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Bounds for the solutions of S-unit equations

and decomposable form equations

by

Kálmán Győry (Debrecen) and Kunrui Yu (Hong Kong)

The main purpose of this paper is to considerably improve (in completely
explicit form) the best known effective upper bounds for the solutions of
S-unit equations and decomposable form equations.

1. Introduction. Several effective bounds have been established for
the heights of the solutions of unit equations and, more generally, of S-
unit equations in two unknowns; see e.g. [12], [13], [1], [5], [2], [17], [4],
[21] and the references given there. Except in [1] and [2], their proofs rely on
Baker’s method and its p-adic analogue as well as certain quantitative results
concerning fundamental/independent systems of units. In our Theorems 1
and 2 we improve upon the best known estimates for S-unit equations in
terms of the parameters of S and the ground field K. As a consequence of
Theorem 2 we deduce a completely explicit result (cf. Corollary 2) in the
direction of the abc conjecture over number fields.

To prove our results we use, among other things, some recent improve-
ments due to Matveev [25] and Yu [33] concerning linear forms in logarithms
of algebraic numbers, a recent theorem of Loher and Masser [22] on multi-
plicatively independent algebraic numbers, and our improved estimates for
fundamental/independent systems of S-units. In proving our Theorem 1 we
follow the arguments of [5] with some refinements and utilize the improve-
ments mentioned above.

In the bound in Theorem 1 there is a factor of the form s2s, where s
denotes the cardinality of S. This factor arises from the use of estimates
concerning fundamental S-units. To avoid such a factor in Theorem 2, we
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10 K. Győry and K. R. Yu

do not employ fundamental S-units and S-regulator in the proof. Instead we
combine some arguments of [12] with the aforementioned new ingredients,
and reduce the proof to the special case of our Theorem 1 with S = S∞.
The removal of s2s is crucial in some applications, e.g. in our Corollaries 4
and 5.

The first author reduced a large class of decomposable form equations
to (S-)unit equations and then, using his effective results concerning such
equations (cf. [10], [12], [13], [17] and the joint work [5] with Bugeaud),
gave upper bounds for the solutions of the decomposable form equations in
question; see e.g. [10], [19], [11], [14]–[16], [6], [17]. Our Theorems 1 and 2
together with thorough refinements upon the arguments of [17] enable us
to improve the earlier bounds for the solutions of decomposable form equa-
tions (cf. Theorem 3) and, in particular, of Thue equations in S-integers (cf.
Corollary 3). As an application, we obtain lower bounds for the greatest
prime factors of decomposable forms at integral points (cf. Corollary 4),
and get some new information about the arithmetical properties of integers
represented by decomposable forms (cf. Corollary 5). Further applications
of Theorem 2 are given in [18] and [20].

2. Bounds for the solutions of S-unit equations. The following
standard notation will be used throughout this paper. Let K be an algebraic
number field of degree d with regulator R, class number h and unit rank r.
Let S denote a finite set of places on K containing the set S∞ of infinite
places. Denote by s the cardinality of S, by t the number of finite places
in S, and by P the largest norm of the prime ideals p1, . . . , pt corresponding
to the finite places in S with the convention that P = 1 if S = S∞ (i.e.
t = 0). Further, denote by OS the ring of S-integers, and by O∗

S
the group of

S-units in K, which has rank s− 1 = r + t. The case s = 1 being trivial, we
assume throughout the paper that s ≥ 2. We denote by RS the S-regulator
of K (for its definition see e.g. [5]). For S = S∞ (i.e. t = 0) we have RS = R,
and OS is just the ring of integers OK of K.

For any algebraic number α, we denote by h(α) the absolute logarithmic
height of α (cf. Section 4). By height we shall always mean the absolute
logarithmic height. We use the notation log∗ a for max{log a, 1}.

Let α and β be non-zero elements of K with

max {h(α), h(β)} ≤ H,

where, for technical reasons, we assume that H ≥ max{1, π/d}. Consider
the S-unit equation

(1.a) αx + βy = 1 in x, y ∈ O∗
S.

For S = S∞, this is an ordinary unit equation.
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Theorem 1. All solutions x, y of (1.a) satisfy

(2) max{h(x), h(y)} < c1PRS(1 + (log∗ RS)/log∗ P )H

where

c1 = c1(d, s) = s2s+3.527s+27 log(2s)d2(s+1)(log∗(2d))3.

Further , if in particular S = S∞ (i.e. t = 0), then the bound in (2) can be

replaced by

(3) c2R(log∗ R)H

where

c2 = c2(d, r) = (r + 1)2r+923.2(r+12) log(2r + 2)(d log∗(2d))3.

Remark 1. It is clear that the factor (1 + (log∗ RS)/log∗ P ) in (2) does
not exceed 2 log∗ RS, and if log∗ RS ≤ log∗ P , then it is at most 2.

Remark 2. Theorem 1 is an improvement of the Theorem of Bugeaud
and Győry [5]. Our constants c1 and c2 are smaller than the corresponding
ones in [5] (and do not contain any parameter related to the Lehmer prob-
lem). Further, from the upper bound in [5] concerning max{h(x), h(y)} an
extra factor log∗ RS has been eliminated. We recall that in [5], [6] and [17]
the absolute height is used.

Consider now equation (1.a) in homogeneous form

(1.b) α1x1 + α2x2 + α3x3 = 0 in x1, x2, x3 ∈ O∗
S,

where α1, α2, α3 are non-zero numbers in K with maxk h(αk) ≤ H (H ≥ 2).
For t > 0, set

T =

{

1 if r = 0

2t if r ≥ 1

}

·
t

∏

i=1

max{hi log N(pi), c3dR},

where hi denotes the smallest positive integer for which the ideal p
hi

i is prin-
cipal (and thus hi |h). The constant c3 (coming from Lemma 3) is defined by

c3 =







0 if r = 0,

1/d if r = 1,

29er!r
√

r − 1 log d if r ≥ 2.

Further, let

R = max{h, c3dR},
and for brevity, write S = OK ∩ O∗

S
.

Theorem 2. Let t > 0. For every solution x1, x2, x3 of (1.b) there are

σ ∈ O∗
S

and ̺1, ̺2, ̺3 ∈ S such that

(4) xk = σ̺k, k = 1, 2, 3,
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and

(5) max
1≤k≤3

h(̺k) < c4hR2(log∗ R)R(1 + (log∗ R)/log∗ P )(P/log∗ P )T H,

where

c4 = c4(d, r, t) = (r + 1)4r+10210(r+t)+63(r + t + 1)3.5dr+t+5(log∗(2d))6.

If in particular r = 0, then the bound in (5) can be replaced by

(6) c5h
2(1 + (log∗ h)/log∗ P )(P/log∗ P )

{

t
∏

i=1

hi log N(pi)
}

H,

with

c5 = c5(d, t) = 210t+21 t3.5dt+2(log∗(2d))3.

Finally , if xk ∈ S for k = 1, 2, 3, then σ can be chosen from S.

Remark 3. Equations (1.a) and (1.b) can be transformed into each
other. For t > 0, the inequalities

(7) R
t

∏

i=1

log N(pi) ≤ RS ≤ hR
t

∏

i=1

log N(pi)

(see e.g. [5]) and

t
∏

i=1

log N(pi) ≤ T ≤ (2R)t
t

∏

i=1

log∗ N(pi)

make it easier to compare the upper bounds in Theorems 1 and 2. In the
important special case K = Q, the bound in (2) takes the form

c1(t)P (log p1) · · · (log pt)H,

where c1(t) = (t + 1)2t+6.527t+34 log(2t + 2). The same bound can be de-
duced from Theorem 2 for the solutions of (1.a) but with c1(t) replaced by
210t+23t3.5/log∗ P , which is smaller than c1(t) for all t ≥ 1. Here p1, . . . , pt

denote the rational primes corresponding to the finite places in S, and P is
the maximum of these primes.

In terms of S, s2s is the dominating factor in the bound in (2) whenever
t > log P . In the bounds of Theorem 2 there is no factor of the form ss

or tt. This improvement plays an important role in some applications; see
[18], [20] and Section 3 of the present paper.

Remark 4. The factor s2s occurring in the bound of Theorem 1 is a
consequence of the use of Lemma 2 concerning S-units. To obtain a bound
in Theorem 2 without this factor s2s, we shall combine the proof of Lemma 6
of [12] with our Theorem 1 with t = 0.
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Let α1, α2, α3 be non-zero elements in K with heights at most H (H ≥ 2).
In some applications, it is more convenient to consider the following equation
instead of (1.b):

(1.c) α1x1 + α2x2 + α3x3 = 0 in xk ∈ OS \ {0}
with NS(xk) ≤ N for k = 1, 2, 3,

where NS denotes the S-norm (see Section 4). Then setting

Q = N(p1 · · · pt) if t > 0, Q = 1 if t = 0

and

N = c3R +
h

d
log Q + H +

1

d
log N,

it is easy to deduce from Theorems 1 and 2 (for t > 0) and Theorem 1 (for
t = 0) the following.

Corollary 1. For every solution x1, x2, x3 of (1.c) there is an ε ∈ O∗
S

such that max1≤k≤3 h(εxk) is bounded above by

(8.a) 2.001c1PRS(1 + (log∗ RS)/log∗ P )N
and , for t > 0, by

(8.b) c4hR2(log∗ R)R(1 + (log∗R)/log∗ P )(P/log∗ P )T N
with c1 and c4 occurring in Theorems 1 and 2. Further , if in particular t = 0,
the bound in (8.a) can be replaced by

(8.c) 2.001c2R(log∗ R)N ,

where c2 denotes the constant specified in Theorem 1.

We note that log Q ≤ t log P . Our Corollary 1 improves upon Lemma 6
of [12] and the Corollary of [5].

Denote by D the discriminant of K, and by logi the ith iterate of the
logarithmic function with log1 = log. Further, let Q0 denote the product of
the distinct prime factors of Q = N(p1 · · · pt). Then we have

Q0 ≤ Q ≤ Qd
0.

The next corollary is a consequence of Theorem 2. We recall that S =
OK ∩ O∗

S
. Put

Q∗
0 = max(Q0, 16).

Corollary 2. Let t > 0. If x1, x2, x3 ∈ O∗
S

satisfy (1.b), then there

exist σ ∈ O∗
S

and ̺1, ̺2, ̺3 ∈ S such that xk = σ̺k (1 ≤ k ≤ 3) and

max
1≤k≤3

h(̺k) ≤ c6|D|3/2(log∗ |D|)3d−1 P

log∗ P
(9)

× Q
d(c7 log∗ |D|+19.2 log3 Q∗

0
)/log2 Q∗

0

0 H,
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where

c6 =



















222 if d = 1,

226 if d = 2 with r = 0,

296d8(log(2d))6 if r = 1,

(r + 1)5r+1529r+71dr+9(log(2d))8 if r ≥ 2,

and

c7 =



















12.4 if d = 1,

14.7 if d = 2 with r = 0,

9.7d if r = 1,

8.9d2 log d if r ≥ 2.

Further if d = 2 with r = 0, the expression |D|3/2(log∗ |D|)3d−1 can be

replaced by |D|(log∗ |D|)2d−1. Finally , if xk ∈ S (1 ≤ k ≤ 3), then σ may

be chosen from S.

We note that P ≤ Qd
0. Corollary 2 can be readily compared with [21,

Theorem 3.1] and [29, Theorem 1.5], and may be considered as an explicit
result related to the abc conjecture over number fields; see e.g. [3] and [24].
In the special case K = Q, in order to apply Corollary 2 to the equation

x + y = z with (x, y, z) = 1 and z > 2,

in positive rational integers x, y, z, which is the equation in Stewart and Yu
[28, Theorem 2], we take K = Q, and S \ S∞ to be the set of all distinct
prime factors of xyz. Then we have D = 1, H = 2, σ = ±1. Let px, py, pz be
the greatest prime factors of x, y, z, respectively, with the convention that
if x = 1 (y = 1), then px = 1 (py = 1). Put P = max{px, py, pz} and
p′ = min{px, py, pz}. In the notation of [28], we have Q0 = G, Q∗

0 = G∗.
Now our Corollary 2 implies, on noting 12.4 + 19.2 log3 G∗ ≤ 653 log3 G∗,
that

z < exp

(

223 P

log P
G653(log3 G∗)/log2 G∗

)

.

Although this is completely explicit, it is still weaker than [28, Theorem 2]
in general, since there p′ occurs in place of the expression 223P/log P . Fur-
thermore, Chim Kwok Chi [7], following the proof of [28], has proved that

z < exp(p′G710(log3 G∗)/log2 G).

3. Bounds for the solutions of decomposable form equations.

Keeping the notation of Section 2, consider the equation

(10) F (x) = β in x = (x1, . . . , xm) ∈ Om
S ,

where β ∈ K \ {0}, and F (X) = F (X1, . . . , Xm) is a decomposable form of
degree n ≥ 3 in m ≥ 2 variables which factorizes into linear forms over K.
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These linear factors of F are uniquely determined over K up to proportional
factors from K. Fix a factorization of F into linear forms, and denote by
LF the system of these linear forms.

The first author established several effective bounds for the solutions
of equation (10), subject to certain assumptions on LF (see e.g. [10], [19],
[14]–[17] and the references given there). The most general effective results
were obtained in [17]. Here we slightly refine the assumptions on LF in [17],
in order to make them more transparent.

For a system L of non-zero linear forms in X1, . . . , Xm over K, let L∗

denote a maximal subset of pairwise linearly independent linear forms of L.
We denote by G(L∗) the graph with vertex set L∗ in which distinct l, l′ in L∗

are connected by an edge if λl + λ′l′ + λ′′l′′ = 0 for some l′′ ∈ L∗ and some
non-zero λ, λ′, λ′′ in K. Let L1, . . . ,Lk be the vertex sets of the connected
components of G(L∗). When k = 1 and L∗ has at least three elements,
L is said to be triangularly connected (cf. [19]). If k > 1, we introduce the
graph H(L1, . . . ,Lk) with vertex set {L1, . . . ,Lk}, in which the pair [Li,Lj ]
is an edge if there exists a non-zero linear form which can be expressed
simultaneously as a linear combination over K of the forms in Li and of the
forms in Lj .

Now we apply the above terminology to LF . We suppose that the de-
composable form F in (10) satisfies the following conditions:

(i) LF has rank m;
(ii) denoting by L1, . . . ,Lk the vertex sets of the connected components

of G(L∗
F ), either k = 1 or k > 1 with the graph H(L1, . . . ,Lk) being

connected.

It is obvious that (ii) depends only on LF , but not on the choice of L∗
F .

For k = 1, assumptions (i) and (ii) imply that LF is triangularly connected.
In (ii) with k > 1, for each edge [Li,Lj ] of the graph H(L1, . . . ,Lk) there

is one (and apart from proportional factors at most finitely many) non-zero
linear form li,j which can be expressed as

∑

l∈Li
λll =

∑

l∈Lj
λll such that

the total number of non-zero terms on both sides of the equality is minimal.
We pick up for each edge [Li,Lj ] such an li,j , and we denote by L′

F the set
of the li,j ’s so chosen (1).

We recall that, throughout the paper, by height we mean the absolute
logarithmic height.

Theorem 3. Let F be a decomposable form as above with properties (i)
and (ii). Further , let β ∈ K \ {0} with h(β) ≤ B, and suppose that the

heights of the coefficients of the linear forms in LF do not exceed A (≥ 1).

(1) As will be seen in the proof, it is enough to consider an L
′

F which consists of li,j
for a minimal number of edges [Li,Lj ] ensuring the connectedness of H(L1, . . . ,Lk).
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With the above notation, all solutions x = (x1, . . . , xm) ∈ Om
S

of (10) (with

l(x) 6= 0 for all l ∈ L′
F if k > 1) satisfy

max
1≤i≤m

h(xi) < c′1PRS(1 + (log∗ RS)/log∗ P )(11)

×
(

c3R +
h

d
log Q + mndA + B

)

and , for t > 0,

max
1≤i≤m

h(xi) < c′4hR2(log∗ R)R(1 + (log∗R)/log∗ P )(12)

× (P/log∗ P )T
(

c3R +
h

d
log Q + mndA + B

)

.

Further , if t = 0 (i.e. OS = OK), then the bound in (11) can be replaced by

(13) c′2R(log∗ R)(c3R + mndA + B).

Here if k = 1, then c′i = 25m(n−1)ci (i = 1, 2) and c′4 = 12.5m(n−1)c4, and

if k>1, then c′i = 50m(m + 1/2)(n−1)ci (i = 1, 2) and c′4 = 25m(m + 1/2)
× (n− 1)c4, where c1, c2 are the constants specified in Theorem 1, and c4 is

specified in Theorem 2.

Our bounds improve upon the corresponding estimates of Theorem 1 of
[16] and Theorem 1 of [17]. Further, (12) implies an improved and explicit
version of Theorem 3.4 of [21]. It should be observed that there is no factor of
the form ss or tt in the bound in (12). This will be important for Corollaries
4 and 5.

It is clear that binary forms having at least three pairwise non-proportio-
nal linear factors are triangularly connected. Further, as is known (see e.g.
[19], [16] and [17]), discriminant forms and index forms are also triangularly
connected, and a large class of norm forms in m variables satisfies conditions
(i), (ii), with k > 1 and L′

F = {Xm}. Therefore our Theorem 3 improves
upon the bounds in Corollaries 2, 3, 4.1 and 5 of [16] on the S-integer
solutions of norm form, discriminant form and index form equations.

We present a consequence of Theorem 3 for the Thue equation

(14) F (x1, x2) = β in x1, x2 ∈ OS,

where F (X1, X2) denotes a binary form of degree n with splitting field K
and with at least three pairwise non-proportional linear factors. Suppose
that the heights of the coefficients of F do not exceed A (≥ 1).

The next corollary is a significant improvement of Corollary 1 of [17].

Corollary 3. All solutions (x1, x2) ∈ O2
S

of (14) satisfy (11) and (12)
for t > 0 and (13) for t = 0 (when OS = OK), with c′i for k = 1 replaced by

5d2n5c′i for i = 1, 4, 2, respectively.
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As is known (see e.g. [16]), equation (10) is in fact equivalent to the
equation of Mahler type

(15) F (x) ∈ βS in x = (x1, . . . , xm) ∈ Om
K ,

where, as above, S = OK ∩O∗
S
. If F satisfies the assumptions of Theorem 3

and x1, . . . , xm is a solution of (15) for which the norm N((x1, . . . , xm)) of
the ideal (x1, . . . , xm) is bounded, then Theorem 3 implies an explicit upper
bound for max1≤i≤m h(εxi) with an appropriate ε ∈ O∗

K .
We formulate a further consequence of Theorem 3. We denote by ω(α)

the number of distinct prime ideal divisors of α ∈ OK \ {0}, and by P (α)
the greatest of the norms of these prime ideals (with the convention that
P (α) = 1 if α ∈ O∗

K).

Corollary 4. Let F be a decomposable form as in Theorem 3 with

coefficients in OK, and let N0 be a positive integer. If x = (x1, . . . , xm) ∈ Om
K

and N((x1, . . . , xm)) ≤ N0 with F (x) 6= 0 (and with l(x) 6= 0 for l ∈ L′
F if

k > 1) then

(16) P (log P )ω > c8(log N)c9

and

(17) P >

{

c10(log N)c11 if ω ≤ log P/log2 P,

c12(log2 N)(log3 N)/(log4 N) otherwise,

provided that N = max1≤i≤m |NK/Q(xi)| ≥ N1, where P = P (F (x)) and

ω = ω(F (x)). Here c8, . . . , c12 and N1 are effectively computable positive

numbers which depend at most on F , K, and N0.

An important special case is when k = 1, m = 2, i.e. when F is a binary
form with splitting field K and with at least three pairwise non-proportional
linear factors. Our Corollary 4 can be compared with the estimate (10)
in [11], Theorem 7 in [15], and with Theorems 3.3 and 3.5 in [21] where, for
k = 1, the second of our lower estimates in (17) is proved for all ω.

We note that if F (X) ∈ OK [X] is a polynomial of degree n with splitting
field K and with at least two distinct zeros, then, applying Corollary 4 to
the binary form Y n+1F (X/Y ), we obtain (16) and (17) for P = P (F (x)),
ω = ω(F (x)), N = |NK/Q(x)| with x ∈ OK , provided that N is sufficiently
large.

Corollary 4 motivates the following.

Conjecture. With the assumptions and notation of Corollary 4, we

have

P > c13 (log N)c14 if N ≥ N1,

where c13, c14 and N1 are effectively computable positive constants depending

at most on F , K and N0.



18 K. Győry and K. R. Yu

The following corollary enables us to obtain some new information about
the arithmetical structure of those algebraic integers of K which can be
represented by a decomposable form of the above type.

Corollary 5. Suppose F and N0 are as in Corollary 4. Let F0 be any

non-zero integer in K represented by F (x1, . . . , xm), where x1, . . . , xm ∈ OK

with N((x1, . . . , xm)) ≤ N0 (and with l(x1, . . . , xm) 6= 0 for l ∈ L′
F if k > 1).

Then

P >

{

c15(log N)c16 if ω ≤ log P/log2 P,

c17(log2 N)(log3 N)/(log4 N) otherwise,

provided that N = |NK/Q(F0)| ≥ N2, where P = P (F0) and ω = ω(F0).
Here c15, c16, c17 and N2 are effectively computable positive numbers which

depend at most on F , K, and N0.

This is a generalization and a considerable improvement of Corollary 1
of [11]. As was mentioned above, binary forms, discriminant forms and index
forms (with k = 1) and a large class of norm forms satisfy the conditions of
our Corollaries 4 and 5.

4. Auxiliary results. Keeping the notation of the preceding sections,
let again K denote an algebraic number field with the parameters d, R, h
and r specified above. Denote by MK the set of places on K. For every
place v we choose a valuation | · |v in the usual way: if v is infinite and
corresponds to σ : K → C, then we put, for α ∈ K, |α|v = |σ(α)|dv , where
dv = 1 or 2 according as σ(K) is contained in R or not; if v is a finite place
corresponding to the prime ideal p in K, then we put |α|v = N(p)− ordp α for
α ∈ K \ {0}, and |0|v = 0. Here, for α 6= 0, ordp α denotes the exponent to
which p divides the principal fractional ideal (α).

The absolute logarithmic height h(α) of α ∈ K is defined by

h(α) =
1

d

∑

v∈MK

log max{1, |α|v}.

It depends only on α, and not on the choice of the number field K contain-
ing α. For properties of this height, we refer to [31].

As in Section 2, p1, . . . , pt will denote the prime ideals of K corresponding
to the finite places of S. For α ∈ K \ {0}, the fractional ideal (α) can be
written uniquely as a product of two fractional ideals a1, a2, where a1 is
composed of p1, . . . , pt and a2 is composed solely of prime ideals different
from p1, . . . , pt. Then the S-norm of α is defined as NS(α) = N(a2).

Finally, ωK will denote the number of roots of unity in K.
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Proposition 1. For n ≥ 1, let α1, . . . , αn be multiplicatively indepen-

dent non-zero elements of K. If K is of degree d ≥ 2, then

58(n!en/nn)dn+1(log d)h(α1) · · ·h(αn) ≥ ωK ,

while if d = 1, the expression 58dn+1(log d) can be replaced by 17.

Proof. This is a consequence of Theorem 3 of Loher and Masser [22].

As is known, n!en/nn is asymptotic to
√

2πn and

(18) n!en/nn ≤ e
√

n.

For simplicity, we shall apply Proposition 1 together with (18).
For s ≥ 2, let

c18 = ((s − 1)!)2/(2s−2ds−1), c′18 = (s − 1)!/ds−1.

Further, for s ≥ 3, let

c19 (resp. c′19) =

{

8.5e
√

s − 2 c18 (resp. c′18) if d = 1,

29e
√

s − 2 ds−1(log d) c18 (resp. c′18) if d ≥ 2,

and

c20 =

{

((s − 1)!)2/(2s−2 log 2) if d = 1,

(((s − 1)!)2/2s−1)(log(3d))3 if d ≥ 2.

Lemma 2. Let s ≥ 2. There exists in K a fundamental (resp. indepen-

dent) system {ε1, . . . , εs−1} of S-units with the following properties:

(i)
s−1
∏

i=1

h(εi) ≤ c18RS (resp. c′18RS);

(ii) max
1≤i≤s−1

h(εi) ≤ c19RS (resp. c′19RS) if s ≥ 3;

(iii) the absolute values of the entries of the inverse matrix of

(log |εi|vj
)i,j=1,...,s−1 of the fundamental system {ε1, . . . , εs−1}

do not exceed c20.

We note that (i) and (iii) were proved in [5] and [6], respectively, in
the “fundamental” case, and (i) was obtained in [4] in the “independent”
case. The inequality (ii) is an improvement, at least in terms of s, of the
corresponding statements of [5], [6] and [4].

Proof of Lemma 2. For the proof of (i), see Lemma 1 in [5] and its
proof. (ii) is an immediate consequence of (i), Proposition 1 and (18). To
prove (iii), it is enough to combine the proof of (iii) in Lemma 1 of [5] with
the inequality

(19) dh(εi) ≥
{

log 2 if d = 1,

2/(log 3d)3 if d ≥ 2,

which, for d ≥ 2, is due to Voutier [30].
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The next lemma has various variants in the literature.

Lemma 3. For every α ∈ OS \ {0} and for every integer n ≥ 1 there

exists an ε ∈ O∗
S

such that

h(εnα) ≤ 1

d
log NS(α) + n

(

c3R +
h

d
log Q

)

with c3 defined in Section 2.

Lemma 3 was proved in [5] and [17] with a larger c3. We remark that in
the special case t = 0, the unit ε ∈ O∗

K occurring in Lemma 3 can be chosen
from the group generated by independent units having properties specified
in (i) and (ii) of Lemma 2.

Proof of Lemma 3. We combine the proof of Lemma 2 of [5] with our
Lemma 2. First consider the case t = 0, when α ∈ OK \ {0}. If r = 0, the
assertion immediately follows with ε = 1. Suppose that r ≥ 1, and choose a
system of independent units ε1, . . . , εr in K with the properties specified in
Lemma 2. As in [5], consider the system of linear equations

r
∑

j=1

(log |εj|vi
)Xj = − log(M−dvi

/d|α|vi
), i = 1, . . . , r + 1,

where M = |NK/Q(α)| and v1, . . . , vr+1 denote the infinite places on K.
This system has a unique solution (x1, . . . , xr) ∈ Rr. Let (b1, . . . , br) be the
unique point in Zr such that

xj = nbj + ̺j with −1

2
n < ̺j ≤

1

2
n, j = 1, . . . , r.

Putting ε = εb1
1 · · · εbr

r , we infer that

|log(M−dvi
/d|εnα|vi

)| ≤ n

2

r
∑

j=1

|log |εj|vi
|

for i = 1, . . . , r + 1. Then using the product formula for εj , we deduce that

h(εnα) ≤ 1

d

r+1
∑

i=1

|log |εnα|vi
| ≤ 1

d
log M +

n

d

r
∑

j=1

r
∑

i=1

|log |εj |vi
|.

We assert that if r > 1, then the inner sum in the extreme right-hand side
of the above inequality is at most (d/r)c3R. This can be seen by using [5,
(9), (10)], the second inequality of [5, (12)] and by applying Proposition 1
to any r − 1 of the εi (1 ≤ i ≤ r). Thus Lemma 3 is proved for r > 1. If
r = 1, we can use (i) of Lemma 2 to prove the assertion.
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The case t > 0 of our lemma follows from the case t = 0 in the same
way as in the proof of Lemma 10 of [8], observing that Q can be taken
everywhere in place of P td with P = max{p1, . . . , pt} considered in [8].

Let

(20) Λ = αb1
1 · · ·αbn

n − 1,

where α1, . . . , αn are n (≥ 2) non-zero elements of K, and b1, . . . , bn are
rational integers, not all zero, with

B∗ = max{|b1|, . . . , |bn|}.
Set

Ai ≥ max{dh(αi), π}, i = 1, . . . , n.

The following result is a consequence of a deep theorem of Matveev [25].

Proposition 4. Suppose Λ 6= 0, bn = ±1 and B satisfies

(21) B ≥ max{B∗, 2emax(nπ/
√

2, A1, . . . , An−1)An}.
Then

(22) log |Λ| > −c21(n, d)A1 · · ·An log(B/(
√

2 An)),

where

c21(n, d) = min{1.451(30
√

2)n+4(n + 1)5.5, π26.5n+27}d2 log(ed).

Proof. Let log denote the principal value of the logarithm. There exists
an even rational integer b0 such that |b0| ≤ |b1| + · · · + |bn| ≤ nB∗ and that
|Im(Σ)| ≤ π, where

Σ := b0 log α0 + b1 log α1 + · · · + bn log αn

and α0 = −1. The assumption Λ 6= 0 implies that Σ 6= 0. We may assume
that |eΣ − 1| = |Λ| ≤ 1/3. Then |Σ| ≤ 0.6, whence

(23) |Λ| ≥ 1
2 |Σ|.

Using |log |αi|| ≤ dh(αi), it is easy to show that

|log αi| ≤
√

2max(dh(αi), π), i = 1, . . . , n.

Thus, setting A0 = π/
√

2, we have
√

2 Ai ≥ max{dh(αi), |log αi|, 0.16}, i = 0, 1, . . . , n.

Further, (21) implies
(

B√
2An

)2

≥ emax

{

1, max
0≤i≤n

( |bi|Ai

An

)}

.

By applying now Corollary 2.3 of [25] to |Σ| and using (23), we obtain (22).
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For s ≥ 3, let

c22 = e
√

s − 2 (((s − 1)!)2/2s−2)πs−2 ·
{

8.5 if d = 1,

29d log d if d ≥ 2.

When we apply Proposition 4, we shall get better bounds by using the
following technical lemma.

Lemma 5. Let {ε1, . . . , εs−1} be a fundamental system of S-units in K
with the properties specified in Lemma 2. Then

(24)

s−1
∏

i=1

max(dh(εi), π) ≤
{

max(RS, π) if s = 2,

c22RS if s ≥ 3.

Proof. The case s = 2 is trivially true by Lemma 2. Suppose s ≥ 3. Let
k denote the number of indices i with 1 ≤ i ≤ s − 1 such that dh(εi) < π.

Suppose first 1 ≤ k ≤ s−2 and, without loss of generality, dh(εi) < π for
i = 1, . . . , k and dh(εj) ≥ π for j = k+1, . . . , s−1. Thus, using Proposition 1
and Lemma 2, we infer that

s−1
∏

i=1

max(dh(εi), π) =
πk

dkh(ε1) · · ·h(εk)
ds−1h(ε1) · · ·h(εs−1)

≤ πk

dk

{

8.5 if d = 1

29dk+1 log d if d ≥ 2

}

e
√

k
((s − 1)!)2

2s−2
RS ≤ c22RS,

which proves (24).
If k = 0, then (24) immediately follows from (i) of Lemma 2. Consider

now the case k = s − 1. Then (7) and RK ≥ 0.2052 (cf. [9]) imply that if
s ≥ 3 then

(25) RS ≥
{

(log 3)(log 2) if d = 1,

0.2052(log 2)s−2 if d ≥ 2.

By k = s − 1 we have dh(εi) < π for all i. Hence (24) follows from (25).

Consider again Λ defined by (20). Let B and Bn be real numbers satis-
fying

(26) B ≥ max{|b1|, . . . , |bn|}, B ≥ Bn ≥ |bn|.
Denote by p a prime ideal of OK lying above the prime number p, and by ep

and fp the ramification index and the residue class degree of p, respectively.
Thus N(p) = pfp .

The following result is due to Yu [33].

Proposition 6. Assume that ordp bn ≤ ordp bj for j = 1, . . . , n, and set

h′
j = max{h(αj), 1/(16e2d2)} (j = 1, . . . , n).
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If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

ordp Λ < c23(n, d)en
p

N(p)

(log N(p))2
max

{

h′
1 · · ·h′

n log M,
δB

Bnc24(n, d)

}

,

where
c23(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

c24(n, d) = (2d)2n+1 log(2d) log3(3d),

and
M = (Bn/δ)c25(n, d)N(p)n+1h′

1 · · ·h′
n−1

with
c25(n, d) = 2e(n+1)(6n+5)d3n log(2d).

Proof. This is the Corollary of Theorem 4 in [33]. As is remarked in [33],
for p > 2, the expression (16ed)2(n+1) can be replaced by (10ed)2(n+1).

Proposition 6 will be used in the proof of Theorem 1. In the proof of
Theorem 2 we shall apply the next proposition, which is sharper than Propo-
sition 6 in the dependence on d and n when all αj (j = 1, . . . , n) are p-adic
units.

Proposition 7. Suppose that ordp bn ≤ ordp bj and ordp αj = 0 for

j = 1, . . . , n, and that α1, . . . , αn−1 are multiplicatively independent. Set

h′′
n = max{h(αn), 1/(8e2d)}.

If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

ordp Λ < c′23(n, d)en
p

N(p)

(log N(p))2

× max

{

h(α1) · · ·h(αn−1)h
′′
n log M ′,

δB

Bnc′24(n, d)

}

,

where

c′23(n, d) = cann3/2dn+2 log(2nd) log(2d)

with

c =

{

1692, p > 2,

292, p = 2,
a =

{

48e2, p > 2,

128e2, p = 2,

c′24(n, d) = (2d)n+1 log(2d) log3(3d),

and

M ′ = (Bn/δ)c′25(n, d)N(p)n+1h(α1) · · ·h(αn−1)

with

c′25(n, d) = 2e(n+1)(6n+5)d2n+1 log(2d).

Proof. This is again a consequence of Theorem 4 in [33].
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5. Proofs of the theorems

Proof of Theorem 1. We follow the proof of the Theorem of [5], and only
those steps will be detailed which differ from those in [5].

Let x, y be a solution of (1.a). We may assume that h(x) ≥ h(y). Let
ε1, . . . , εs−1 be a fundamental system of S-units in K with the properties
specified in Lemma 2. Then y can be written in the form

(27) y = ζεb1
1 · · · εbs−1

s−1 ,

where ζ is a root of unity in K and b1, . . . , bs−1 are rational integers. We
derive as in [5] that

(28) max {|b1|, . . . , |bs−1|} ≤ 2c20dh(x).

Set αs = ζβ and bs = 1. Let v ∈ S for which |x|v is minimal. Then, using
(1.a), we deduce that

(29) log |εb1
1 · · · εbs−1

s−1 αbs
s − 1|v = log |αx|v ≤ −d

s
h(x) + dH.

First assume that v is infinite. We shall prove that

(30) h(x) < c26(s, d)RS(log∗ RS)H,

where

c26(s, d) = min{s2s+723.2s+35.2, s2s+1.524.3s+λ} log(2s)(d log∗(2d))3

with

λ =











40 if s ≥ 3, d ≥ 2,

37.3 if s = 2 with d ≥ 2, or s ≥ 3 with d = 1,

35.4 if s = 2, d = 1.

Set

(31)
Ai = max(dh(εi), π), i = 1, . . . , s − 1,

As = dH ≥ max(dh(αs), π).

We may assume that

2c20dh(x) > 2emax(sπ/
√

2, A1, . . . , As−1)As,

since otherwise (30) follows easily from Lemma 2 and Proposition 1. By
applying Proposition 4 and Lemma 5, and using (29) and (4), we infer that

log |αx|v > −dvc21(s, d)

{

max{RS, π} if s = 2

c22RS if s ≥ 3

}

· dH log

(

2c20h(x)√
2H

)

with the c21(s, d), c22 occurring in Proposition 4 and Lemma 5, respectively.
Together with (29) this implies (30).

We note that for t = 0, (30) implies the second part of Theorem 1.
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Next assume that v is finite, corresponding to the prime ideal p. So the
equality in (29) implies that

(32) log |αx|v = − ordp(ε
b1
1 · · · εbs−1

s−1 αbs
s − 1) · log N(p).

We set B = 2c20dh(x). Further, we assume that

(33) B ≥ 2c24(s, d)h(ε1) · · ·h(εs−1)H,

since otherwise, using Lemma 2, we obtain (2). In view of (19) and H ≥ 1,
for i = 1, . . . , s − 1 we have

h′
i = max

{

h(εi),
1

16e2d2

}

= h(εi), h′
s = max

{

h(αs),
1

16e2d2

}

≤ H.

We choose

δ = c24(s, d)h(ε1) · · ·h(εs−1)H/B.

Then, by (33), we have δ ≤ 1/2. Applying Proposition 6 we get the following
lower bound for the right side of (32):

(34) −c23(s, d)ds N(p)

log N(p)
max

{

h(ε1) · · ·h(εs−1)H log M,
δB

c24(s, d)

}

,

where
M = δ−1c25(s, d)N(p)s+1h(ε1) · · ·h(εs−1)

and c23, c24, c25 denote the expressions occurring in Proposition 6, with n
replaced by s. Using (29), (34), our choice of δ, and Lemma 2(i), we infer
that

d

s
h(x) < (1 + 10−11)c18(s, d)c23(s, d)ds N(p)

log N(p)
RSH log Y1,

where

Y1 =
c25(s, d)

c24(s, d)

2c20(s, d)dh(x)

H
N(p)s+1,

whence

Y1

log Y1
< 2(1 + 10−11)c18(s, d)c20(s, d)c23(s, d)

c25(s, d)

c24(s, d)
sds N(p)s+2

log N(p)
RS

=: M1.

This gives

Y1 < 1.059M1 log M1,

since M1 > 2.24 ·1032. Observe that N(p)/log N(p) ≤ (1/log 2)P/log∗ P and

log M1 < 10.2 s2 log∗(2d)(log∗ P + log∗ RS),

where 10.2 can be replaced by 7.9 when d ≥ 2. Now

h(x) < s2s+3.527s+19.4 log(2s)d2s+2(log∗(2d))3PRs(1 + (log∗ RS)/log∗ P )H

by a careful computation. On combining this with (30), we arrive at (2).
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Proof of Theorem 2. To obtain better bounds, we combine the proof of
Lemma 6 of [12] with the case t = 0 of our Theorem 1. Further, we use
Lemmas 2 and 3 in the present improved forms, and replace the estimate
used in [12] for linear forms in logarithms in the p-adic case by a recent
improved bound of Yu’s (cf. Proposition 7).

We may assume without loss of generality that, in (1.b), xk ∈ OK ∩ O∗
S

for k = 1, 2, 3. This can be achieved by multiplying (1.b) by an appropriate
S-unit. We write

(xk) = p
u1k

1 · · · putk
t and uik = hivik + rik

with rational integers uik, vik ≥ 0 and 0 ≤ rik < hi for k = 1, 2, 3 and
i = 1, . . . , t. There are integers πi and γk in OK such that p

hi

i = (πi) and
(γk) = p

r1k

1 · · · prtk
t . Further, by Lemma 3 with t = 0, πi and γk can be chosen

so that

(35) h(πi) ≤ 2max

{

hi

d
log N(pi), c3R

}

≤ 2

d
R log∗ P, i = 1, . . . , t,

and

h(γk) ≤
1

d

t
∑

i=1

hi log N(pi) + c3R(36)

≤ 2max

{

1

d

t
∑

i=1

hi log N(pi), c3R

}

=: Z, k = 1, 2, 3.

Then we have

(37) xk = εkγkπ
v1k

1 · · ·πvtk

t , k = 1, 2, 3,

with some units εk from K. We note that if r = 0, then c3 = 0 and the
factor 2 in (35) and (36) can be replaced by 1.

Let ai = mink vik and v′ik = vik − ai for k = 1, 2, 3 and i = 1, . . . , t.
We may assume that V := maxi,k v′ik = v′11 > 0 and v′13 = 0. If r ≥ 1,
let η1, . . . , ηr be a fundamental system of units in K with the properties
specified in Lemma 2. Then

(38) εk/ε3 = ζkη
w1k

1 · · · ηwrk
r , k = 1, 2, 3,

where ζk is a root of unity in K and w1k, . . . , wrk are rational integers such
that ζ3 = 1 and w13 = · · · = wr3 = 0. Obviously, (38) holds for r = 0 as
well. Putting σ = ε3π

a1

1 · · ·πat
t , we infer that

xk = σ̺k, k = 1, 2, 3,

where

(39) ̺k = ζkγkη
w1k

1 · · · ηwrk
r π

v′

1k

1 · · ·πv′

tk
t ∈ OK ∩ O∗

S, k = 1, 2, 3.
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We are going to derive an upper bound for V . In order to be able to apply
Proposition 7 and avoid the use of γk (which yields a slight improvement in
our bound on V ), we introduce some further notation. Put

W = max
j,k

|wjk| and B = max{V, W}.

For r ≥ 1, there are rational integers t1k, . . . , trk and a root of unity ζ ′k in K
such that

(40) γh
k = ζ ′kη

t1k

1 · · · ηtrk
r π

r′
1k

1 · · ·πr′
tk

t , k = 1, 2, 3,

where r′ik = rikh/hi for i = 1, . . . , t. This implies that

r
∑

j=1

tjk log |ηj |v = h log |γk|v −
t

∑

i=1

r′ik log |πi|v

for each infinite place v of K (which are normalized as in Lemma 2). Using
the fact that |log |α|v| ≤ dh(α) for α ∈ OK \ {0} and applying (35), (36)
and Lemma 2, we deduce that

(41) max
j,k

|tjk| ≤ c27Z

with c27 = (t + 3)hdc⋆
20, where c⋆

20 denotes the constant c20 with the choice
s = r + 1, i.e. c⋆

20 = (r!)2(log(3d))3/2r for r ≥ 1. For r = 0, let c27 = 0. We
may assume that

(42) V > 17dH.

We show that α2̺2/(α3̺3) is not a root of unity. Indeed, if α2̺2 = ζα3̺3

with some root of unity ζ, then (1.b) gives

α1̺1 = −(1 + ζ)α3̺3.

But we have

(43) |ordp1
α| ≤ d

log N(p1)
h(α)

for each α ∈ K, α 6= 0 (see e.g. [32, p. 124]). Hence we deduce that

h1V ≤ ordp1
̺1 ≤ ordp1

((1 + ζ)α3/α1) + ordp1
̺3 ≤ 3d

log 2
H + h1,

which contradicts (42).

In view of (42) it follows that ordp1

(α1̺1

α3̺3

)

> 0. Thus we infer from (1.b),

(39) and (42) that

(44) 0.8h1V < ordp1

(

α1̺1

α3̺3

)

≤ ordp1

((−α2̺2

α3̺3

)h

− 1

)

.
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To apply Proposition 7 to the right side of (44) we have to make some
preparation. In view of (39) and (40) we can write

(45)

(

−α2̺2

α3̺3

)h

= ηb1
1 · · · ηbr

r π
br+2

2 · · ·πbr+t

t (π
br+1

1 βr+t),

where b1, . . . , br+t are rational integers and βr+t = ζ ′(−α2/α3)
h with an

appropriate root of unity ζ ′. Further, by virtue of (41) and h < 2c27Z if
r ≥ 1, we obtain

(46) max
1≤j≤r+t, j 6=r+1

|bj | ≤ hB + 2c27Z.

We infer from (44) that (−α2̺2/(α3̺3))
h is a p1-adic unit. Then, by (45),

π
br+1

1 βr+t is also a p1-adic unit, that is, we have

(47) ordp1
βr+t + h1br+1 = 0.

Putting β′
r+t = βr+tπ

br+1

1 and using (43) and (47), we obtain

(48) h(β′
r+t) ≤

6

h1 log N(p1)
max{h1 log N(p1), c3dR}hH.

Here 6 may be replaced by 4 if r = 0. We note that

h′′
r+t := max

{

h(β′
r+t),

1

8e2d

}

has the same upper bound. Further, we recall that η1, . . . , ηr, π2, . . . , πt are
p1-adic units and are multiplicatively independent.

We are now in a position to apply Proposition 7. We may assume that
in (46),

(49) hB + 2c27Z ≤ 5

4
hB =: B′,

since otherwise we get at once a better upper bound for B, and hence also
in (5), than required. For brevity, we write

Π = h(η1) · · ·h(ηr)h(π2) · · ·h(πt).

We may assume that

(50) B′ ≥ c′24(r + t, d)e4(r+t+1)P 2/3h′′
r+t max{Π, 1},

since otherwise we again obtain a better upper bound for B than required.
We choose

δ =
c′24(r + t, d)h′′

r+tΠ

B′
.

Then, by (50), we have 0 < δ < 1/2. Proposition 7 gives the upper bound

c′23(r + t, d)dr+t N(p1)

(log N(p1))2
Πh′′

r+t log M ′
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for the right side of (44), where

M ′ :=
c′25(r + t, d)

c′24(r + t, d)
N(p1)

r+t+1 B′

h′′
r+t

.

In view of (50) we have

log M ′ ≤ 2(r + t + 1) log

(

B′

h′′
r+t

)

.

Set

T ′ = 2t−1
t

∏

i=2

max{hi log N(pi), c3dR},

where 2t−1 may be replaced by 1 if r = 0. Using now (35), (45), (46), (48),
(49), (50) and Lemma 2 we deduce that

c28
N(p1)

(log N(p1))2
RT ′h′′

r+t log

(

B′

h′′
r+t

)

is an upper bound for the right side of (44), where

c28 = 2(r + t + 1)dr+1c⋆
18c

′
23(r + t, d).

Here c⋆
18 denotes the constant c18 with the choice s = r + 1, i.e. c⋆

18 =
(r!)2/(2r−1dr) if r ≥ 1, and c⋆

18 = 1 if r = 0. In view of (44) we infer that

(51) V < c29
N(p1)

(log N(p1))2
RT ′h′′

r+t log

(

B′

h′′
r+t

)

,

where c29 = 1.25c28.

If V = B then (51) and (49) yield

Y2

log Y2
< 1.25c29

N(p1)

(log N(p1))2
hRT ′ =: M2

for Y2 = B′/h′′
r+t. Now M2 > 1.53 ·106 if r = 0 and M2 > 2.41 ·1011 if r ≥ 1.

Thus

Y2 < 1.2M2 log M2,

where 1.2 can be replaced by 1.13 if r ≥ 1. By the definition of T in Section 2,
the definition of T ′ and (48), we have

T ′h′′
r+t ≤ 4T hH/log N(p1),

where 4 can be replaced by 3 if r ≥ 1. Observe further that

log M2 < 0.646(log c29)(log∗ P + log∗R),

and that
N(p1)

(log N(p1))3
<

2

19

(

log 19

log 2

)3 P

(log∗ P )3
.
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It follows from the above estimates that

(52) B < c30
P

(log∗ P )3
Rh(log∗ P + log∗R)T H,

where c30 = 25.02c29(log c29), and 25.02 may be replaced by 17.68 if r ≥ 1.
If in particular r = 0, then obviously V = B. In this case c3 = 0, R = 1,

R = h, and the right-hand side of (52) is greater than 4.59 · 108. Thus using
(39), (35), (36), we obtain

max
k

h(̺k) < (B + 1)
t

d
h log∗ P

< (1 + 2.18 · 10−9)c30
t

d

P

(log∗ P )2
h2(log∗ P + log∗ h)T H,

which yields the bound (6) for maxk h(̺k), since

(1 + 2.18 · 10−9)c30t < c5(d, t)d

(in fact the left-hand side of the above inequality reaches its maximum
0.789 . . . at r = 0, d = 2, t = 13). If r ≥ 1 and B = V , then (39), (35), (36),
Lemma 2(ii) and (52) imply

max
k

h(̺k) < (B + 1)(2t/d + r!/(d 2r−1))R log∗ P(53)

< c31
P

(log∗ P )2
RhR(log∗ P + log∗R)T H,

where c31 = (4t/d)(r!/2r−1)c30.
There remains the case r ≥ 1 with B = W . In this case we shall use (51).

We reduce equation (1.b) to the case t = 0 of equation (1.a). Let

α = −ζ1

(

α1γ1

α3γ3

) t
∏

i=1

π
v′

i1−v′

i3

i , β = −ζ2

(

α2γ2

α3γ3

) t
∏

i=1

π
v′

i2−v′

i3

i .

Then

x = ηw11

1 · · · ηwr1

r , y = ηw12

1 · · · ηwr2

r

is a solution of equation (1.a) in x, y ∈ O∗
K . We may assume that h(x) ≥

h(y). Then we deduce as in (28) that B = W ≤ 2dc⋆
20h(x), where c⋆

20 =
c20(d, r + 1) = ((r!)2/2r)(log(3d))3. We may assume further that h(x) ≥
2.5hdc⋆

20h
′′
r+t. Thus we have, by (49), B′/h′′

r+t ≤ (h(x)/h′′
r+t)

2. In view of
(35), (36), (42) and (51) we obtain

(54) max{h(α), h(β)} ≤ 2H + (t + 1 + V t)(2/d)R log∗ P

≤ V
2t

d
R log∗ P

(

1

17t
+

t + 1

68t
+ 1

)

≤ 37

17

t

d
V R log∗ P

< 4.353c29
t

d

N(p1) log∗ P

(log N(p1))2
RRT ′h′′

r+t log

(

h(x)

h′′
r+t

)

=: H ′.
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With the above choice of α, β we can now apply the case t = 0 of our
Theorem 1 to equation (1.a) and we get

h(x) < c2(d, r)R(log∗ R)H ′

≤ c32
N(p1) log∗ P

(log N(p1))2
R2(log∗ R)RT ′h′′

r+t log

(

h(x)

h′′
r+t

)

with c32 = 4.353(t/d)c29c2(d, r), where c2(d, r) denotes the constant occur-
ring in (3). This implies that, with Y3 := h(x)/h′′

r+t,

Y3

log Y3
< c32

N(p1) log∗ P

(log N(p1))2
R2(log∗ R)RT ′ =: M3.

On noting M3 > 1.74 · 1028, we get Y3 < 1.066M3 log M3. Observing further
that

log M3 < 0.646(log c31)(log∗ P + log∗R), T ′h′′
r+t ≤ 3T hH/log N(p1),

N(p1)/(log N(p1))
3 < (2/19)(log 19/log 2)3P/(log∗ P )3,

we obtain

(55) h(x) < c33
P

(log∗ P )2
hR2(log∗ R)R(log∗ P + log∗R)T H =: X0,

where c33 = 16.67c32 log c32. Putting

τk = ζkγkπ
v′

1k

1 · · ·πv′

tk
t , k = 1, 2, 3,

we have

(56) ̺1 = xτ1, ̺2 = yτ2, ̺3 = τ3.

Fix k ∈ {1, 2, 3}. If h(τk) ≤ h(x), then (56) and (55) give

(57) h(̺k) ≤ 2X0 for this k.

Now suppose that h(τk) > h(x). We deduce as in (54) that

h(τk) ≤ (t + 1 + 2V t)(1/d)R log∗ P(58)

≤ V
t

d
R log∗ P

(

t + 1

68t
+ 2

)

≤ 69

34

t

d
V R log∗ P

< 4.06c29
t

d

N(p1) log∗ P

(log N(p1))2
RRT ′h′′

r+t log

(

h(τk)

h′′
r+t

)

< c32
N(p1) log∗ P

(log N(p1))2
R2(log∗ R)RT ′h′′

r+t log

(

h(τk)

h′′
r+t

)

since c2(d, r)R log∗ R > 1 by the fact that R > 0.2052 (cf. [7]). As before,
this gives h(τk) < X0. Hence we obtain (57) again. On combining (57) with
(53) and noting that

c31/R ≤ c31/0.2052 ≤ 2c33 < c4(d, r, t)
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(in fact 2c33/c4(d, r, t) reaches its maximum 0.59 . . . at r = 1, d = 2, t = 13),
we see that (5) holds when r ≥ 1. It is readily seen that the right-hand side of
(5) with r = 0 is greater than the quantity in (6). Thus Theorem 2 follows.

Proof of Corollary 1. The assertion with the bounds (8.a) and (8.c)
follows from Theorem 1 in the same way as the Corollary was deduced from
the Theorem in [5], but using the fact that, by (7),

RS ≥ 0.2052(log 2)t ≥ 0.2052(log 2)s.

Next suppose that t > 0. If the bound in (8.b) is greater than that
in (8.a) then we are done. Consider now the case when the bound (8.b) does
not exceed (8.a). Let x1, x2, x3 be a solution of (1.c). Then, by Lemma 3,
there are εk ∈ O∗

S
such that

h(xk/εk) ≤ N − H, k = 1, 2, 3.

Now ε1, ε2, ε3 satisfy

β1ε1 + β2ε2 + β3ε3 = 0,

where βk = αkxk/εk, k = 1, 2, 3. Note that h(βk) ≤ h(αk) + h(xk/εk) ≤ N .
By Theorem 2, there exists ε ∈ O∗

S
such that

h(εεk) < 0.6c4hR2(log∗ R)R(1 + (log∗R)/log∗ P )(P/log∗ P )T N
(k = 1, 2, 3).

Here for the factor 0.6 see the end of the proof of Theorem 2. Thus for
k = 1, 2, 3 we have

h(εxk) ≤ h(εεk) + h(xk/εk)

< c4hR2(log∗ R)R(1 + (log∗R)/log∗ P )(P/log∗ P )T N ,

which completes the proof of Corollary 1.

Proof of Corollary 2. In view of Theorem 2 it suffices to deduce (9) from
(5) for r ≥ 1 and from (6) for r = 0. We have

(59) hR ≤ |D|1/2(log∗ |D|)d−1.

This can be seen as follows. If K = Q or K = Q(
√
−3), we have h = R = 1,

and D = 1 or D = −3, respectively, hence (59) holds trivially. The remaining
cases of (59) follow from (2) in [23] and

(60) ωK ≤ 20d log2 d if d ≥ 3,

where ωK denotes the number of roots of unity in K. Since Euler’s function
φ(ωK) divides d, (60) is an immediate consequence of [27, Theorem 15].

We treat first the case r ≥ 1. Using the notation of Theorem 2, we infer
from (59) and R ≥ 0.2052 that

(61) R ≤ c34|D|1/2(log∗ |D|)d−1
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with c34 = max {c3d, 4.88}, and

(62) T ≤ (c35|D|1/2(log∗ |D|)d−1)t
t

∏

i=1

log N(pi),

where c35 = (2/log 2)c34. Further it follows from (59) and (61) that

(63) hR2(log∗ R)R
(

1 +
log∗R
log∗ P

)

≤ 4d2c34(log c34)|D|3/2(log∗ |D|)3d−1;

here we have used the facts that 1.5 + (d − 1)/e ≤ 1.5d and log c34 + 0.5 +
(d − 1)/e ≤ 1.32d log c34.

Denote by t0 the number of distinct prime factors of Q = N(p1 · · · pt).
Then t ≤ dt0. It follows from explicit estimates in [27] or [26] that

(64) t0 < 1.5
log Q0

log2 Q∗
0

.

Further, from (64), t ≤ dt0, and

t
∏

i=1

log N(pi) ≤
(

log Q

t

)t

≤
(

d log Q0

t

)t

,

it follows that

(65)

t
∏

i=1

log N(pi) ≤ Q
19.16d(log3 Q∗

0
)/log2 Q∗

0

0 .

Indeed, let

η = t log

(

d log Q0

t

)(

d(log Q0) log3 Q∗
0

log2 Q∗
0

)−1

=

(

d log Q0

t

)−1

log

(

d log Q0

t

)

log2 Q∗
0

log3 Q∗
0

.

If log2 Q∗
0 < 1.5e, then

η ≤ 1

e
max

(

log2 16

log3 16
,

1.5e

log(1.5e)

)

< 19.16.

In the opposite case we have

d log Q0

t
≥ log Q0

t0
≥ log2 Q∗

0

1.5
≥ e.

Hence
(

d log Q0

t

)−1

log

(

d log Q0

t

)

≤
(

log2 Q∗
0

1.5

)−1

log

(

log2 Q∗
0

1.5

)

≤ 1.5
log3 Q∗

0

log2 Q∗
0

and η ≤ 1.5. Thus we get (65).
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Now using the facts that r ≥ 1, t ≥ 1, whence r + t+1 ≤ (r +1)(t+0.5)
and (t + 0.5)3.5 ≤ 22.32t, we see that

c4 ≤ (212.32d)tc36 with c36 = (r + 1)4r+13.5210r+63dr+5(log∗(2d))6

and

(66) log(212.32dc35|D|1/2(log∗ |D|)d−1) ≤ 2.42d(log c35) log∗ |D|.
By t ≤ dt0, (64) and (66), we obtain

(67) (212.32dc35|D|1/2(log∗ |D|)d−1)t ≤ Q
3.63d2(log c35)(log∗ |D|)/log2 Q∗

0

0 .

Let c′7 = 3.63d log c35. Then the product of the left-hand sides of (67)
and (65) does not exceed

Q
d(c′

7
log∗ |D|+19.16 log3 Q∗

0
)/log2 Q∗

0

0 .

If r = 1, then c35 = 9.76/log 2, while if r ≥ 2, then log c35 ≤ 2.43d log d
(here we used the fact that r + 1 ≤ d). Thus c′7 ≤ c7 if r ≥ 1.

Let

c′6 = 4d2c34(log c34)c36.

We recall that c34 = 4.88 if r = 1, and c34 = c3d if r ≥ 2. Hence we have
log c34 ≤ 1.3d(log 2d) if r ≥ 2. It is readily verified that c′6 ≤ c6 if r ≥ 1.

Summing up, we obtain (9) for the case r ≥ 1 from inequality (5) in
Theorem 2. The results for the cases d = 1 and d = 2 with r = 0 can be
deduced from inequality (6) in Theorem 2 and we omit the details here.

Denote by α the maximum absolute value of the conjugates of an al-
gebraic number α, and by den(α) the denominator of α. The fact will be

used in the next proofs that α + β ≤ α + β , αβ ≤ α β for α, β ∈ K,
h(α) ≤ log α ≤ dh(α) for α ∈ OK \ {0} and den(α) ≤ exp{dh(α)} for
α ∈ K.

Proof of Theorem 3. In fact we follow the proof of Theorem 1 of [17] with
some modifications, corresponding to the refined assumptions on LF intro-
duced in Section 3. Moreover, to obtain as good upper bounds as possible,
we shall need more detailed deduction. Hence we give here a self-contained
proof for our theorem.

Multiplying (10) by the product of the denominators of the coefficients
of the linear factors of F , we can write (10) in the form

n
∏

i=1

li(x) = β,

where the linear forms li(X) already have integral coefficients in K with
heights A1 = (md + 1)A and β is of height at most B1 = mndA + B. We
may assume that β ∈ OS, since otherwise our equation is not solvable.
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Let x = (x1, . . . , xm) ∈ Om
S

be a solution of (10) (with l(x) 6= 0 for all
l ∈ L′

F if k > 1). Put li(x) = βi for i = 1, . . . , n. Let L∗
F be a maximal

subset of pairwise linearly independent linear forms from LF , and consider
the vertex sets L1, . . . ,Lk of the connected components of G(L∗

F ). Then
L1, . . . ,Lk is a partition of L∗

F .

For j with 1 ≤ j ≤ k, denote by Ij the set of i with li ∈ Lj and by
nj the cardinality of Ij . Then either nj ≥ 3 or nj = 1. If nj ≥ 3 and
li1 , li2 ∈ Lj are connected by an edge in G(Lj), then there are li1,2

∈ Lj and
non-zero λi1 , λi2 , λi1,2

in OK with heights at most H := 4A1 + log 2 such
that λi1 li1 + λi2li2 + λi1,2

li1,2
= 0, whence

(68) λi1βi1 + λi2βi2 + λi1,2
βi1,2

= 0.

For each i with 1 ≤ i ≤ n, βi is an S-integer which divides β in OS, hence
NS(βi) ≤ NS(β) ≤ exp{dB1} = N . By applying Corollary 1 to equation
(68) we infer that there is an ηj ∈ O∗

S
such that

max
q=1,2

h(ηjβiq) ≤ E′
1,

where E′
1 denotes the bound from (8.a) or (8.b) for t > 0 and the bound

from (8.c) for t = 0 with

N = c3R +
h

d
log Q + H +

1

d
log N,

where H and N are given above. It is easy to see that for t ≥ 0,

(69) N ≤ 3.12

(

c3R +
h

d
log Q + mndA + B

)

.

Write E1 for E′
1 with N replaced by its upper bound in (69).

If now li2 , li3 are also connected by an edge in G(Lj), then we deduce
in the same way that maxq=2,3 h(εβiq) ≤ E1 with some ε ∈ O∗

S
, whence it

follows that

max
1≤q≤3

h(ηjβiq) ≤ 3E1.

Using the connectedness of G(Lj), we proceed as follows. Given any li in
Lj , we choose the shortest path P between li1 and li. If P goes through li2 ,
then by repeating the above procedure we obtain h(ηjβi) ≤ (2nj − 3)E1. If
P does not go through li2 , then we use the path between li2 and li, which is
[li2 , li1 ] combined with P. In this way we get h(ηjβi) ≤ (2nj − 3)E1 again.
Hence we have

(70) h(ηjβi) ≤ max(2nj − 3, 1)E1 for i ∈ Ij .

If nj = 1, then, by Lemma 3, there is also an ηj ∈ O∗
S

with a bound for
h(ηjβi) smaller than E1. Hence (70) holds for each j with 1 ≤ j ≤ k and for
each i ∈ Ij .
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We now consider the case k = 1. Thus n ≥ n1 ≥ 3. If li′ ∈ LF \ L∗
F

is proportional to a linear form li ∈ L∗
F , then li′ = δli with some non-zero

δ ∈ K of height at most 2A1. Then βi′ = δβi, and so (70) implies

(71) h(η1βi) ≤ (2n − 3)E1 + 2A1 for i = 1, . . . , n.

Then it follows that

h(η1) ≤
1

n
h

(

(η1β1) · · · (η1βn)

β1 · · ·βn

)

≤ (2n − 3)E1 + 2A1 +
1

n
B1.

Together with (71) this gives

h(βi) ≤ (4n − 6)E1 + 7mdA +
1

n
B = E2 for i = 1, . . . , n.

We may assume, without loss of generality, that l1, . . . , lm are linearly in-
dependent. Denote by A the m × m matrix whose ith row consists of the
coefficients, say ai1, . . . , aim, of li. Then

(72) A(x1, . . . , xm)τ = (β1, . . . , βm)τ ,

where τ signifies matrix transposition. Since detA ∈ OK , we infer that

h(detA) ≤ log
∑

a1i1 · · · amim ≤ log(max a1i1 · · · amim ) + log(m!)

≤ mdA1 + log(m!) = A2.

Let Ai be the m×m matrix obtained by replacing the ith column of A
by (β1, . . . , βm)τ . Expanding detAi by its ith column, we have

detAi = β1C1i + β2C2i + · · · + βmCmi,

where Cji is the (j, i)-cofactor of Ai and hence

h(Cji) ≤ (m − 1)dA1 + log((m − 1)!) = A3

for 1 ≤ j ≤ m. We deduce that

h(detAi) ≤ m(E2 + A3) + log m.

Hence we get, for each i,

(73) h(xi) = h(detAi/detA) ≤ m(E2 + A3) + A2 + log m.

If E1 denotes the bound from (8.a), one can show by careful computation
that each of mdA, mdA1, n−1B, log(m!) is smaller than 10−14E1. Thus it
follows from (73) that

h(xi) < 4m(n − 1)E1 for i = 1, . . . , m.

This gives (11) for k = 1. Using the bounds E1 from (8.b) and (8.c), one
can deduce in a similar manner (12) and (13) for k = 1.

Now we treat the case k > 1. By assumption (ii) of Theorem 3, the
graph H(L1, . . . ,Lk) is connected. Assume, for convenience, that [L1,L2]
is an edge in this graph. Then there is a non-zero l1,2 ∈ L′

F which can be
represented in the form
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(74)
∑

i∈I1

λili =
∑

i∈I2

λili,

such that the total number of non-zero λi ∈ K in both sides of (74) is
minimal. Denote by n′

1 and n′
2, respectively, the number of non-zero λi

in these sums. Putting m′ = n′
1 + n′

2, it is easy to see that among the
linear forms li in (74) with non-zero coefficients exactly m′ − 1 are linearly
independent, whence m′ ≤ m + 1. Note that m′ ≥ 4, since L1 and L2 are
the vertex sets of distinct connected components of G(L∗

F ). Comparing the
coefficients of x1, . . . , xm in (74), we obtain a homogeneous linear system
of m′ − 1 linearly independent equations in m′ unknowns λi, among which
exactly one, say λi0 , is a free variable. Moving λi0 to the right-hand side of
each equation, we obtain a system of m′ − 1 linearly independent equations
in m′ − 1 unknowns, with the coefficient matrix denoted by A′. Setting
λi0 = −detA′, this system of linear equations determines uniquely the
values λi ∈ OK \ {0} for which h(λi) ≤ A2. With this set of λi’s, the two
linear combinations in (74) are equal to λ1,2l1,2 for some λ1,2 ∈ K \ {0}.

For the solution x considered above we deduce from (74) and (70) that

h(ηqλ1,2l1,2(x)) ≤ n′
q(A2 + (2nq − 1)E1) + log n′

q for q = 1, 2.

But l1,2(x) 6= 0, hence it follows that

h(η1/η2) ≤ (m + 1)A2 + m((2n1 − 1) + (2n2 − 1))E1 + 2 log m = E3.

In view of (70) this implies

h(η1βi) ≤ E3 + (2n2 − 1)E1 for each i ∈ I2.

Using the fact that H(L1, . . . ,Lk) is connected and repeating this procedure
with the shortest path connecting two vertices, we infer that

h(η1βi) ≤ (m(4n − 2k − 2) + 2n − 2k + 1)E1

+ (k − 1)(m + 1)A2 + 2(k − 1) log m = E4

for each i in I1∪· · ·∪Ik. It follows as above in the case k = 1 that h(η1βi) ≤
E4 + 2A1 = E5 for i = 1, . . . , n, and so

h(βi) ≤ 2E5 +
1

n
B1 = E6 for i = 1, . . . , n.

We now infer in the same way as in the case k = 1 that for i = 1, . . . , m,

(75) h(xi) ≤ m(E6 + A3) + A2 + log m.

We deduce from (75) with careful computation that

max
1≤i≤m

h(xi) ≤ 8m(m + 1/2)(n − 1)E1.

Finally, this implies (11), (12) or (13) according as E1 is from (8.a), (8.b)
or (8.c).
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Proof of Corollary 3. We follow the proof of Corollary 1.1 in [16], but
we use here our Theorem 3 in place of Theorem 1 of [16] and we work with
logarithmic height instead of the usual height H(·).

There is an a ∈ Z with 1 ≤ a ≤ n such that F (1, a) 6= 0. Consider
the binary form G(X, Y ) = F (X, aX + Y ) in which the coefficient of Xn

is F (1, a) 6= 0 and the heights of the coefficients of G do not exceed (n + 1)
× (A + n log n) + log(n + 1) = A1. Denoting by d0 the product of the de-
nominators of the coefficients of G, we can write

d0G(X, Y ) = a0X
n + a1X

n−1Y + · · · + anY n(76)

= a0(X − α1Y ) · · · (X − αnY )

where a0, . . . , an are already integers in K with heights not exceeding
d(n + 1)A1 + A1 = A2. Further, at least three from among α1, . . . , αn are
pairwise distinct.

We infer that for each solution x1, x2 of (14),

(77) x = a0x1, y = −ax1 + x2

is a solution of the equation

(78) (x − a0α1y) · · · (x − a0αny) = β′,

where β′ = d0a
n−1
0 β. It follows from (76) that a0αi ∈ OK and

(79) (a0αi)
n + a1a0(a0αi)

n−1 + · · · + anan−1
0 = 0

for each i. Put max0≤i≤n ai = A0. Then (79) implies that a0αi ≤ nAn
0 ,

whence
h(a0αi) ≤ ndA2 + log n = A3 for each i.

Further,
h(β′) ≤ d(n + 1)A1 + (n − 1)A2 + B = B1.

Applying now our Theorem 3 to (78), we obtain

(80) max{h(x), h(y)} ≤ E1,

where E1 denotes the bound in (11) or (12) for t > 0 and (13) for t = 0, with
the choice k = 1 and with A and B replaced by A3 and B1, respectively. It
follows from (80) and (77) that

max{h(x1), h(x2)} ≤ 2E1 + A2 + log 2n.

But it is easy to see that

2ndA3 + B1 ≤ 2.45d2n5(2ndA + B),

hence x1, x2 satisfy (11), (12) for t > 0 and (13) for t = 0, with c′i for k = 1
replaced by 5d2n5c′i for i = 1, 4, 2.

Proof of Corollary 4. Below, c37, . . . , c43 will denote effectively com-
putable positive constants which depend at most on F , K and N0. Let
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x = (x1, . . . , xm) ∈ Om
K with N((x1, . . . , xm)) ≤ N0. Suppose that F (x) 6= 0

and that l(x) 6= 0 for l ∈ L′
F if k > 1. Denote by p1, . . . , pt the distinct prime

ideal divisors of F (x), and by S the set consisting of S∞ and of the finite
places corresponding to p1, . . . , pt. Keeping the above notation, by Lemma
3 there is an ε ∈ O∗

S
such that

(81) h(F (εx1, . . . , εxm)) ≤ c37 log Q.

Then (12) and (13) in Theorem 3 and, for t > 0, the inequality log Q ≤
t log∗ P imply that

(82) max
1≤i≤m

h(εxi) < c38c
t
39P

t
∏

i=1

log∗ N(pi) := C1.

For t = 0 this gives log N ≤ dc38, where N = max1≤i≤m |NK/Q(xi)|. Hence,
if log N > dc38, then t > 0 must hold.

Inequality (82) implies that − ordpj
εxi(log 2) ≤ dC1 for each i and j.

Further, in view of N((x1, . . . , xm)) ≤ N0 we infer that for each j there is
an i such that ordpj

xi ≤ log N0/log 2. Thus − ordpj
ε ≤ (dC1 +log N0)/log 2

:= C2 for all j. By Lemma 3 we can choose a ̺ ∈ OK \ {0} such that.

(83) (̺) = (p1 · · · pt)
[C2+1]h and h(̺) ≤ c40C2 log Q.

Then ̺ε ∈ OK and, for each i, we have

(84) log |NK/Q(xi)| ≤ log |NK/Q(̺εxi)| ≤ dh(̺εxi) ≤ c41C2 log Q.

If N > N1 for a sufficiently large and effectively computable N1 depend-
ing only on F , K and N0 then (16) follows from (84) and (82). For t ≤
log P/log2 P , the first inequality of (17) is an immediate consequence of (16).
It follows from Theorem 1 of [27] that t ≤ c42P/log P . Now the second in-
equality of (17) follows from (16), provided that N1 is large enough.

Proof of Corollary 5. Let F (x1, . . . , xm)=F0 with some x1, . . . , xm∈OK

such that N((x1, . . . , xm)) ≤ N0 (and with l(x1, . . . , xm) 6= 0 for l ∈ L′
F if

k > 1). Following the proof of Corollary 4 and using its notation, we deduce
from (81) and (83) that

(85) h(F (̺εx1, . . . , ̺εxm)) ≤ c44C1(t + 1) log∗ P,

where P = P (F0), t = ω(F0) and c44 is an effectively computable positive
number which depends only on F , K and N0. But ̺ε ∈ OK , hence

(86) log N ≤ dh(F (̺εx1, . . . , ̺εxm))

where N = |NK/Q(F0)|. If now N ≥ N2 with a sufficiently large and effec-
tively computable N2, then (85) and (86) imply the required lower estimates
for P .
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