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1. Introduction. A rational map φ : P1 → P1 of degree two over a field
k is given by a pair of homogeneous polynomials

φ = [φ0, φ1] = [aX2 + bXY + cY 2, dX2 + eXY + fY 2]

such that φ0, φ1 have no common roots. In non-homogeneous form, φ may
be expressed as

φ(z) =
az2 + bz + c

dz2 + ez + f
.

Let φ0(z) = az2 + bz + c and φ1(z) = dz2 + ez + f . We define Res(φ), the
resultant of φ, as the product ∏

(α,β):φ0(α)=φ1(β)=0

(α− β).

The condition that φ0, φ1 have no common roots is equivalent to Res(φ) 6= 0.
Let Rat2 denote the space of degree two rational maps P1 → P1. The

special linear group SL2 acts via conjugation on Rat2: for f ∈ SL2 and
φ ∈ Rat2, f · φ = f ◦ φ ◦ f−1. The moduli space Rat2 /SL2, denoted M2,
arises naturally in the study of dynamical systems on P1. Over the complex
numbers Milnor [2] proved that Rat2(C)/SL2(C) is biholomorphic to C2.
This fact was generalized by Silverman [6], who showed that M2 is an affine
integral scheme over Z and is isomorphic to A2

Z.
Inspired by Milnor [3] we consider a rational map along with an ordered

list of its fixed and critical points. Since a rational map of degree two is
completely determined by its fixed and critical points, we dispose of the
map and focus on the ordered lists of fixed and critical points. We refer to
this as the space of totally marked degree two rational maps, Rattm2 . It can
be viewed as an affine open subvariety of (P1)5.
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Let p1, p2, p3, q1, q2 be an ordered list of fixed points and critical points
of some degree two rational map. The natural action of the special linear
group SL2 on (P1)5 induces an action on Rattm2 . In this article we analyze
the quotient Rattm2 /SL2 and prove:

Theorem 1.1. Let Rattm2 denote the space of totally marked degree two
rational maps. Consider the following action of SL2 on Rattm2 :

f · (p1, p2, p3, q1, q2) = (f(p1), f(p2), f(p3), f(q1), f(q2)).

Then the moduli space Rattm2 /SL2 is isomorphic to a Del Pezzo surface and
the isomorphism is defined over Z[1/2].

Recall that a cubic in P3 is a Del Pezzo surface. We give the explicit
equation of the surface in §5. The above theorem generalizes a similar result
by Milnor [3] over C. The two most significant facts which allow us to prove
the theorem above are:

(a) The fixed points and critical points of a degree two rational map
determine the map completely.

(b) The three cross ratios formed by selecting both critical points and
selecting two out of the three fixed points at a time (see Defini-
tion 3.1) are SL2-invariant functions on Rattm2 .

Observe that for φ : P1 → P1, z 7→ z2, each point of P1 is a critical point
in characteristic two. Thus the notion of a totally marked rational map is
not well defined in characteristic two, so the isomorphism in the theorem
above cannot be defined over Z.

The moduli space of totally marked degree two rational maps, Mtm
2 , is a

12-to-1 cover of M2. Indeed, the map Mtm
2 → M2 factors through the moduli

space of fixed point marked degree two rational maps, Mfm
2 . The latter is a

6-to-1 cover of M2, and Mtm
2 is a double cover of Mfm

2 .
It is natural to ask about the structure of the quotientMtm

d :=Rattmd /SL2.
To answer this, we need analogs of (a) and (b) for d > 2. As in the degree
two case, Mtm

d will be a finite cover of Md, and studying Mtm
d is useful for

finding equations defining Md.
In §2 we prove some basic facts about degree two rational maps. In §3 we

decribe the moduli scheme Mtm
2 of totally marked degree two rational maps,

followed by the moduli functor for totally marked degree two rational maps,
Mtm

2 in §4. We prove that the moduli scheme Mtm
2 is a coarse moduli scheme

for the functor Mtm
2 . Finally in §5 we prove our main result.

Notation/Conventions. Throughout this article we fix k to be a field
of characteristic different from two. We denote the fixed points by p1, p2, p3
and critical points by q1, q2.
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2. Preliminaries

Lemma 2.1. Let φ : P1 → P1 be a rational map of degree two defined over
Z[1/2] such that the resultant Res(φ) is nonzero. Then φ has two distinct
critical points.

Proof. Let

φ(z) =
az2 + bz + c

dz2 + ez + f
,

and denote the fixed points of φ by p1, p2, p3. We split the proof into two
cases.

Case 1. Suppose there is a fixed point of multiplicity three. Without
loss of generality we may assume p1 has multplicity three. Then

φ(z) =
az2 + bz − p31

z2 + (a− 3p1)z + (b+ 3p21)

with an appropriate change of coordinates if p1 =∞.

Case 2. Suppose there is no fixed point with multiplicity three. With-
out loss of generality we may assume that p2 6= p3. Applying a change of
coordinates we let p2 = 0, p3 =∞. Then

φ(z) =
az2 + bz

ez + f
.

In both cases it can be easily verified that the critical points are distinct.

Lemma 2.2. Let φ : P1 → P1 be a rational map of degree two defined
over Z[1/2]. Then φ is uniquely determined by its fixed points and critical
points.

Proof. Let

φ(z) =
az2 + bz + c

dz2 + ez + f
,

and denote its fixed and critical points by p1, p2, p3 and q1, q2 respectively.
By the previous lemma we know that q1 6= q2, so we may assume q1 = 0 and
q2 =∞. Observe that

q1 = 0 and q2 =∞ ⇔ ae− bd = 0 and bf − ce = 0

⇔ φ(z) = φ(−z) for all z ∈ P1

⇔ b = e = 0.

Therefore,

φ(z) =
az2 + c

dz2 + f
.

There is a fixed point at infinity if and only if d = 0. The fixed points of
φ are the roots of the equation dz3 − az2 + fz − c = 0, and they uniquely
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determine the point (d : a : f : c) in P3. Thus the coefficients a, c, d, f and
hence the rational map φ are uniquely determined by its fixed points and
critical points.

3. The moduli scheme Mtm
2 . For any vector v = (v1, . . . , vn) ∈ Zn we

define a line bundle on (P1)n by

Lv =

n⊗
i=1

π∗i (OP1(1)⊗vi)

where πi : (P1)n → P1 is the projection on the ith factor.

Definition 3.1. Let (ω1, ω2, ω3, ξ1, ξ2) be nonhomogeneous coordinates
on (P1)5. Fix the linearization m = (1, 1, 1, 2, 2) on (P1)5 and denote it by
(P1)5(Lm). Let

C := {(ω1, ω2, ω3, ξ1, ξ2) ∈ (P1)5(Lm) | ξ1 = ξ2}
and

Ri :=

{
(ω1, ω2, ω3, ξ1, ξ2) ∈ (P1)5(Lm)

∣∣∣∣ ri := (ωj − ξ1)(ωk − ξ2)
(ωj − ξ2)(ωk − ξ1)

= −1
}

where (i, j, k) is any permutation of (1, 2, 3). We define the space of totally
marked degree two rational maps as

Rattm2 := (P1)5(Lm) \ {C ∪R1 ∪R2 ∪R3}.
A generic element of Rattm2 is an ordered set of fixed points and critical

points of a degree two rational map. Observe that if ξ1 = 0 and ξ2 = ∞,
then ωi 6= −ωj for i 6= j. The automorphism group of P1, PGL2, acts on
each coordinate of Rattm2 . For technical reasons we consider the action of
SL2 instead of PGL2.

Definition 3.2. Two elements {p1, p2, p3, q1, q2} and {p′1, p′2, p′3, q′1, q′2}
of Rattm2 are said to be SL2-equivalent if there exists f ∈ SL2 such that
f(pi) = p′i and f(qi) = q′i. The quotient Rattm2 /SL2 is called the moduli
space of totally marked degree two rational maps and is denoted by Mtm

2 .

A priori, for an algebraically closed field k the quotient Mtm
2 (k) exists

as a set. We shall show that this set is isomorphic to a Del Pezzo surface
whenever char(k) 6= 2. We now describe the sets of stable and of semistable
points of projective space. This is well known; we recall it here for the reader’s
convenience. The sets of stable and of semistable points of a scheme (say V )
are denoted by V s and V ss respectively.

Theorem 3.3. Let P = (x1, . . . , xm) ∈ (Pr)m and let v = (v1, . . . , vm)
∈ Zm. Then

P ∈ ((Pr)m)ss(Lv) (resp. P ∈ ((Pr)m)s(Lv))
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if and only if for every proper linear subspace W of Pr,∑
i, xi∈W

vi ≤
dimW + 1

n+ 1

m∑
i=1

vi

(resp. the strict inequality holds).

Proof. See [1, p. 172].

Corollary 3.4.

((Pr)m)ss(Lv) 6= ∅ ⇔ ∀i = 1, . . . ,m, (r + 1)vi ≤
m∑
i=1

vi,

((Pr)m)s(Lv) 6= ∅ ⇔ ∀i = 1, . . . ,m, (r + 1)vi <

m∑
i=1

vi.

Proof. See [1, p. 172].

Using Corollary 3.4 with the linearization m = (1, 1, 1, 2, 2) we have

(1) Rattm2 ⊂ ((P1)5)s(Lm) = ((P1)5)ss(Lm).

The equality in (1) follows from Corollary 3.4, and the (strict) inclusion fol-
lows by observing that (1,−1, 2, 0,∞) ∈ ((P1)5)s(Lm) but (1,−1, 2, 0,∞) /∈
Rattm2 since ω1 = −ω2. The choice of linearization (1, 1, 1, 2, 2) is not arbi-
trary. If we use (1, 1, 1, 1, 1), then by Corollary 3.4 it can be verified that
(1, 1, 1, 0,∞) /∈ ((P1)5)ss(Lm). The rational map (3z2 + 1)/(z2 + 3) has a
triple fixed point at 1 and critical points at 0 and ∞.

Theorem 3.5. Using the notation above and the linearization m =
(1, 1, 1, 2, 2) we have:

(a) The space Rattm2 of totally marked degree two rational maps is an SL2-
invariant open subset of the stable locus ((P1)5)s(Lm) in (P1)5(Lm).
Hence, the geometric quotient Mtm

2 = Rattm2 /SL2 exists as a scheme
over Z[1/2].

(b) The geometric quotient (Mtm
2 )s = ((P1)5)s(Lm)/SL2 and the cate-

gorical quotient (Mtm
2 )ss = ((P1)5)ss(Lm)/ SL2 exist as schemes over

Z[1/2] and are the same for the linearization (1, 1, 1, 2, 2).
(c) The schemes Mtm

2 , (Mtm
2 )s and (Mtm

2 )ss are connected, integral, nor-
mal and of finite type over Z[1/2]. Moreover, Mtm

2 is affine over
Z[1/2].

Proof. The assertions follow from standard invariant-theoretic results in
[4] and [5].

(a) The inclusion Rattm2 ⊂ ((P1)5)(Lm) follows from (1). The action of
SL2 on (P1)5(Lm) fixes the sets Ri and C defined in Definition 3.1. Hence,
Rattm2 is an SL2-stable and SL2-invariant scheme, so the geometric quotient
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Mtm
2 = Rattm2 /SL2 exists. Over a field this a consequence of Mumford’s con-

struction of quotients [4, Chapter 1], and over Z[1/2] it follows by essentially
the same methods, using Seshadri’s theorem that a reductive group scheme
is geometrically reductive (see [4] and [5]).

(b) The existence of quotients follows from Mumford [4] and Seshadri [5],
and the equality (Mtm

2 )s = (Mtm
2 )ss follows from Corollary 3.4.

(c) The schemes Rattm2 , ((P1)5)s and ((P1)5)ss are open subschemes of
(P1)5, so they are connected, integral and normal. By [4, Section 2, Re-
mark 2], we conclude that the respective quotients Mtm

2 , (Mtm
2 )s and (Mtm

2 )ss

are connected, integral and normal. The fact that Mtm
2 is affine over Z[1/2]

follows from [4, Theorem 1.1].

4. The moduli functor Mtm
2

Definition 4.1. The functor Rattm2 of totally marked degree two ratio-
nal maps is the functor

Rattm2 : (Sch/Z[1/2])→ (Sets)

defined by

Rattm2 (S) =


separable S-morphisms φ : P1

S → P1
S with φ∗O(1) ∼= O(2),

sections ri of P1
S → S, i=1, 2, 3, with φ ◦ ri = ri, and

sections sj of P1
S → S, j=1, 2, with div(s1) + div(s2) = Rφ,

where Rφ is the ramification divisor of φ.

Observe that the sections ri correspond to the fixed points and the sec-
tions sj correspond to the critical points. An S-point of Rattm2 consists of a
degree two rational map and five sections satisfying the above conditions.

Definition 4.2. We say two S-points of Rattm2 , say (φ, r1, r2, r3, s1, s2)
and (φ′, r′1, r

′
2, r
′
3, s
′
1, s
′
2), are equivalent if there exists f ∈ Aut(P1

S) such that
φ ◦ f = f ◦ φ′, f(ri) = r′i and f(sj) = s′j . We define the moduli functor Mtm

2

to be the quotient of Rattm2 under the above equivalence relation:

Mtm
2 : (Sch /Z[1/2])→ (Sets), S 7→ Rattm2 (S)/∼.

We now prove that the functor Rattm2 is representable.

Theorem 4.3. The scheme Rattm2 defined in Definition 3.1 represents
the functor Rattm2 . In particular, Rattm2 is a fine moduli space for Rattm2 .

Proof. Let S be an arbitary scheme and (p1, p2, p3, q1, q2) ∈ Rattm2 (S).
By Lemma 2.2 there exists a unique rational map φ : P1

S → P1
S with fixed

points p1, p2, p3 and critical points q1, q2. Let ri, sj be the sections of P1
S → S
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corresponding to the fixed and critical points. This gives a well defined map

Rattm2 (S)→ Rattm2 (S),(2)
(p1, p2, p3, q1, q2) 7→ (φ, r1, r2r3, s1, s2).

The inverse

Rattm2 (S)→ Rattm2 (S),(3)
(φ, r1, r2, r3, s1, s2) 7→ (p1, p2, p3, q1, q2),

maps the sections ri, sj to the corresponding fixed and critical points and
forgets φ. Thus the scheme Rattm2 represents the functor Rattm2 .

We now show that Mtm
2 is a coarse moduli scheme for the functor Mtm

2 .

Theorem 4.4. There is a natural map of functors

Mtm
2 → Hom(−,Mtm

2 )

with the property that Mtm
2 (k) ∼= Mtm

2 (k) for every algebraically closed field
k of characteristic 6= 2.

Proof. Let S be an arbitrary scheme over Z[1/2], let [η] ∈ Mtm
2 (S) and

let (φ, r1, r2, r3, s1, s2) ∈ Rattm2 (S) be a representative of [η]. Let
(p1, p2, p3, q1, q2) ∈ Rattm2 be the image of (φ, r1, r2, r3, s1, s2) along the map
defined in (3). Taking the quotient of (p1, p2, p3, q1, q2) by SL2 we get the
image of [η] in Hom(−,Mtm

2 ). The image is independent of the choice of the
lifting of [η] since we are quotienting by SL2.

For any algebraically closed field k of characteristic different than two,

Mtm
2 (k) ∼= Rattm2 (k)/PGL2(k), Mtm

2 (k) ∼= Rattm2 (k)/SL2(k).

The map SL2 → PGL2 is surjective, hence so are the quotients.

5. Main theorem. Recall that Rattm2 := (P1)5(Lm)\{C∪R1∪R2∪R3}
where

C := {(ω1, ω2, ω3, ξ1, ξ2) ∈ (P1)5(Lm) | ξ1 = ξ2},

and

Ri :=

{
(ω1, ω2, ω3, ξ1, ξ2) ∈ (P1)5(Lm)

∣∣∣∣ ri := (ωj − ξ1)(ωk − ξ2)
(ωj − ξ2)(ωk − ξ1)

= −1
}

where (i, j, k) is any permutation of (1, 2, 3). We shall show that the cross
ratios ri are SL2-invariant functions on the quotient space Mtm

2 , and they
uniquely determine the conjugacy class.

Proposition 5.1. The cross ratios ri are rational functions on Rattm2 .
Moreover, they are invariant under the action of SL2 on Rattm2 . Thus they
descend to give rational functions on Mtm

2 .
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Proof. Two elements (p1, p2, p3, q1, q2), (p
′
1, p
′
2, p
′
3, q
′
1, q
′
2) ∈ Rattm2 are

SL2-equivalent if there exists f ∈ SL2 such that f(pi) = p′i and f(qi) = q′i,
where pi denote the fixed points and qi denote the critical points. Note that
each cross ratio is determined by selecting two of the three fixed points and
both critical points. If

r1 =
(p2 − q1)(p3 − q2)
(p2 − q2)(p3 − q1)

,

then the cross ratio determined by f(p2), f(p3), f(q1), f(q2) is

(4) r′1 =
(f(p2)− f(q1))(f(p3)− f(q2))
(f(p2)− f(q2))(f(p3)− f(q1))

=
(p′2 − q′1)(p′3 − q′2)
(p′2 − q′2)(p′3 − q′1)

..

Claim. r1 = r′1.

Proof of Claim. By Lemma 2.1 we may assume q1 = 0, q2 = ∞, hence
r1 = p2/p3. Write pi = [pi : 1], ∞ = [1 : 0] and 0 = [0 : 1]. For

f =

[
a b

c d

]
∈ SL2,

we have f(pi) =
[api+b
cpi+d

: 1
]
, f(∞) = [a/c : 1] and f(0) = [b/d : 1]. Writing

these in nonhomogeneous form and substituting in (4), we get r′1 = p2/p3.
Similarly for r2, r3. Since the cross ratios are invariant under the SL2 action,
they descend to give rational functions on Mtm

2 .

Let V = Spec
(
Z[1/2][x1, x2, x3]/(x1 + x2 + x3 + x1x2x3)

)
.

Proposition 5.2. The cross ratios form a complete conjugacy invariant,
i.e. they determine the conjugacy class in Mtm

2 uniquely.

Proof. We begin by defining a map from the scheme V to the fixed point
marked moduli space Mfm

2 and then extending it to Mtm
2 . The fixed point

marked moduli space is determined by the multipliers at the three fixed
points which we denote by µ1, µ2, µ3. Define a map from V to Mfm

2 by setting
µi = 1 + xjxk.

Observe that µ1+µ2+µ3 = µ1µ2µ3+2. If ωj 6= ωk, then we can put ωj = 0
and ωk =∞, and write the map as

φ(z) =
z2 + µjz

µkz + 1
.

The critical points of φ are

ξ1 =
−1 + xi
µk

, ξ2 =
−1− xi
µk

,

and the cross ratio ri is given by

ri =
ξ1
ξ2

=
1− xi
1 + xi

.



Moduli space of marked rational maps 259

Conversely, given ri we can solve for xi, obtaining xi = (1 − ri)/(1 + ri).
This shows that the cross ratios and hence the conjugacy class in Mtm

2 are
completely determined by the coordinates x1, x2, x3, yielding a smooth map
from Mtm

2 to V .

Let r1, r2, r3 be nonhomogeneous coordinates on (P1 \{−1})3, and let W
be the subvariety cut out by the equation r1r2r3 − 1. We now prove that
Mtm

2 is isomorphic to W , where the isomorphism is defined over Z[1/2].
Remark 5.3. The schemes V andW are isomorphic to each other. Using

x1, x2, x3 and r1, r2, r3 as coordinates on V and W respectively define σ :
V →W , xi 7→ ri = (1− xi)/(1 + xi). It can be easily verified that σ = σ−1.

Theorem 5.4. The map Mtm
2 → W is an isomorphism of schemes de-

fined over Z[1/2].
Proof. Let (ω1, ω2, ω3, ξ1, ξ2) be any element ofMtm

2 . The mapMtm
2 →W

is given by

ri =
(ωj − ξ1)(ωk − ξ2)
(ωj − ξ2)(ωk − ξ1)

,

where (i, j, k) is any permutation of (1, 2, 3). We now construct the inverse.
Without loss of generality we may assume that one of ω1, ω2, ω3 is finite and
nonzero, and ω1 = 1, ω2 = 1/r3, ω3 = r2, ξ1 = 0, ξ2 = ∞. Since ξ1 = 0,
ξ2 = ∞, we have φ(z) = az2+b

cz2+d
. We shall determine the coefficients of φ

explicitly. The image for these values of ω1, ω2, ω3, ξ1, ξ2 in (P1 \ {−1})3 is
the complement of the curves (r2 = ∞, r3 = 0) and (r2 = 0, r3 = ∞). We
denote the image in (P1 \ {−1})3 by U . For ω1, ω2, ω3, ξ1, ξ2 as above,

a/c = −(1 + r2 + 1/r3), b/c = r2/r3, d/c = r2 + 1/r3 + r2/r3.

We now break U into four subsets based on values of r2 and r3.

Case 1: If r2 6=∞, r3 6= 0, then let c = 1 and we are done.
Case 2: If r2 6=∞, r3 6=∞, then let c = r3, so b = −r2, a = −(1+r3+r2r3),

d = 1 + r2 + r2r3.
Case 3: If r2 6= 0, r3 6= 0, then let b = −1/r3, so a = −(1 + 1/r2 + 1/r2r3),

c = 1/r2, d = 1 + 1/r3 + 1/r2r3.
Case 4: If r2 6= 0, r3 6= ∞, then let b = −1, so a = −(r3 + 1/r2 + r3/r2),

c = r3/r2, d = 1 + r3 + 1/r2.

In each of the four cases φ(z) ∈ Mtm
2 . On the intersections the maps agree

not only in Mtm
2 but also in Rattm2 . So we can glue the four affine pieces

together to obtain a map U → Mtm
2 . By symmetry we can assume that

ω2, ω3 are finite and nonzero as well. We get morphisms from three affine
open pieces to Mtm

2 . The union of these three affine pieces is W , so we have
three morphisms from W to Mtm

2 . It remains to show that the morphisms
agree on the intersections.
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On the first affine piece (i.e. ω1 6= 0,∞) we have ω1 = 1, ω2 = 1/r3,
ω3 = r2, so a/c = −(1 + r2 + 1/r3), b/c = −r2/r3, d/c = r2 + 1/r3 + r2/r3.
On the second affine piece (i.e. ω2 6= 0,∞) we have ω2 = 1, ω1 = 1/r3,
ω3 = r2r3, so a/c = −(1 + r3 + r2r3), b/c = −r2r23, d/c = r3(1 + r2 + r2r3).
Applying the transformation z 7→ r3 · z to the equation φ(z) = z we see that
the expressions for a/c, b/c, d/c are the same. On the third affine piece (i.e.
ω3 6= 0,∞) if r2 6= ∞, then let c = 1, and if r2 6= 0, then let c = 1/r2. In
either case r1, r2, r3 determine the same quadruple (a, b, c, d) defining the
same point in Mtm

2 , though not the same point in Rattm2 .
A cubic in P3 is a Del Pezzo surface. In homogeneous coordinates the

surface W is cut out by the equation r1r2r3 − r34. Thus the moduli space of
totally marked degree two rational maps is isomorphic to a Del Pezzo surface
and the isomorphism is defined over Z[1/2].
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