Corrigendum to the paper
“A note on the Diophantine equation $x^2 + q^m = y^3$”

by

H. L. ZHU (Xiamen)

Lemma 2.5 in the above article should be revised. Although it does not affect the final result of the paper, it misleads readers. Its correct version is:

Lemma 2.5 ([13], [15]). Apart from $(x, y) = (1, 0)$, the equation

$$x^n = Dy^2 + 1, \quad x, y, n, D \in \mathbb{Z}, \quad n \geq 3, \quad 1 \leq D \leq 100,$$

has the solutions

- $(x, y) = (3, \pm 11)$ if $(n, D) = (5, 2)$;
- $(x, y) = (3, \pm 4)$ if $(n, D) = (4, 5)$;
- $(x, y) = (7, \pm 20)$ if $(n, D) = (4, 6)$;
- $(x, y) = (2, \pm 1), (4, \pm 3)$ if $(n, D) = (3, 7)$;
- $(x, y) = (2, \pm 3)$ if $(n, D) = (6, 7)$;
- $(x, y) = (2, \pm 1)$ if $(n, D) = (4, 15)$;
- $(x, y) = (3, \pm 2)$ if $(n, D) = (4, 20)$;
- $(x, y) = (7, \pm 10)$ if $(n, D) = (4, 24)$;
- $(x, y) = (3, \pm 1), (313, \pm 1086)$ if $(n, D) = (3, 26)$;
- $(x, y) = (99, \pm 1820)$ if $(n, D) = (4, 29)$;
- $(x, y) = (5, \pm 2)$ if $(n, D) = (3, 31)$;
- $(x, y) = (2, \pm 1)$ if $(n, D) = (5, 31)$;
- $(x, y) = (7, \pm 3)$ if $(n, D) = (3, 38)$;
- $(x, y) = (5, \pm 4)$ if $(n, D) = (4, 39)$;
- $(x, y) = (13, \pm 6)$ if $(n, D) = (3, 61)$;

2010 Mathematics Subject Classification: Primary 11D61; Secondary 11D41.

Key words and phrases: exponential Diophantine equation, quadratic field.
\[(x, y) = (4, \pm 1) \quad \text{if} \quad (n, D) = (3, 63);\]
\[(x, y) = (2, \pm 1) \quad \text{if} \quad (n, D) = (6, 63);\]
\[(x, y) = (3, \pm 1) \quad \text{if} \quad (n, D) = (4, 80);\]
\[(x, y) = (7, \pm 5) \quad \text{if} \quad (n, D) = (4, 96).\]

Acknowledgements. The author would like to thank the referee. The author was partly supported by the Fundamental Research Funds for the Central Universities (No. 2011121039).

References

H. L. Zhu
School of Mathematical Sciences
Xiamen University
361005 Xiamen, P.R. China
E-mail: hlzhu@xmu.edu.cn

Received on 6.9.2011
and in revised form on 13.10.2011 (6818)