L. We have an isomorphism of \mathbb{Z}_p-modules $D_T \to D_L$, $\alpha \mapsto g_p(\alpha)$. Set $\Lambda_T = \{ \alpha \in \mathbb{C}_p : [p]_T(\alpha) = 0 \}$ and $\Lambda_L = \{ \alpha \in \mathbb{C}_p : [p]_L(\alpha) = 0 \}$. Then Λ_T is a \mathbb{Z}_p-submodule of D_T and Λ_L is a \mathbb{Z}_p-submodule of D_L. Note that g_p induces an isomorphism of the \mathbb{Z}_p-modules Λ_T and Λ_L. We have $\lambda_p \in \Lambda_T$. We set

$$\lambda_L = g_p(\lambda_p).$$

Note that $\lambda_L^{p-1} = -p$ and $K = \mathbb{Q}_p(\lambda_p)$ = $\mathbb{Q}_p(\lambda_L)$.

Lemma 2.1. We have

$$g_p(X) \equiv \sum_{n=1}^{p-1} (-1)^{n+1} \frac{X^n}{n} \pmod{X^p \mathbb{Z}_p[[X]]},$$

Units and norm residue symbol
\[f_p(X) \equiv \sum_{n=1}^{p-1} \frac{X^n}{n!} \pmod{X^p \mathbb{Z}_p[[X]]}. \]

Proof. This comes from the fact that \(\exp_L(X) \equiv \log_L(X) \equiv X \pmod{\deg p} \). ■

Corollary 2.2.

(i) \(\lambda_L \equiv \sum_{n=1}^{p-1} (-1)^{n+1} \frac{n^n}{n} \pmod{\mathfrak{p}_K^p} \);

(ii) \(\lambda_p \equiv \sum_{n=1}^{p-1} \frac{n^n}{n!} \pmod{\mathfrak{p}_K^p} \).

Lemma 2.3. Let \(G \).

(i) \(\sigma(\lambda_p) = [\omega(\sigma)]_T(\lambda_p) \);

(ii) \(\sigma(\lambda_L) = \omega(\sigma)\lambda_L \).

Proof. The first assertion is obvious. We have

\[\sigma(\lambda_L) = \sigma(g_p(\lambda_p)) = g_p(\sigma(\lambda_p)). \]

Thus \(\sigma(\lambda_L) = g_p([\omega(\sigma)]_T(\lambda_p)) = [\omega(\sigma)]_L(g_p(\lambda_p)) = \omega(\sigma)\lambda_L \). ■

Let \(k \) be an integer, \(1 \leq k \leq p - 1 \). We set

\[\eta_k = \sum_{i=1}^{p-1} (i!)^{k-1} \tau (\omega^{-i})^k, \]

where, for \(i = 1, \ldots, p - 1 \),

\[\tau (\omega^{-i}) = -\sum_{\sigma \in G} \omega(\sigma)^{-i} \sigma(\lambda_p) \in \mathfrak{p}_K. \]

Note that \(\eta_1 = (1 - p)\lambda_p \).

Proposition 2.4. Let \(k \) be an integer, \(1 \leq k \leq p - 1 \).

(i) \(\eta_k \equiv f_p(\lambda_L^k) \pmod{\mathfrak{p}_K^p} \);

(ii) \(\lambda_L^k \equiv g_p(\eta_k) \pmod{\mathfrak{p}_K^p} \);

(iii) \(\forall \sigma \in G, \ \sigma(1 + \eta_k) \equiv (1 + \eta_k)\omega(\sigma)^k \pmod{\mathfrak{p}_K^p} \).

Proof. Let \(\sigma \in G \). We have

\[\sigma(\lambda_p) \equiv \sum_{n=1}^{p-1} \omega(\sigma)^n \frac{\lambda_L^n}{n!} \pmod{\mathfrak{p}_K^p}. \]

Thus

\[\tau (\omega^{-i}) \equiv \frac{\lambda_L^i}{i!} \pmod{\mathfrak{p}_K^p}. \]

Therefore we have (i) and (ii). Now, let \(\sigma \in G \). Then
\[\sigma(\eta_k) \equiv f_p(\omega(\sigma)^k \lambda_L^k) \equiv [\omega(\sigma)^k]_T(f_p(\lambda_L^k)) \equiv (1 + \eta_k)\omega(\sigma)^k - 1 \pmod{p^K}. \]

Thus we have (iii).

Now, we recall the definition of the Kummer homomorphisms (see [3], Chapter 7). Let \(u \in U_K \) and write \(u = h(\lambda_L) \) for some \(h(X) \in \mathbb{Z}_p[[X]] \). Then \(h'(\lambda_L)/u \) is well defined modulo \(p^{p-2}_K \) and we can write

\[\frac{h'(\lambda_L)}{u} \equiv \sum_{k=1}^{p-2} \varphi_k(u)\lambda_L^{k-1} \pmod{p^{p-2}_K}, \]

where \(\varphi_k(u) \) is in \(\mathbb{Z}_p \) modulo \(p\mathbb{Z}_p \) for \(k = 1, \ldots, p - 2 \). The map \(\varphi_k \) is called the Kummer homomorphism of degree \(k \).

We have the following basic properties:

- \(\varphi_k : U_K \to \mathbb{F}_p \) is a surjective group homomorphism and \(\mu_{p-1} U^{(k+1)}_K \subset \ker \varphi_k \);
- \(\forall \sigma \in G, \forall u \in U_K, \varphi_k(\sigma(u)) \equiv \varphi_k(u) (\text{mod } p) \);
- \(\forall u \in U^{(1)}_K, \forall a \in \mathbb{Z}_p, \varphi_k(u^a) \equiv a\varphi_k(u) (\text{mod } p) \);
- \(\bigcap_{1 \leq k \leq p-2} \ker \varphi_k \equiv \mu_{p-1} U^{(p-1)}_K \).

We calculate the values of these homomorphisms for some remarkable elements.

Proposition 2.5.

(i) \(\varphi_1(\zeta_p) = 1 \) and for \(k \geq 2 \), \(\varphi_k(\zeta_p) = 0 \);
(ii) \(\varphi_k(\lambda_{p}/\lambda_L) = (-1)^{k}B_{k}/k! \), where \(B_{k} \) is the \(k \)th Bernoulli number;
(iii) let \(\sigma \in G \), \(\varphi_k(\sigma(\lambda_{p})/\lambda_p) = (-1)^{k}(\omega(\sigma)^k - 1)B_{k}/k! \);
(iv) \(\varphi_k(1 + \eta_i) = 0 \) if \(k \neq i \) and \(\varphi_k(1 + \eta_k) = k \);
(v) let \(a \in \mathbb{Z}, a \neq 1 \pmod{p} \), \(\varphi_{1}(a - \zeta_p) = -1/(a - 1) \) and for \(k \geq 2 \),

\[\varphi_{k}(a - \zeta_p) = \frac{(-1)^{k-1}}{(k-1)!(a-1)}M_k(a), \]

where \(M_k(X) = \sum_{i=1}^{p-1} i^{k-1}X^i \) is the \(k \)th Mirimanoff polynomial.

Proof. (i) Write \(h(X) = \sum_{n=0}^{p-2} X^n/n! \). Then \(\zeta_p \equiv h(\lambda_L) \pmod{p^K} \). Thus \(\varphi_k(\zeta_p) = \varphi_k(h(\lambda_L)) \). But

\[\frac{h'(\lambda_L)}{h(\lambda_L)} \equiv \zeta_p^{-1}h'(\lambda_L) \equiv \left(\sum_{n=0}^{p-3} (-1)^{n} \frac{\lambda_{p}^{n}}{n!} \right) \left(\sum_{n=0}^{p-3} \frac{\lambda_{L}^{n}}{n!} \right) \equiv 1 \pmod{p^{p-2}_K}. \]

(ii) Put \(h(X) = f_p(X)/X \). Then \(\lambda_{p}/\lambda_L = h(\lambda_L) \). One can show that

\[\frac{h'(X)}{h(X)} \equiv B_1 + 1 + \sum_{k \geq 2} \frac{B_{k}}{k!}X^{k-1} \pmod{\deg p - 2}. \]

The result follows.
(iii) Let \(\sigma \in G \). We have
\[
\varphi_k \left(\frac{\sigma(\lambda_p)}{\lambda_p} \right) = \varphi_k \left(\sigma \left(\frac{\lambda_p}{\lambda_L} \right) \right) + \varphi_k \left(\frac{\sigma(\lambda L)}{\lambda_p} \right) = (\omega(\sigma)^k - 1) \varphi_k \left(\frac{\lambda_p}{\lambda_L} \right).
\]

(iv) Set \(h(X) = f_p(X^k) + 1 \). We have \(1 + \eta_k \equiv h(\lambda_L) \mod p_K^p \). Therefore \(\varphi_i(1 + \eta_k) = \varphi_i(h(\lambda_L)) \). But
\[
\frac{h'(X)}{h(X)} \equiv kX^{k-1} \mod \deg p - 2,
\]
and the result follows.

(v) We have
\[
a - \zeta_p \equiv a - 1 - \lambda_L \mod p_K^2.
\]
Therefore
\[
\varphi_1(a - \zeta_p) = \varphi_1(a - 1 - \lambda_L) = \frac{-1}{a - 1}.
\]
If \(a \equiv 0 \mod p \), then for \(k \geq 2 \), we have \(\varphi_k(a - \zeta_p) = 0 \). Now, we suppose that \(a \not\equiv 0 \mod p \). We have
\[
D^k \log(a - \exp(X))_{X=0} \equiv (k - 1)! \varphi_k(a - \zeta_p) \mod p.
\]
But, by [5], Chapter VIII,
\[
D^k \log(a - \exp(X))_{X=0} \equiv \frac{(-1)^{p-k}}{a - 1} M_k(a) \mod p.
\]
The result follows. ■

We recall some basic facts about \(\mathbb{F}_p[G] \)-modules. For \(\chi \in \hat{G} \), we write
\[
e_\chi = \frac{1}{p-1} \sum_{\sigma \in G} \chi(\sigma)\sigma^{-1} \mod p.
\]

We have
\begin{itemize}
 \item \(e_\chi^2 = e_\chi \);
 \item \(e_\chi e_\psi = 0 \) if \(\chi \neq \psi \);
 \item \(1 = \sum_{\chi \in \hat{G}} e_\chi \);
 \item \(\forall \sigma \in G, \; \sigma e_\chi = \chi(\sigma)e_\chi \).
\end{itemize}
Let \(A \) be an \(\mathbb{F}_p[G] \)-module. For \(1 \leq i \leq p-1 \), we set
\[
A(i) = e_{\omega^i}A = \{ a \in A : \forall \sigma \in G, \; \sigma(a) = \omega(\sigma)^i a \}.
\]
We have
\[
A = \bigoplus_{i=1}^{p-1} A(i).
\]
We set
\[
\mathcal{U} = U_K \mu_{p-1} U_K^{(p)}.
\]
It is clear that \mathcal{U} is a finite $\mathbb{F}_p[G]$-module and that, for $1 \leq i \leq p - 1$, $\mathcal{U}(i)$ is an \mathbb{F}_p-vector space of dimension 1. More precisely, let $u \in \mathcal{U}$; then $e_{\omega^i}u$ generates $\mathcal{U}(i)$ if and only if

- $\varphi_i(u) \neq 0$ if $1 \leq i \leq p - 2$;
- $N_{K/\mathbb{Q}_p}(u) \not\equiv 1 \pmod{p^2}$ for $i = p - 1$.

In particular, for $1 \leq k \leq p - 1$, $1 + \eta_k \in \mathcal{U}(k)$ and $1 + \eta_k$ generates $\mathcal{U}(k)$.

Proposition 2.6. Let $u \in U_K$. Then

$$\text{Log}_p(u) \equiv \frac{N_{K/\mathbb{Q}_p}(u) - 1}{p} \lambda_{L}^{p-1} + \sum_{k=2}^{p-2} \frac{1}{k} \varphi_k(u)\lambda_L^k \pmod{p^p},$$

where Log_p is the usual p-adic logarithm on \mathbb{C}_p^*.

Proof. Note that we can suppose $u \in U_K^{(1)}$. We have $\text{Log}_p(u) \in \mathfrak{p}_K$ and, if $u \in U_K^{(p)}$, $\text{Log}_p(u) \in \mathfrak{p}_K^p$. Therefore, Log_p induces a group homomorphism between \mathcal{U} and \mathfrak{p}_K^p. Note that, for $k \geq 2$,

$$\text{Log}_p(1 + \eta_k) \equiv g_p(\eta_k) \equiv \lambda_L^k \pmod{p^p}$$

and

$$\text{Log}_p(1 + \eta_1) \equiv \text{Log}_p(\zeta_p) \equiv 0 \pmod{p^p}.$$

Let $u \in U_K^{(2)}$. We have

$$u \equiv \prod_{k=2}^{p-1} (1 + \eta_k)^{a_k} \pmod{U_K^{(p)}},$$

where $a_k \in \mathbb{F}_p$. Thus

$$\text{Log}_p(u) \equiv \sum_{k=2}^{p-1} a_k \lambda_{L}^k \equiv \sum_{k=2}^{p-2} \frac{1}{k} \varphi_k(u)\lambda_L^k + a_{p-1} \lambda_{L}^{p-1} \pmod{p^p}.$$
For $k \geq 2$,

$$\varphi_k(u(1 + \eta_1)^{a_1}) = \varphi_k(u).$$

The proposition follows.

We recall the definition of the local Kummer symbol relative to L (see [3], Chapter 8). Let $z \in \mathfrak{p}_K$ and let $\alpha \in K^*$. Let $t \in \mathbb{C}_p$ be such that $[p]_L(t) = z$. We set

$$\langle z, \alpha \rangle_L = F_L((\alpha, K(t)/K)(t), -t) \in \Lambda_L.$$

This symbol is connected to the norm residue symbol as follows: let $u \in U_K^{(1)}$ and let $\alpha \in K^*$; then

$$(u, \alpha) - 1 = f_p(\langle g_p(u - 1), \alpha \rangle_L).$$

Furthermore, we have the following explicit reciprocity law for $\langle \cdot, \cdot \rangle_L$:

Theorem 2.7. Let $z \in \mathfrak{p}_K$ and let $u \in U_K$. Write $z \equiv \sum_{i=1}^{p-1} a_i \lambda^i_L \pmod{\mathfrak{p}_K^p}$, where $a_i \in \mathbb{F}_p$. Then

$$\langle z, u \rangle_L = \left[a_1 \frac{N_{K/Q_p}(u-1)}{p} - 1 + \sum_{i=2}^{p-1} a_i \varphi_{p-i}(u) \right] \lambda_L.$$

Proof. See [3], Chapter 9.

3. Kummer subgroups of units.

Recall that $U = U_K/(\mu_{p-1}U_K^{(p)})$. Set

$$V = \mathbb{Q}(\zeta_p) \cap U_K, \quad V^{\text{Kum}} = V \cap \mu_{p-1}U_K^{(p)}, \quad V = V/V^{\text{Kum}}.$$

Then we have an isomorphism of the $\mathbb{F}_p[G]$-modules V and U.

Let B be a subgroup of V. We define the **Kummer subgroup** of B to be

$$B^{\text{Kum}} = B \cap V^{\text{Kum}} = B \cap \mu_{p-1}U_K^{(p)}.$$

Note that

$$B^{\text{Kum}} \subset \{ \alpha \in B : \exists \alpha \in \mathbb{Z}, \alpha \equiv a \pmod{\mathfrak{p}_K^p} \}.$$

Let F be a real subfield of $\mathbb{Q}(\zeta_p)$. The **group of cyclotomic units** of F is the subgroup of E_F generated by -1 and $N_{\mathbb{Q}(\zeta_p)}/F(\zeta_p^{1-a/2}/(\zeta_p - 1)/(\zeta_p - 1))$, for $2 \leq a \leq (p - 1)/2$; we denote this group by Cyc_F. Recall that

$$(E_F : \text{Cyc}_F) = h_F.$$

In this section, our aim is to study the $\mathbb{F}_p[G]$-module $\text{Cyc}_F/\text{Cyc}_F^{\text{Kum}}$. In particular, Theorem 3.2 will generalize a result of Vostokov (see [9], Theorem 1) and we will obtain Kummer’s Lemma (see [10], Theorem 5.36) as a corollary.

Now, let F be a real subfield of $\mathbb{Q}(\zeta_p)$ and set $l = [F : \mathbb{Q}]$. We suppose that $l \geq 2$.

Lemma 3.1. We have

\[E_F^{Kum} = \{ \alpha \in E_F : \exists a \in \mathbb{Z}, \alpha \equiv a \pmod{p} \} = E_F \cap (K^*)^p, \]
\[E_F^{Kum} = \{ \alpha \in E_F : \Log_p(\alpha) \equiv 0 \pmod{\mathfrak{p}_K^p} \}. \]

Proof. By [10], page 80,

\[\{ \alpha \in E_F : \exists a \in \mathbb{Z}, \alpha \equiv a \pmod{p} \} = E_F \cap (K^*)^p. \]

As already noticed, \(E_F^{Kum} \) is a subgroup of this latter group. Now, let \(\alpha \in E_F \) be such that \(\alpha \equiv a \pmod{p} \) for some integer \(a \). Then there exists \(\epsilon \in \mu_{p-1} \) such that \(\alpha \epsilon \in U_K^{(p-1)} \). But \(N_{K/\mathbb{Q}_p}(\alpha \epsilon) = 1 \). Therefore \(\alpha \epsilon \in U_K^{(p)} \). Thus \(\alpha \in E_F^{Kum} \).

Now, recall that \((U_K)^p = \mu_{p-1}U_K^{(p+1)} \). Thus

\[E_F^{Kum} \subset \{ \alpha \in E_F : \Log_p(\alpha) \equiv 0 \pmod{\mathfrak{p}_K^p} \}. \]

Let \(\alpha \) be in the right side group. Then, by Proposition 2.6, \(\varphi_k(\alpha) = 0 \) for \(k = 1, \ldots, p-2 \). Therefore \(\alpha \in \mu_{p-1}U_K^{(p-1)} \). But \(N_{K/\mathbb{Q}_p}(\alpha \epsilon) = 1 \), thus \(\alpha \in \mu_{p-1}U_K^{(p)} \), i.e. \(\alpha \in E_F^{Kum} \). □

We define the index of regularity of \(F \) to be

\[r(F) = |\{ i : 1 \leq i \leq l-1, \ B_{i(p-1)/l} \neq 0 \pmod{p} \}|. \]

The index of irregularity of \(F \) is then

\[i(F) = l - 1 - r(F). \]

We call \(F \) regular if \(i(F) = 0 \). Note that, in this case, \(p \) does not divide \(h_F \) (see [10], Theorem 5.24).

If \(F = \mathbb{Q}(\zeta_p)^+ \), then \(i(F) = i(p) \), the index of irregularity of \(p \).

Theorem 3.2. Let \(F \) be a real subfield of \(\mathbb{Q}(\zeta_p) \) with \([F : \mathbb{Q}] = l \geq 2 \).

(i) If \(i = p-1 \) or if \(i \not\equiv 0 \pmod{(p-1)/l} \), then

\[\frac{\Cyc_F}{\Cyc^{Kum}_F}(i) = 0. \]

(ii) For \(j = 1, \ldots, l-1, \)

\[\frac{\Cyc_F}{\Cyc^{Kum}_F}\left(j \frac{(p-1)}{l} \right) = 0 \iff B_{j(p-1)/l} \equiv 0 \pmod{p}. \]

(iii) We have

\[\dim_{\mathbb{F}_p} \frac{\Cyc_F}{\Cyc^{Kum}_F} = r(F). \]
Proof. We view $\text{Cyc}_F / \text{Cyc}^\text{Kum}_F$ as an $\mathbb{F}_p[G]$-submodule of \mathcal{U}. Since $N_{K/\mathbb{Q}_p}(E_F) = \{1\}$, we have

$$\frac{\text{Cyc}_F}{\text{Cyc}^\text{Kum}_F}(p - 1) = 0.$$

Now, suppose that there exists $\epsilon \in E_F$ such that $\varphi_i(\epsilon) \neq 0$. Then

$$\varphi_i(\epsilon^{(p-1)/l}) = \varphi_i(N_{K/F}(\epsilon)) \neq 0.$$

But $\text{Gal}(K/F) = G^l$, thus

$$\varphi_i(N_{K/F}(\epsilon)) = \frac{1}{l} \left(\sum_{\sigma \in G} \omega(\sigma)^i \right) \varphi_i(\epsilon).$$

Thus $il \equiv 0 \pmod{p-1}$ and we get (i).

By Proposition 2.5, for $k \geq 2$, we have

$$\varphi_k \left(\frac{\sigma_a(\lambda_p)}{\lambda_p} \right) = (-1)^k (\omega(\sigma)^k - 1) \frac{B_k}{k!}.$$

Therefore we get (ii) and (iii). □

We recover Kummer’s Lemma:

Corollary 3.3. Suppose that F is regular. Then $E^\text{Kum}_F = (E_F)^p$.

Proof. In this case, we have

$$\dim_{\mathbb{F}_p} \frac{\text{Cyc}_F}{\text{Cyc}^\text{Kum}_F} = l - 1.$$

But $\text{Cyc}_F \cap E^\text{Kum}_F = \text{Cyc}^\text{Kum}_F$, thus

$$\dim_{\mathbb{F}_p} \frac{E_F}{E^\text{Kum}_F} \geq l - 1.$$

Note that $(E_F)^p \subset E^\text{Kum}_F$ and

$$\dim_{\mathbb{F}_p} \frac{E_F}{(E_F)^p} = l - 1.$$

Therefore we get the desired result. □

A natural problem arises: do we have an equivalence in Kummer’s Lemma? It is not difficult to show that if p does not divide h_F, then $E^\text{Kum}_F = (E_F)^p$ implies that F is regular. In fact, we have

Proposition 3.4. Let F be a real subfield of $\mathbb{Q}(\zeta_p)$. Suppose that $p^{\max(i(F),1)}$ does not divide h_F. Then $E^\text{Kum}_F = (E_F)^p$ implies $i(F) = 0$.

Proof. If $E^\text{Kum}_F = (E_F)^p$, then

$$\dim_{\mathbb{F}_p} \frac{E_F}{\text{Cyc}_F E^\text{Kum}_F} = i(F).$$

Since $h_F = (E_F : \text{Cyc}_F)$, $p^{i(F)}$ divides h_F. □
4. The orthogonal of local units. Recall that
\[V = \frac{\mathbb{Q}(\zeta_p) \cap U_K}{\mathbb{Q}(\zeta_p) \cap \mu_{p-1}U_K^{(p)}} \]
is an \(\mathbb{F}_p[G] \)-module which is isomorphic to \(U = U_K/(\mu_{p-1}U_K^{(p)}) \). Let \(\alpha \in \mathbb{Q}(\zeta_p) \cap \mu_{p-1}U_K^{(p)} \). Then for every \(\beta \in \mathbb{Q}(\zeta_p) \cap U_K \), we have \((\beta, \alpha) = 1 \). Therefore, if \(B \) is a subgroup of \(V \), we set
\[B^\perp = \{ \alpha \in V : \forall b \in B, \ (b, \alpha) = (\alpha, b) = 1 \}. \]
Via our isomorphism \(\phi : V \to U \), we have an isomorphism
\[B^\perp \equiv \{ \alpha \in U : \forall b \in B, \ (\alpha, \phi(b)) = 1 \}. \]
Note that, if \(B \) is an \(\mathbb{F}_p[G] \)-submodule of \(V \), the above isomorphism is an isomorphism of \(\mathbb{F}_p[G] \)-modules.

Now, \(\mathfrak{p}_K \) can be viewed as a \(\mathbb{Z}_p \)-submodule of \((D)_L \) (see Section 2). Since \([p]_L(p_K) \subset \mathfrak{p}_K^p \) and, for all \(a \in \mathbb{Z}_p \), \([a]_L(p_K^p) \subset \mathfrak{p}_K^p \), it follows that \((\mathfrak{p}_K)_L/(\mathfrak{p}_K^p)_L \) is an \(\mathbb{F}_p \)-vector space. Furthermore, since \(F_L(X, Y) \equiv X + Y \mod \deg p \) and \([a]_L \equiv aX \mod \deg p \) for all \(a \in \mathbb{Z}_p \), \((\mathfrak{p}_K)_L/(\mathfrak{p}_K^p)_L \) is the same as the usual \(\mathbb{F}_p \)-vector space \(\mathfrak{p}_K/\mathfrak{p}_K^p \). Therefore we have an isomorphism of \(\mathbb{F}_p[G] \)-modules \(\psi : U \to \mathfrak{p}_K/\mathfrak{p}_K^p, \ u \mapsto g_p(u - 1) \). But recall that
\[\forall u \in U_K^{(1)}, \ \forall \alpha \in K^*, \quad f_p((g_p(u - 1), \alpha)_L) = (u, \alpha) - 1. \]
We deduce from the above discussion that \(B^\perp \) is isomorphic to the \(\mathbb{F}_p \)-vector space
\[\{ z \in \mathfrak{p}_K/\mathfrak{p}_K^p : \langle z, B \rangle_L = 0 \}. \]

Theorem 4.1. Let \(B \) be an \(\mathbb{F}_p[G] \)-submodule of \(V \). Then, for \(1 \leq i \leq p - 1 \), we have
\[\dim_{\mathbb{F}_p} B^\perp(i) + \dim_{\mathbb{F}_p} B(p - i) = 1. \]

Proof. First note that \(B^\perp \) is an \(\mathbb{F}_p[G] \)-submodule of \(V \). Now, we identify \(B^\perp \) and \(\{ z \in \mathfrak{p}_K/\mathfrak{p}_K^p : \langle z, B \rangle_L = 0 \} \) which is an \(\mathbb{F}_p[G] \)-submodule of \(\mathfrak{p}_K/\mathfrak{p}_K^p \). Note that \(\mathfrak{p}_K/\mathfrak{p}_K^p \) is an \(\mathbb{F}_p \)-vector space of dimension \(p - 1 \) with \(\{ \lambda_L, \ldots, \lambda_{L}^{p-1} \} \) as a base over \(\mathbb{F}_p \).

For simplification, we set \(e_i = e_{\omega^i} \) for \(i = 1, \ldots, p - 1 \). Let \(j \) be an integer, \(1 \leq j \leq p - 1 \). We have:
- \(e_i \lambda_L^j = 0 \) if \(j \neq i \),
- \(e_i \lambda_L^j = \lambda_L^j \) if \(j = i \).

Therefore
\[\frac{\mathfrak{p}_K}{\mathfrak{p}_K^p}(i) = \mathbb{F}_p \lambda_L^i. \]
This implies that
\[B^\perp(i) \neq 0 \iff \lambda_L^i \in B^\perp. \]
Now, let $2 \leq j \leq p - 1$, $1 \leq i \leq p - 1$. Let $b \in B$. By Theorem 2.7, we have
\[
\langle \lambda^i_L, e_i b \rangle_L = [\varphi_{p-j}(e_i b)]_L(\lambda_L).
\]
But $\varphi_{p-j}(e_i b) = 0$ if $p - j \neq i$ and $\varphi_{p-j}(e_i b) = \varphi_i(b)$ if $i = p - j$. Now, note that
\[
\lambda^i_L \in B^\perp \iff \forall i, 1 \leq i \leq p - 1, \langle \lambda^i_L, B(i) \rangle_L = 0.
\]
Furthermore
\[
\forall b \in B, \langle \lambda_L, b \rangle_L = \left[\frac{N_{K/Q_p}(u^{-1}) - 1}{p} \right]_L(\lambda_L).
\]
Thus $\lambda_L \in B^\perp \iff B(p - 1) = 0$. The theorem follows. ■

Corollary 4.2. Let B be an $\mathbb{F}_p[G]$-submodule of \mathcal{V}. Then
\[
dim_{\mathbb{F}_p} B^\perp + \dim_{\mathbb{F}_p} B = p - 1.
\]

Corollary 4.3. Let B be an $\mathbb{F}_p[G]$-submodule of \mathcal{V}. Then
\[
(B^\perp)^\perp = B.
\]

Proof. Note that B^\perp is an $\mathbb{F}_p[G]$-submodule of \mathcal{V}. Thus, by Corollary 4.2,
\[
\dim_{\mathbb{F}_p} (B^\perp)^\perp + \dim_{\mathbb{F}_p} B^\perp = p - 1.
\]
But $B \subset (B^\perp)^\perp$, and by Corollary 4.2,
\[
\dim_{\mathbb{F}_p} B + \dim_{\mathbb{F}_p} B^\perp = p - 1.
\]
Thus $B = (B^\perp)^\perp$. ■

Now, let F be a real subfield of $\mathbb{Q}(\zeta_p)$ with $[F : \mathbb{Q}] = l \geq 2$. If we apply Theorems 3.2 and 4.1, we get

Theorem 4.4. (i) Let i be an integer, $1 \leq i \leq p - 1$. Then
\[
\dim_{\mathbb{F}_p} \text{Cyc}_F^\perp(i) + \dim_{\mathbb{F}_p} \frac{\text{Cyc}_F}{\text{Cyc}_F^{\text{Kum}}}(p - i) = 1.
\]
Thus $\text{Cyc}_F^\perp \neq 0$ if and only if $i \neq 1 \pmod{(p - 1)/l}$, $i = p - 1$, or $i \equiv 1 \pmod{(p - 1)/l}$ and $B_{p-i} \equiv 0 \pmod{p}$. In particular,
\[
\dim_{\mathbb{F}_p} \text{Cyc}_F^\perp = p - 1 - r(F).
\]

(ii) Let i be an integer, $1 \leq i \leq p - 1$. Then
\[
\dim_{\mathbb{F}_p} \frac{\text{Cyc}_F^\perp}{E_F^\perp}(i) = \dim_{\mathbb{F}_p} \frac{E_F}{\text{Cyc}_F E_F^{\text{Kum}}}(p - i).
\]

Let I be the Stickelberger ideal (see [10], Chapter 6) and let I be its image in $\mathbb{F}_p[G]$. Let $F = \mathbb{Q}(\zeta_p)^+$. Then, by Theorem 4.4 and [10], Section 6.3,
there exists a surjective morphism of $\mathbb{F}_p[G]$-modules
\[
\frac{\mathbb{F}_p[G]}{\mathcal{I}} \to \frac{\text{Cyc}_F^+}{E_F^+}.
\]
Since $\dim_{\mathbb{F}_p} \mathbb{F}_p[G]/\mathcal{I} = i(p)$, this morphism is an isomorphism if and only if $E_F^K \text{imm} = (E_F)^p$.

5. Mirimanoff’s polynomials. In his attempt to prove the first case of Fermat’s Last Theorem, D. Mirimanoff introduced the polynomials

\[
M_k(X) = \sum_{i=1}^{\frac{p-1}{2}} i^{k-1} X^i \in \mathbb{F}_p[X], \quad k \geq 1 \text{ an integer}.
\]

Note that $(X - 1)M_1(X) = X^p - X$. Let $\Gamma = X \frac{d}{dX}$. Then, for $k \geq 1$, we have

\[
\Gamma^k M_1 = M_{k+1}.
\]

From this relation, we deduce immediately that, for $2 \leq k \leq p - 1$, we have

\[
M_k(X) = X(X - 1)^{p-k} P_k(X),
\]

where $P_k(X) \in \mathbb{F}_p[X]$ is of degree $k - 2$ and $P_k(0) \equiv 0 \pmod{p}$, $P_k(1) \equiv 0 \pmod{p}$.

Note that, if k is odd, $3 \leq k \leq p - 2$, we have (see [5], Chapter 8):

\[
M_k(X) = (-1)^k X(X + 1)(X - 1)^{p-k} L_k(-X),
\]

where $L_k(X) \in \mathbb{F}_p[X]$ is of degree $k - 3$. The first polynomials $L_k(X)$ are:

\[
L_3(X) = 1,
\]

\[
L_5(X) = X^2 - 10X + 1,
\]

\[
L_7(X) = X^4 - 56X^3 + 246X^2 - 56X + 1,
\]

\[
L_9(X) = X^6 - 246X^5 + 4047X^4 - 11572X^3 + 4047X^2 - 246X + 1.
\]

In this section, we will relate the study of the non-trivial zeros in \mathbb{F}_p^* of the polynomials $M_k(X)$, k odd, to the orthogonal of cyclotomic units.

Note that the number of k even, $2 \leq k \leq p - 3$, such that $-1 \in \mathbb{F}_p^*$ is a root of $M_k(X)$ is connected to $i(p)$:

Lemma 5.1. (i) Let k be an even integer, $2 \leq k \leq p - 3$. Then

\[
M_k(-1) \equiv 2(2^k - 1) \frac{B_k}{k} \pmod{p}.
\]

(ii) $M_{p-1}(-1) \equiv \frac{2^{p-2} - 2}{p} \pmod{p}$.

Proof. (i) is a consequence of Proposition 2.5; for (ii) see [5], Chapter 8. □
Recall that we identify \(V \) and \(U \). Set
\[
\varepsilon_+ = \sum_{i \equiv 0 \pmod{2}} e_{\omega^i} \in \mathbb{F}_p[G] \quad \text{and} \quad \varepsilon_- = \sum_{i \equiv 1 \pmod{2}} e_{\omega^i} \in \mathbb{F}_p[G].
\]
Then \(\varepsilon_+ \varepsilon_- = 0, \varepsilon_+^2 = \varepsilon_+, \varepsilon_-^2 = \varepsilon_- \), \(1 = \varepsilon_+ + \varepsilon_- \), \(\sigma_- \varepsilon_+ = \varepsilon_+ \) and \(\sigma_- \varepsilon_- = -\varepsilon_- \). We set \(V^+ = \varepsilon_+ V \) and \(V^- = \varepsilon_- V \). Then
\[
V^+ = \bigoplus_{i \equiv 0 \pmod{2}} V(i), \quad V^- = \bigoplus_{i \equiv 1 \pmod{2}} V(i).
\]
Furthermore
\[
\dim_{\mathbb{F}_p} V^+ = \dim_{\mathbb{F}_p} V^- = (p - 1)/2.
\]
Note also that
\[
\mathcal{V}^+ = \frac{\mathbb{Q}(\zeta_p)^+ \cap U_K}{\mathbb{Q}(\zeta_p)^+ \cap \mu_{p-1} U_K^{(p)}}.
\]
Let \(\epsilon \in \mu_{p-1} \). We set
\[
\varrho_\epsilon = \frac{\epsilon - \zeta_p}{\epsilon - \zeta_p^{-1}}.
\]
Then \(\varrho_\epsilon \in V^- \). In this section, we suppose that \(p \geq 5 \).

Lemma 5.2. \(V^- \) is generated as \(\mathbb{F}_p[G] \)-module by the \(\varrho_\epsilon, \epsilon \in \mu_{p-1} \setminus \{1, -1\} \).

Proof. Let \(\epsilon \in \mu_{p-1}, \epsilon \neq 1 \). Then, by Proposition 2.5, we have \(\varphi_1(\varrho_\epsilon) \neq 0 \). Thus
\[
V^-(1) = \mathbb{F}_p e_{\omega} \varrho_\epsilon.
\]
Let \(k \) be an odd integer, \(3 \leq k \leq p - 2 \). By Proposition 2.5, we have
\[
V^-(k) = \mathbb{F}_p e_{\omega^k} \varrho_\epsilon \iff \varphi_k(\varrho_\epsilon) \neq 0 \iff M_k(\epsilon) \neq 0 \pmod{p}.
\]
But there exists \(\epsilon \in \mu_{p-1} \setminus \{1, -1\} \) such that \(M_k(\epsilon) \neq 0 \pmod{p} \). The lemma follows. \(\blacksquare \)

Lemma 5.3. Let \(F \) be a real subfield of \(\mathbb{Q}(\zeta_p) \) with \([F : \mathbb{Q}] = l \geq 2 \). Then \(\varrho_\epsilon \in \text{Cyc}_{F}^\perp \) if and only if for \(j = 1, \ldots, l - 1 \),
\[
B_{j(p-1)/l} M_p - j(p-1)/l(\epsilon) \equiv 0 \pmod{p}.
\]
Proof. By the proof of Proposition 2.6, we have
\[
g_p(\varrho_\epsilon - 1) \equiv \frac{1}{k} \varphi_k(\varrho_\epsilon) \lambda^k_L \pmod{p_K}.
\]
Thus, by Theorem 2.7, Proposition 2.5 and Theorem 3.2, if
\[
B_{j(p-1)/l} M_p - i(p-1)/l(\epsilon) \equiv 0 \pmod{p} \quad \text{for} \quad j = 1, \ldots, l - 1,
\]
then \(\varrho_\epsilon \in \text{Cyc}_{F}^\perp \).
Conversely, assume that \(\varrho_\epsilon \in \text{Cyc}^+_F \). Let \(B \) be the \(\mathbb{F}_p[G] \)-submodule of \(V^- \) generated by \(\varrho_\epsilon \). By Theorem 4.1, we have

\[
\dim_{\mathbb{F}_p} B(i) + \dim_{\mathbb{F}_p} \frac{\text{Cyc}_F}{\text{Cyc}^{\text{Kum}}_F} (p - 1) \leq 1.
\]

It remains to apply Proposition 2.5 and Theorem 3.2. ■

G. Terjanian has conjectured (see [8]) that for every odd prime number, \(\varrho_\epsilon \in \text{Cyc}_F^+ \Rightarrow \epsilon = 1 \) or \(\epsilon = -1 \), where \(F = \mathbb{Q}(\zeta_p)^+ \). By Lemma 5.3, Terjanian’s conjecture is equivalent to the statement that the Kummer system of congruences

\[
B_{2j} M_{p-2j} \equiv 0 \pmod{p}, \quad 1 \leq j \leq (p - 3)/2,
\]

has only the trivial solutions, i.e. 0, 1 and \(-1\). L. Skula has proved (see [7]) that if Terjanian’s conjecture is false for a prime \(p \) then \(i(p) \geq \lceil \sqrt{p}/2 \rceil \).

Theorem 5.4. Let \(x, y \in \mathbb{Z} \) be such that \(xy(x^2 - y^2) \neq 0 \pmod{p} \). Let \(B \) be the \(\mathbb{F}_p[G] \)-submodule of \(V \) generated by \(x + y\zeta_p \). Then

\[
\dim_{\mathbb{F}_p} B^- \geq \sqrt{p} - 1.
\]

Proof. Suppose that \(\dim_{\mathbb{F}_p} B^- < \sqrt{p} - 1 \). Set \(r = \lceil \sqrt{p} \rceil - 1 \). Note that \(\zeta_p \in B^- \). Consider the set of all products

\[
\zeta_p^{b_0} \prod_{i=1}^{r} (x + y\zeta_p^i)^{b_i},
\]

where \(0 \leq b_i < p \) for \(i = 0, \ldots, r \). The number of such products is \(p^{r+1} > |B^-| \). Therefore, two of them must agree in their \(B^- \)-components, so we may divide and obtain

\[
\prod_{i=1}^{r} (x + y\zeta_p^i)^{a_i} \equiv \zeta_p^{\epsilon} \delta \pmod{p},
\]

where \(-p < a_i < p \) and some \(a_i \) are non-zero (because a non-trivial power of \(\zeta_p \) is not congruent to a real number modulo \(p \)), \(\delta \in \mathbb{Q}(\zeta_p)^+ \) and \(\nu \geq 0 \). Thus, we get

\[
\prod_{i=1}^{r} \frac{(x + y\zeta_p^i)^{a_i}}{(y + x\zeta_p^i)^{a_i}} \equiv \zeta_p^{v} \pmod{p}
\]

for some \(v \geq 0 \). But, by the proof of Eichler’s Theorem (see [10], Theorem 6.23), this implies that \(xy(x^2 - y^2) \equiv 0 \pmod{p} \), a contradiction. ■

Corollary 5.5. Let \(p \geq 5 \) be a prime number. If Terjanian’s conjecture is false for the prime \(p \), then:

(i) \(2^{p-1} \equiv 1 \pmod{p^2} \);
(ii) \(B_{p-3} \equiv 0 \pmod{p} \);
(iii) \(i(p) \geq \sqrt{p} - 2 \).
Proof. Let C be the group of cyclotomic units of $\mathbb{Q}(\zeta_p)$ and let $F = \mathbb{Q}(\zeta_p)^+$. Then $\epsilon - \zeta_p$ is orthogonal to C for the norm residue symbol if and only if $g_\epsilon \in \text{Cyc}_F^+$ (see [2]). Therefore (i) and (ii) are a consequence of [8], Enoncé 8. Now, (iii) is a consequence of Theorem 5.4, Lemma 5.3 and Proposition 2.5.

Note that the ABC conjecture implies that Terjanian’s conjecture is true for infinitely many primes p (see [6]). It would be interesting to find analogues of Terjanian’s conjecture for real subfields of $\mathbb{Q}(\zeta_p)$ (see [1]).

6. p-adic regulators and Kummer subgroups of units. Let F be a real subfield of $\mathbb{Q}(\zeta_p)$ with $[F : \mathbb{Q}] = l$, $l \geq 2$. We set $G_F = \text{Gal}(\hat{F}/\mathbb{Q}_p)$ and $\chi = \omega^{(p-1)/l}$. Then

$$\hat{G}_F = \langle \chi \rangle.$$

We denote the p-adic regulator of F by $R_p(F)$ and the discriminant of F by $d(F)$. Let $\epsilon \in E_F$; we denote by A_ϵ the subgroup of E_F generated by -1 and $\sigma(\epsilon)$, $\sigma \in G_F$. We say that ϵ is a Minkowski unit if A_ϵ is of finite index in E_F.

Proposition 6.1. Let $\epsilon \in E_F$ be a Minkowski unit. Then

$$(E_F : A_\epsilon) \frac{R_p(F)}{\sqrt{d(F)}} \equiv \pm \frac{l^{2(l-1)}}{(l-1)!} \prod_{k=1}^{l-1} \varphi_{k(p-1)/l}(\epsilon) \mod p.$$

Proof. Let ϵ be a Minkowski unit. Set

$$R_p(A_\epsilon) = \det(\log_p(\sigma \tau(\epsilon)))_{\sigma, \tau \in G_F \setminus \{1\}}.$$

Then $R_p(A_\epsilon) \neq 0$ and (see [10], Lemma 4.15)

$$(E_F : A_\epsilon) = \pm \frac{R_p(A_\epsilon)}{R_p(F)}.$$

But, from [10], Lemma 5.26,

$$R_p(A_\epsilon) = \prod_{j=1}^{l-1} \left(\sum_{\sigma \in G_F} \chi(\sigma)^{-j} \log_p(\sigma(\epsilon)) \right).$$

Now, by Proposition 2.6,

$$\log_p(\sigma(\epsilon)) \equiv \frac{1}{j(p-1)/l} \chi(\sigma)^{-j} \varphi_{j(p-1)/l}(\epsilon) \lambda_L^{j(p-1)/l} \mod p_K^p.$$

Thus, we have

$$\sum_{\sigma \in G_F} \chi(\sigma)^{-k} \log_p(\sigma(\epsilon)) \equiv \frac{l^2}{k(p-1)/l} \varphi_{k(p-1)/l}(\epsilon) \lambda_L^{k(p-1)/l} \mod p_K^p.$$
Therefore, there exists \(a_k \in \mathbb{Z}_p \), \(a_k \equiv \varphi_{k(p-1)/l}(\varepsilon) \), such that

\[
\sum_{\sigma \in G_F} \chi(\sigma)^{-k} \log_p(\sigma(\varepsilon)) = \chi_L^{k(p-1)/l} \left(\frac{l^2}{k(p-1)} a_k + u_k \right),
\]

where \(u_k \in p_{k}^{1+(p-1)/l} \). We get

\[
R_p(A_{\varepsilon}) = \chi_L^{(p-1)(l-1)/2} \prod_{k=1}^{l-1} \left(\frac{l^2}{k(p-1)} a_k + u_k \right).
\]

But \(\sqrt{d(F)} = \pm \chi_L^{(p-1)(l-1)/2} \). Therefore

\[
(E_F: A_{\varepsilon}) \frac{R_p(F)}{\sqrt{d(F)}} \equiv \pm \frac{l^2(l-1)}{(l-1)!} \prod_{k=1}^{l-1} \varphi_{k(p-1)/l}(\varepsilon) \pmod{p_{K}^{1+(p-1)/l}}.
\]

But, since \(R_p(F)/\sqrt{d(F)} \in \mathbb{Z}_p \), this congruence holds modulo \(p \).

Corollary 6.2. Let \(\varepsilon \) be a Minkowski unit, \(\varepsilon \in E_F \). Then

\[
(2l)^{l-1} h_F \prod_{k=1}^{l-1} \varphi_{k(p-1)/l}(\varepsilon) \equiv \pm (E_F: A_{\varepsilon}) \prod_{k=1}^{l-1} B_{k(p-1)/l} \pmod{p}.
\]

Proof. By [10], Theorem 5.24,

\[
2^{l-1} h_F \frac{R_p(F)}{\sqrt{d(F)}} = \prod_{j=1}^{l-1} L_p(1, \chi^j).
\]

Now

\[
L_p(1, \chi^j) \equiv \frac{l}{J} B_{j(p-1)/l} \pmod{p}.
\]

Therefore

\[
2^{l-1} h_F \frac{R_p(F)}{\sqrt{d(F)}} \equiv \frac{l^{l-1}}{(l-1)!} \prod_{j=1}^{l-1} B_{j(p-1)/l} \pmod{p}.
\]

Let \(\varepsilon \) be a Minkowski unit. By Proposition 6.1, we have

\[
(E_F: A_{\varepsilon}) \frac{R_p(F)}{\sqrt{d(F)}} \equiv \pm \frac{l^2(l-1)}{(l-1)!} \prod_{j=1}^{l-1} \varphi_{j(p-1)/l}(\varepsilon) \pmod{p}.
\]

The corollary follows.

Let \(\varepsilon_1, \ldots, \varepsilon_{l-1} \) be a system of fundamental units of \(F \). We set

\[
R_F \equiv \left(\det \left(\frac{1}{j(p-1)/l} \varphi_{j(p-1)/l}(\varepsilon_i) \right) \right)_{1 \leq i, j \leq l-1}^2 \pmod{p}.
\]

Note that \(R_F \) modulo \(p \) is independent of the choice of \(\varepsilon_1, \ldots, \varepsilon_{l-1} \) (see [4]).
Lemma 6.3. \(R_F \not\equiv 0 \pmod{p} \) if and only if \(E_F^{\text{Kum}} = (E_F)^p \).

Proof. It is clear that if \(R_F \not\equiv 0 \pmod{p} \) then \(E_F^{\text{Kum}} = (E_F)^p \).

Conversely, assume that \(E_F^{\text{Kum}} = (E_F)^p \). Let \(\varepsilon \) be a generator of the cyclic \(\mathbb{F}_p[G_F] \)-module \(E_F / E_F^{\text{Kum}} \). Set

\[
B \equiv \left(\det \left(\frac{1}{j(p-1)/l} \varphi_j(p-1)/l(\sigma(\varepsilon)) \right)_{1 \leq j \leq l-1, \sigma \in G_F \setminus \{1\}} \right)^2 \pmod{p}.
\]

The rank of this latter matrix is equal to the rank of

\[
(\chi(\sigma)^j)_{1 \leq j \leq l-1, \sigma \in G_F \setminus \{1\}}.
\]

Therefore \(B \not\equiv 0 \pmod{p} \). By Proposition 2.6 and [4], page 113, \(B \equiv (E_F : A_\varepsilon)^2 R_F \pmod{p} \).

Therefore \(R_F \not\equiv 0 \pmod{p} \). \(\blacksquare \)

If we apply Proposition 2.6, by the proof of [4], Theorem 1A, we get

Theorem 6.4. Let \(g \) be a primitive root modulo \(p \). We have

\[
A^{l-1} h_F^2 R_F \equiv \frac{l^2}{(l-1)!^2} (\det g^{(p-1)(i-1)k/l})_{1 \leq i, k \leq l-1}^2 \prod_{j=1}^{l-1} \frac{B^2_j(p-1)/l}{((j(p-1)/l)!)^2} \pmod{p}.
\]

Theorem 6.5. \(E_F^{\text{Kum}} = (E_F)^p \) if and only if \(\frac{R_p(F)}{\sqrt{d(F)}} \not\equiv 0 \pmod{p} \).

Proof. Let \(\varepsilon_1, \ldots, \varepsilon_{l-1} \) be a system of fundamental units of \(F \). Set \(\beta_i = \log_p(\varepsilon_i) \) for \(i = 1, \ldots, l-1 \) and \(\beta_l = 1 \) (recall that \(l = [F : \mathbb{Q}] \)). We have \(\bar{F} = \mathbb{Q}_p(\lambda_L^{(p-1)/l}) \). Thus

\[
O_{\bar{F}} = \bigoplus_{j=0}^{l-1} \mathbb{Z}_p \lambda_L^{j(p-1)/l}.
\]

Therefore, for \(i = 1, \ldots, l \), we can write

\[
\beta_i = \sum_{j=0}^{l-1} a_{ij} \lambda_L^{j(p-1)/l},
\]

where \(a_{ij} \in \mathbb{Z}_p \). But

\[
\det(\sigma(\beta_i))_{\sigma \in \text{Gal}(\bar{F}/\mathbb{Q}_p), i = 1, \ldots, l} = l R_p(F).
\]

Furthermore

\[
\det(\sigma(\beta_i)) = \det(a_{ij}) \det(\sigma(\lambda_L^{j(p-1)/l})).
\]
But, for $i = 1, \ldots, l - 1$, we have
\[
a_{ij} \equiv -\frac{l}{j} \varphi_{j(p-1)/l}(\epsilon_i) \pmod{p}
\]
for $j = 1, \ldots, l - 1$ and $a_{i0} \equiv 0 \pmod{p}$. Therefore
\[
det(a_{ij})^2 \equiv R_F \pmod{p}.
\]
The theorem follows. ■

References