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On an asymptotic formula of Srinivasa Ramanujan

by

K. Ramachandra (Bangalore) and A. Sankaranarayanan (Mumbai)

To Professor R. Balasubramanian on his fiftieth birthday

1. Introduction. In [16], Ramanujan records (without proof) many
curious asymptotic formulae. One of them is

d2(1) + d2(2) + . . .+ d2(n) = An(logn)3 +Bn(logn)2 + Cn log n(1.1)

+Dn+O(n3/5+ε).

Also he records (without proof) the result that on the assumption of the
Riemann hypothesis, the error term in (1.1) can be improved to O(n1/2+ε).
In view of a method due to H. L. Montgomery and R. C. Vaughan (see [9]), it
is very likely that the error term is O(n1/2). We propose this as a conjecture
(see also [15], [17]). Unconditionally, the error term related to d2(j) is known
to be O(n1/2+ε) for any positive constant ε (see for example the equation
(14.30) of [6] and also [5]). Professor A. Schinzel has already considered some
of the problems of Ramanujan (see [19]), namely for the arithmetic function
r2(n), and he has proved that the corresponding error term is Ω(n3/8) and
also the corresponding error term is O(n1/2(logn)8/3(log logn)1/3) due to
an unpublished work of W. G. Nowak (see also [8] and [18]). Let

(1.2) E(x) =
∑

n≤x
d2(n)− xP3(log x)

where P3(y) is a polynomial in y of degree 3. From a general theorem of
M. Kühleitner and W. G. Nowak (see for example (5.4) of [8]), it follows
that

E(x) = Ω(x3/8).

From Vinogradov’s estimate (for T/2 ≤ t ≤ T )
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(1.3)
1

ζ(1 + it)
� (log T )2/3(log log T )1/3,

it is not very difficult to prove

Theorem A. We have

E(x) = O(x1/2(log x)17/3(log log x)1/3).

Remark. We note here that an analogue of Theorem A for the “sums
of two squares” function r(n) was dealt with by M. Kühleitner (see [7]). We
also refer to the related papers [2], [3], [12] and [20].

On the assumption of the quasi-Riemann hypothesis (namely ζ(s) 6= 0
for σ > α with 1/2 < α < 1), following the proof of Theorems 14.6 and 14.8
of [21], we obtain the inequality

(1.4)
1

|ζ(1 + 2it)| �α log log t.

Hence one gets

Corollary. On the assumption of the quasi-Riemann hypothesis, we
have

E(x) = O(x1/2(log x)5(log log x)).

The main goal of this paper is to prove

Main Theorem. Unconditionally , we have

E(x) = O(x1/2(log x)5(log log x)).

Remark. It is not difficult to prove an ineffective result like

E(x) = Ω±(x1/4).

The ineffective version is due to E. Landau (see [4]). The general method
of proving results like the one above (actually in an effective way) is due to
R. Balasubramanian and K. Ramachandra (see [1]).

2. Notation and preliminaries. C and A (with or without subscripts)
denote effective positive constants unless specified otherwise; ε will always
denote a sufficiently small positive constant; T ≥ T0 (a sufficiently large pos-
itive constant). We write f(x)� g(x) to mean |f(x)| < C1g(x) (sometimes
we denote this by the O notation also). Let s = σ + it, s0 = 1/2 + it and
w = u + iv. The notation [x] denotes the integral part of x whereas [a, b]
denotes the interval a ≤ c ≤ b. The implied constants are all effective.

3. Some lemmas

Lemma 3.1 (Refined version of Perron’s formula). Let {λn} be a se-
quence of real numbers with 0 < λ1 < . . . < λn → ∞ and {an} be any se-
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quence of complex numbers such that f(s) =
∑∞

n=1 anλ
−s
n (with s = σ + it)

is absolutely convergent in σ > 1. Then for x > 0, C > 1, we have uniformly
(in all the parameters) the equality

(3.1.1)
1
T

T�

0

. . .
1
T

T�

0

(
1

2πi

C+iT+iφ�

C−iT−iφ
f(s)

xs

s
ds

)
dτ1 . . . dτk

=
∑

λn≤x
an +

θ

π

∞∑

n=1

|an|
(
x

λn

)C
min(π + 2 + C/T ,M)

where

(3.1.2) M = min
0≤m∈Z+≤k

(
2m+1 − 1
m+ 1

)∣∣∣∣T log
(
x

λn

)∣∣∣∣
−m−1

,

θ is a complex number with |θ| ≤ 1 (moreover θ is real if an are all real)
and T > 0, τ1, . . . , τk are real variables with 0 ≤ τj ≤ T (j = 1, . . . , k),
φ = τ1 + . . .+ τk (we define an empty sum as zero).

Proof. See Corollary 2 of [14].

Lemma 3.2. Let T/2 < t1 < . . . < tR ≤ T be well spaced points satisfy-
ing |tj+1 − tj | ≥ 1 (for j = 1, . . . , R − 1), and suppose that for every small
positive constant ε, the points tj satisfy the inequality

|log ζ(1 + itj)| � log log log T − 10 log ε.

Then
R� T 2ε.

Remark. This is Theorem 1 of [13]. For the sake of completeness, we
present here a simple proof of Lemma 3.2.

Proof of Lemma 3.2. First of all we note that from the density estimates,
we have (see [6])

N(σ, T, 2T )� T
12
5 (1−σ)(log T )100.

Let δ be a small positive constant, say 0 < δ < 1/100. Suppose that the
number N(1− δ, T, 2T ) of zeros of ζ(s) in {σ ≥ 1− δ, T ≤ t ≤ 2T} is < T η

where η > 0 is a small positive constant (may depend on δ). Let % = β + iγ
be any of these zeros. With each such zero, we associate the rectangle

{σ ≥ 1− δ, t ∈ (γ − (log T )100, γ + (log T )100)}.
Let s be any point in the complement in {σ ≥ 1 − δ, T ≤ t ≤ 2T} of
the union of all these rectangles. (Note that we have excluded a total of
t-height ≤ 2(logT )100T η in {σ ≥ 1 − δ, T ≤ t ≤ 2T}.) From the density
estimate above, we observe that the region {σ ≥ 1 − δ, s ± (log T )100} is
zero-free of ζ(s). Now, we can talk of log ζ(s) in this region. If necessary,
we can exclude further 1

2(log T )100 on either side of this region. The total
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t-length thus excluded is ≤ 10(logT )100T η. Now, in the resulting region,
we can not only talk of log ζ(s) but even apply the Borel–Carathéodory
theorem in σ ≥ 1 − δ/2 (with centres on the line σ = 2). Therefore, in{
σ ≥ 1 − δ/4, s ± 1

2(logT )100
}

, we have log ζ(s) = O(log T ). Now, for
σ ≥ 1−δ/8, T ≤ t ≤ 2T , we have (with w = u+iv and fixingX = (log T )8/δ)

1
2πi

�

<w=δ/4, |v|≤(logT )3

log ζ(s+ w)Γ (w)Xw dw

=
∑

p

e−p/X

ps
+O

(
log
(

8
δ

)
e−C(logT )3

)
.

Now, we move the line of integration in the remaining integral above to
σ + u = 1 − δ/4, that is to u = −δ/8. The pole at w = 0 of Γ (w) gives
the residue log ζ(s). Note that our X = (log T )8/δ. The horizontal portions
contribute an error which is � (log T )Xδ/4e−(logT )3 � 1 because of the
presence of the Γ (w) in the integrand, whereas the vertical line integral on
u = −δ/8 contributes an error which is� (log T )X−δ/8 � 1 with our choice
of X. Note that

∑

p

e−p/X

ps
=
∑

p≤X2

1
p

+O(1) = log logX2 +O(1).

Therefore we obtain

log ζ(s) = log logX2 +O(1) +O(log(8/δ)e−C(logT )3
)

and this implies that

± log |ζ(s)| ≤ log logX2 +O(1) +O(log(8/δ)e−C(logT )3
).

So, if we exclude t-intervals of total width ≤ T 1000δ on the line σ = 1, for
the rest, we have (for σ ≥ 1)

|ζ(σ + it)|±1 � log log T.

Since η and δ are arbitrary, this proves the lemma.

Lemma 3.3. We have (with s0 = 1/2 + it)

x1/2
�

|t|≤T

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣
∣∣∣∣
dt

s0

∣∣∣∣� x1/2(log T )5(log log T ).

Proof. Let

(3.3.1)
∣∣∣∣

1
ζ(1 + 2itj)

∣∣∣∣ = max
j<t≤j+1

∣∣∣∣
1

ζ(1 + 2it)

∣∣∣∣.

Also we have (for T/2 ≤ t ≤ T )

(3.3.2) ζ(1/2 + it)� T 1/6(log T )
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and

(3.3.3)
1

ζ(1 + 2it)
� log T.

It is well known that (for example see [6] or [21]) for σ ≥ 1/2,

(3.3.4)
T�

T/2

|ζ4(σ + it)| dt� T (log T )4.

We divide the interval [[T/2]+1, [T ]] into abutting small intervals of width 1.
Below,

∑∗ denotes sums over odd integers, and
∑∗∗ denotes sums over even

integers in the given interval.
We call a unit interval [j, j + 1] ⊂ [[T/2] + 1, [T ]] a bad unit interval if

(3.3.5) |log ζ(1 + itj)| � log log log T − 10 log ε.

From Lemma 3.2, we observe that the number of bad unit intervals in
[[T/2] + 1, [T ]] is at most T 2ε. For the remaining good unit intervals in
[[T/2] + 1, [T ]], we can use the bound

(3.3.6)
1

ζ(1 + itj)
� log log T.

Therefore, we obtain

x1/2
�

|t|≤T

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣
∣∣∣∣
dt

s0

∣∣∣∣

� x1/2 + x1/2 log T
T

( T�

T/2

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣ dt
)

� x1/2 + x1/2 log T
T

{ [T ]−1∑

j=[T/2]+1

j+1�

j

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣ dt+ T 2/3(log T )10
}

� x1/2 + x1/2 log T
T

×
({ [T ]−1∑∗

j=[T/2]+1

+
[T ]−1∑∗∗

j=[T/2]+1

} j+1�

j

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣ dt+ T 2/3(log T )10
)

� x1/2 + x1/2 log T
T

×
({ [T ]−1∑∗

j=[T/2]+1

+
[T ]−1∑∗∗

j=[T/2]+1

}∣∣∣∣
1

ζ(1 + 2itj)

∣∣∣∣
j+1�

j

|ζ4(s0)| dt+ T 2/3(logT )10
)
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� x1/2 +x1/2 log T
T

(
T 2/3+10ε(log T )20 +(log log T )

( [T ]�

[T/2]+1

|ζ4(s0)| dt
))

� x1/2 + x1/2(log T )5(log log T ).
This proves the lemma.

Lemma 3.4. For σ ≥ 1/2, we have
1�

1/2

T�

T/2

∣∣∣∣
ζ4(σ + it)
ζ(2σ + 2it)

∣∣∣∣
∣∣∣∣
xs

s

∣∣∣∣ dσ dt� (log T )4(log log T )(x− x1/2)(log x)−1.

Proof. First of all we notice that by following the argument for Lem-
ma 3.3, we obtain, for σ ≥ 1/2,

T�

T/2

∣∣∣∣
ζ4(σ + it)
ζ(2σ + 2it)

∣∣∣∣ dt�
T�

T/2

∣∣∣∣
ζ4(σ + it)
ζ(1 + 2it)

∣∣∣∣ dt(3.4.1)

� (log log T )
T�

T/2

|ζ4(1/2 + it)| dt

� T (log T )4(log log T ).
Therefore, from (3.4.1), we obtain

T�

T/2

∣∣∣∣
ζ4(σ + it)
ζ(2σ + 2it)

∣∣∣∣
∣∣∣∣
xs

s

∣∣∣∣ dt�
log log T

T

T�

T/2

|ζ4(1/2 + it)| |xs| dt(3.4.2)

� (log T )4(log log T )xσ.
Hence, we get

1�

1/2

T�

T/2

∣∣∣∣
ζ4(σ + it)
ζ(2σ + 2it)

∣∣∣∣
∣∣∣∣
xs

s

∣∣∣∣ dσ dt�
1�

1/2

T�

T/2

|ζ4(σ + it)|(log log T )xσ
dσ dt

|t|

� (logT )4(log log T )(x− x1/2)(logx)−1.

4. Proof of the Main Theorem. In Lemma 3.1, we take

C = 1 +
1

log x
, f(s) =

ζ4(s)
ζ(2s)

,

and hence we obtain

(4.1)
1
T

T�

0

. . .
1
T

T�

0

(
1

2πi

1+1/log x+iT+iφ�

1+1/log x−iT−iφ

ζ4(s)
ζ(2s)

xs

s
ds

)
dτ1 . . . dτk

=
∑

n≤x
d2(n) +

θ

π

∞∑

n=1

d2(n)
(
x

n

)1+1/logx

min
(
π + 2 +

1 + log x
T log x

,M

)
,
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where

(4.2) M = min
0≤m∈Z+≤k

(
2m+1 − 1
m+ 1

)
|T log(x/n)|−m−1,

with |θ| ≤ 1. Now, we fix m = 0 in (4.2) so that, from (4.1), we get

(4.3)
1

2πi

1+1/logx+iT+iφ�

1+1/logx−iT−iφ

ζ4(s)
ζ(2s)

xs

s
ds =

∑

n≤x
d2(n) +E + θ1x

ε,

where

(4.4) E =
θ

π

∞∑

n=1

d2(n)
(
x

n

)1+1/log x

min
(
π+2+

1+log x
T log x

,

∣∣∣∣T log
(
x

n

)∣∣∣∣
−1)

and |θ1| ≤ 1.

Estimation of E. We choose T = x1/2.

Case (i). Suppose that |x−n| ≤ xε. Then (since π+ 2 + 1+log x
T log x ≤ 100),

we obtain

(4.5) |E|x−n|≤xε | ≤
100
π

∑

|x−n|≤xε
d2(n)� x2ε.

Case (ii). Suppose that |x− n| ≥ x/2. Therefore, we observe that
∣∣∣∣log

(
x

n

)∣∣∣∣
−1

≤ x

|x− n| ≤ 10

and hence

|E|x−n|≥x/2| ≤
10
T

∑

|x−n|≥x/2
d2(n)

(
x

n

)1+1/logx

(4.6)

≤ 10
T

∞∑

n=1

d2(n)
(
x

n

)1+1/log x

� x

T
(log x)4.

Case (iii). Suppose that xε ≤ |x − n| ≤ x/2. A result of Nair and
Tenenbaum (see [11] and also [10]) states that

(4.7)
∑

L≤n≤L+h

d2(n)� h(logL)3,

for h ≥ Lε. We notice that
(
x

n

)1+1/logx

≤ 4 for n ∈ [x/2, x− xε] ∪ [x+ xε, 3x/2].

Therefore, from (4.7), we have
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|Exε≤|x−n|≤x/2| ≤
100x
T

∑

xε≤|x−n|≤x/2
d2(n)

1
|x− n|(4.8)

≤ 100x
T

∑

U,U=2lxε

∑

U≤|x−n|<2U

d2(n)
1
U

≤ 100x
T

∑

2x≥U≥xε

1
U

∑

n∈(x−2U,x−U)∪(x+U,x+2U)

d2(n)

� x(logx)4

T
.

So, from (4.5), (4.6) and (4.8), we conclude that

(4.9) |E| � xε + (x(log x)4)/T

for any small positive constant ε. Now, we choose a suitable horizontal line
t = t0 ∈ [T/2, T ] and we move the line of integration appearing in (4.3) to
the line σ = σ0 = 1/2 along t = t0. We observe that the pole at s = 1 (which
is of order 4) contributes the main term and from Lemma 3.4, we observe
that the horizontal portions contribute an error

(4.10) � x

T
(log T )4(log log T )(log x)−1.

Also, from Lemma 3.3, we observe that the vertical portion (with s0 =
1/2 + it) in absolute value is

(4.11) � x1/2
�

|t|≤T

∣∣∣∣
ζ4(s0)
ζ(2s0)

∣∣∣∣
∣∣∣∣
dt

s0

∣∣∣∣� x1/2(log T )5(log log T ).

Now, our choice T = x1/2 proves the Main Theorem.
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