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A localized uniformly Jarník set in continued fractions
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and Xiaojun Zhao (Beijing)

1. Introduction. For any x ∈ [0, 1], let [a1(x), a2(x), . . . ] be its contin-
ued fraction expansion and {pn(x)/qn(x)}n≥1 be the sequence of the conver-
gents of x. Legendre’s theorem states that once |x − p/q| < 1/(2q2), then
p/q must be a convergent of x. In this sense, the classical Jarník set [2, 9]
can be expressed in terms of continued fractions as

J(τ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ < ( 1

qn(x)

)τ+2

i.o. n ∈ N
}

for τ > 0, where i.o. stands for infinitely often.
The Jarník set J(τ) represents the set of points which can be well ap-

proximated by their convergents infinitely often. Instead of infinitely often,
we consider the set of points which can be well approximated by their con-
vergents eventually:

U(τ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ < ( 1

qn(x)

)τ+2

for n ∈ N ultimately
}
.

We call U(τ) a uniformly Jarník set. In view of Legendre’s theorem, U(τ)
represents the set of points x such that for every rational p/q,

|x− p/q| ≥ 1/(2q2) or |x− p/q| < 1/qτ+2.

In this paper, instead of a constant function τ in U(τ), we consider the
following localized version:

Uloc(τ) :=

{
x ∈ [0, 1) :

∣∣∣∣x− pn(x)qn(x)

∣∣∣∣ < ( 1

qn(x)

)τ(x)+2

for n ∈ N ultimately
}
,

where τ : [0, 1] → R+ = [0,∞) is a continuous function, and call Uloc(τ) a
localized uniformly Jarník set.
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Define

F (τ) =

{
x ∈ [0, 1) : lim

n→∞

log an+1(x)

log qn(x)
= τ(x)

}
.

When τ is a constant function, the dimension of F (τ) is given in [12].
In this paper, we determine the Hausdorff dimensions of F (τ) and Uloc(τ):

Theorem 1.1. Let τ : [0, 1]→ R+ be a strictly positive continuous func-
tion. Then

dimH F (τ) = dimH Uloc(τ) =
1

min{τ(x) : x ∈ [0, 1]}+ 2
,

where dimH denotes the Hausdorff dimension.

The strict positivity of τ implies that min{τ(x) : x ∈ [0, 1]} > 0. In this
case, as Theorem 1.1 shows, the Hausdorff dimension of F (τ) depends only
on the minimal value of τ(x). But when min{τ(x) : x ∈ [0, 1]} = 0, the
situation will be quite different, as can be seen in the following result.

Define D0 to be the set of Hausdorff dimensions that can be realized
when min{τ(x) : x ∈ [0, 1]} = 0, i.e.

D0 =
{
dimH F (τ) : τ continuous on [0, 1] and min

x∈[0,1]
τ(x) = 0

}
.

Theorem 1.2. D0 = [1/2, 1], where D0 denotes the closure of D0.

It should be mentioned that the localized version of the Diophantine anal-
ysis was first carried out in the work of Barral & Seuret [1], who considered
the localized version of the Jarník theorem. For more dimensional results
about the set of points with restrictions on their partial quotients, see e.g.
Good [6], D. Hensley [7, 8], Bugeaud [4], Wang & Wu [13, 14], Wu [15].

2. Preliminaries. In this section, we collect some known facts and es-
tablish some elementary properties of continued fractions for later use.

Any irrational number x ∈ [0, 1) has a simple infinite continued fraction
expansion

(2.1) x =
1

a1(x) +
1

a2(x) +
1

a3(x) + · · ·

= [a1(x), a2(x), a3(x), . . . ],

where an(x), n ≥ 1, are called the partial quotients of x. Finite truncations
of (2.1) give the convergents of x:

pn(x)

qn(x)
= [a1(x), . . . , an(x)], n ≥ 1.
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With the conventions p−1(x) = 1, q−1(x) = 0, p0(x) = 0, q0(x) = 1, we have
(see [11])

pn+1(x) = an+1(x) · pn(x) + pn−1(x), n ≥ 0,(2.2)
qn+1(x) = an+1(x) · qn(x) + qn−1(x), n ≥ 0.(2.3)

The following proposition collects some basic properties of qn.

Proposition 2.1 ([11]). For any a1, . . . , an ∈ N, let pn = pn(a1, . . . , an)
and qn = qn(a1, . . . , an) be recursively defined by (2.2)–(2.3). Then

(i) pn−1qn − pnqn−1 = (−1)n;
(ii) an+1qn ≤ qn+1 ≤ 2an+1qn;
(iii) qn ≥ 2(n−1)/2,

∏n
k=1 ak ≤ qn ≤

∏n
k=1(ak + 1);

(iv) for any integers a1, . . . , an and b1, . . . , bm with n,m ≥ 1,

1 ≤ qn+m(a1, . . . , an, b1, . . . , bm)

qn(a1, . . . , an)qm(b1, . . . , bm)
≤ 2;(2.4)

1

2an+1(x)qn(x)2
≤
∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ ≤ 1

an+1(x)qn(x)2
.(v)

For any a1, . . . , an ∈ N, an nth order cylinder is defined as

In(a1, . . . , an) = {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an},
which is the collection of points whose expansions begin with (a1, . . . , an).

The following lemma gives the length of a cylinder.

Lemma 2.2 ([11]). For any a1, . . . , an ∈ N, the nth order cylinder In(a1,
. . . , an) is the interval with endpoints pn/qn and (pn+pn−1)/(qn+ qn−1). As
a consequence, the length of In(a1, . . . , an) is equal to

|In(a1, . . . , an)| =
1

qn(qn + qn−1)
.

Now we give some consequences of Lemma 2.2 which will be used in
proving Theorem 1.1. Let a1, . . . , an ∈ N and a ≥ 2. Write

Jn(a1, . . . , an) =
⋃

a≤an+1<2a

In+1(a1, . . . , an, an+1).

Clearly, Jn(a1, . . . , an) is a subinterval of In(a1, . . . , an) and depends on a.
But to ease the notation, we hide this dependence.

Corollary 2.3.

(i) The length of Jn(a1, . . . , an) satisfies

(2.5)
1

8aq2n
≤ |Jn(a1, . . . , an)| ≤

1

aq2n
.
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(ii) If we denote by gn(a1, . . . , an) the minimal distance between the end-
points of Jn(a1, . . . , an) and those of In(a1, . . . , an), then

gn(a1, . . . , an) ≥ 1
2 |Jn(a1, . . . , an)|.

(iii) For any a ≤ an+1, a
′
n+1 < 2a, we have

1

4
≤ |In+1(a1, . . . , an, an+1)|
|In+1(a1, . . . , an, a′n+1)|

≤ 4.

Proof. We consider the case of n even. For n odd, the argument is similar.
(i) By Lemma 2.2 and the definition of Jn(a1, . . . , an), we have

Jn(a1, . . . , an) =

(
2apn + pn−1
2aqn + qn−1

,
apn + pn−1
aqn + qn−1

]
.

Hence

(2.6) |Jn(a1, . . . , an)| =
a

(aqn + qn−1)(2aqn + qn−1)
.

By a simple calculation,
1

8aq2n
≤ |Jn(a1, . . . , an)| ≤

1

aq2n
.

(ii) By (2.6), the distance between the left endpoint of Jn(a1, . . . , an) and
that of In(a1, . . . , an) is

2apn + pn−1
2aqn + qn−1

− pn
qn

=
1

(2aqn + qn−1)qn
≥ 1

2
|Jn(a1, . . . , an)|,

while the distance between the right endpoint of In(a1, . . . , an) and that of
Jn(a1, . . . , an) is

pn + pn+1

qn + qn+1
− apn + pn−1
aqn + qn−1

=
a− 1

(aqn + qn−1)(qn + qn−1)
≥ 1

2
|Jn(a1, . . . , an)|;

hence
gn(a1, . . . , an) ≥ 1

2 |Jn(a1, . . . , an)|.

(iii) By Lemma 2.2 and the assumption a ≤ an+1, a
′
n+1 < 2a,

1

4
≤ (aqn + qn−1)((a+ 1)qn + qn−1)

((2a− 1)qn + qn−1)(2aqn + qn−1)

≤ |In+1(a1, . . . , an, an+1)|
|In+1(a1, . . . , an, a′n+1)|

=
(a′n+1qn + qn−1)((a

′
n+1 + 1)qn + qn−1)

(an+1qn + qn−1)((an+1 + 1)qn + qn−1)

≤ ((2a− 1)qn + qn−1)(2aqn + qn−1)

(aqn + qn−1)((a+ 1)qn + qn−1)
≤ 4.



A localized uniformly Jarník set 271

We write un ≈ vn when there exist absolute positive constants c1, c2 such
that c1vn ≤ un ≤ c2vn for any n ≥ 1. From Corollary 2.3(i),

|Jn(a1, . . . , an)| ≈
1

a
|In(a1, . . . , an)|,

because by Lemma 2.2,
1

2q2n
≤ |In(a1, . . . , an)

∣∣ = 1

qn(qn + qn−1)
≤ 1

q2n
.

We will denote by In(x) the nth order cylinder that contains x, i.e.
In(x) = In(a1(x), . . . , an(x)). Let B(x, r) denote the ball centered at x with
radius r. For any x ∈ In(a1, . . . , an), we have the following relationship be-
tween the ball B(x, |In(a1, . . . , an)|) and In(a1, . . . , an), which is known as
the regular property [3].

Lemma 2.4 ([3]). Let x = [a1, a2, . . . ]. If an 6= 1, then

B(x, |In(x)|) ⊂
3⋃

j=−1
In(a1, . . . , an−1, an + j).

The following lemmas give some dimension results.

Lemma 2.5 ([12]). For any α > 0, the set

G(α) = {x ∈ [0, 1) : an+1(x) ≥ qn(x)α for n ∈ N ultimately}
has Hausdorff dimension 1/(α+ 2).

Lemma 2.6 ([6]).

dimH

{
x ∈ [0, 1] : lim

n→∞
an(x) =∞

}
= 1/2,

dimH

{
x ∈ [0, 1] : {an(x)}n≥1 is bounded

}
= 1.

Finally, we state a result which is known as the Texan conjecture [10].

Lemma 2.7 ([10]). For any Λ ⊂ N, define
JΛ := {x ∈ [0, 1] : ai(x) ∈ Λ, i ∈ N}.

Then {dimH JΛ : Λ ⊂ N finite} is dense in [0, 1].

3. Proof of Theorem 1.1. The proof is divided into two parts: upper
bound and lower bound. Recall that

F (τ) =

{
x ∈ [0, 1) : lim

n→∞

log an+1(x)

log qn(x)
= τ(x)

}
,

and define
τ0 = min{τ(x) : x ∈ [0, 1]}.

Since τ : [0, 1]→ (0,∞) is continuous, we have τ0 > 0.
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By a simple calculation (using Proposition 2.1), we get

Uloc(τ) =

{
x ∈ [0, 1) : lim inf

n→∞

log an+1(x)

log qn(x)
≥ τ(x)

}
.

3.1. Upper bound. Since τ0 > 0 is the minimal value of τ(x), it follows
that

Uloc(τ) ⊂ G(τ0 − ε) for all ε > 0.

Thus, by Lemma 2.5 and since ε is arbitrary, we have

dimH Uloc(τ) ≤
1

τ0 + 2
.

As a consequence,

dimH F (τ) ≤ dimH Uloc(τ) ≤
1

τ0 + 2
,

because F (τ) ⊂ Uloc(τ).

3.2. Lower bound. The lower bound is obtained by using the following
mass distribution principle (see [5, Proposition 4.2]), which is a classical tool
to estimate the Hausdorff dimension of a set from below.

Proposition 3.1 (Falconer [5]). Let E ⊂ [0, 1] be a Borel set and µ be
a measure with µ(E) > 0. Suppose that

lim inf
r→0

logµ(B(x, r))

log r
≥ s for all x ∈ E,

where B(x, r) denotes the ball with center at x and radius r. Then dimHE ≥ s.

Thus in what follows, we will first construct a Cantor set D∞ inside F (τ),
then a probability measure µ supported on D∞, and finally, we will estimate
the Hölder exponent of µ.

3.2.1. Cantor set. Fix τ ∈ {τ(x) : x ∈ [0, 1]}. We construct a Cantor set
D∞ such that for each x ∈ D∞,

(3.1) lim
n→∞

log an+1(x)

log qn(x)
= τ(x)

and τ(x) is close to τ . It should be emphasized that since the limit in (3.1)
depends on the individual points, in the construction of the Cantor set, each
generation depends on its predecessor.

Fix 0 < ε ≤ τ/2. By the continuity of τ , one can choose a cylinder
IN (a1, . . . , aN ) such that

(3.2) |τ(x)− τ | < ε for any x ∈ IN (a1, . . . , aN ),
where E denotes the closure of E.
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We define
D0 = {IN (a1, . . . , aN )}

to be the zeroth generation of the Cantor set.
Look at (3.1). To ensure that a point x in the Cantor set to be con-

structed fulfills (3.1), its (n+ 1)th partial quotients an+1(x) should be close
to qn(x)τ(x) for all n large enough. In view of this, the other generations of
the Cantor set will be constructed in the following way.

The first generation D1 of the Cantor set. Let IN (a1, . . . , aN ) ∈ D0.
Write

τ([a1, . . . , aN ]) = τ(pN/qN ), where pN/qN = [a1, . . . , aN ].

Then define

D1(IN (a1, . . . , aN )) =
{
IN+1(a1, . . . , aN , aN+1) :

qN (a1, . . . , aN )
τ([a1,...,aN ]) ≤ aN+1 < 2qN (a1, . . . , aN )

τ([a1,...,aN ])
}
,

where qN (a1, . . . , aN ) is the denominator of the convergent.
The first generation D1 is defined as

D1 =
⋃

IN (a1,...,aN )∈D0

D1(IN (a1, . . . , aN )).

The inductive step of the construction. Suppose that the kth generation
Dk is already defined, which is a collection of cylinders of order N + k. Fix
IN+k(a1, . . . , aN+k) ∈ Dk. Write

τ([a1, . . . , aN+k]) = τ(pN+k/qN+k), where pN+k/qN+k = [a1, . . . , aN+k].

Then define

(3.3) Dk+1(IN+k(a1, . . . , aN+k)) =
{
IN+k+1(a1, . . . , aN+k, aN+k+1) :

qN+k(a1, . . . , aN+k)
τ([a1,...,aN+k]) ≤ aN+k+1

< 2qN+k(a1, . . . , aN+k)
τ([a1,...,aN+k])

}
.

The (k + 1)th generation Dk+1 is defined as

Dk+1 =
⋃

IN+k(a1,...,aN+k)∈Dk

Dk+1(IN+k(a1, . . . , aN+k)).

The desired Cantor set is defined as

D∞ =

∞⋂
k=0

⋃
IN+k(a1,...,aN+k)∈Dk

IN+k(a1, . . . , aN+k).

For each k ≥ 0, we call the elements in Dk basic intervals of order k.
Finally, we are going to express the Cantor set D∞ in another way.
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For each k ≥ 0 and IN+k(a1, . . . , aN+k) ∈ Dk, define

JN+k(a1, . . . , aN+k) =
⋃

A≤a<2A

IN+k+1(a1, . . . , aN+k, a),

where A = qN+k(a1, . . . , aN+k)
τ([a1,...,aN+k]), and call it a fundamental inter-

val of order k. By Corollary 2.3(i),

(3.4)
1

8
·
(

1

qN+k(a1, . . . , aN+k)

)2+τ([a1,...,aN+k])

≤ |JN+k(a1, . . . , aN+k)|

≤
(

1

qN+k(a1, . . . , aN+k)

)2+τ([a1,...,aN+k])

.

In fact, JN+k(a1, . . . , aN+k) is just the union of all basic intervals of order
k + 1 contained in IN+k(a1, . . . , aN+k). As a result,

D∞ =

∞⋂
k=0

⋃
IN+k(a1,...,aN+k)∈Dk

JN+k(a1, . . . , aN+k).

But Corollary 2.3 says that there are some gaps between JN+k. This technical
adjustment will simplify the argument on the Hölder exponent of the mass
distribution µ (defined later).

Proposition 3.2. D∞ ⊂ F (τ).

Proof. For each x ∈ D∞, let x = [a1, a2, . . . ] be its continued fraction
expansion. Then by the construction of D∞,

IN+k(x) ∈ Dk for all k ≥ 1.

This implies that for each n ≥ N ,

qn(x)
τ([a1(x),...,an(x)]) ≤ an+1(x) < 2qn(x)

τ([a1(x),...,an(x)]).

Then by the continuity of τ ,

lim
n→∞

log an+1(x)

log qn(x)
= lim

n→∞
τ([a1(x), . . . , an(x)]) = τ(x).

3.2.2. A probability measure supported on D∞. Now we define induc-
tively a probability measure µ supported on D∞, which is defined by dis-
tributing measure among fundamental intervals.

Let
µ(JN (a1, . . . , aN )) = 1.

Assume that µ has been well defined on all fundamental intervals of order
k− 1. Now we distribute the measure µ on fundamental intervals of order k.
Fix a basic interval IN+k(a1, . . . , aN+k) ∈ Dk. Then IN+k−1(a1, . . . , aN+k−1)
is in Dk−1. We define
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(3.5) µ(JN+k(a1, . . . , aN+k))

=

(
1

qN+k−1(a1, . . . , aN+k−1)

)τ([a1,...,aN+k−1])

× µ(JN+k−1(a1, . . . , aN+k−1))

=

k−1∏
j=1

(
1

qN+j(a1, . . . , aN+j)

)τ([a1,...,aN+j ])

.

Note that by (3.3) the number of fundamental subintervals of order k
contained in the (k − 1)th fundamental interval JN+k−1(a1, . . . , aN+k−1) is
just

qN+k−1(a1, . . . , aN+k−1)
τ([a1,...,aN+k−1]).

Thus in other words, the measure on JN+k−1(a1, . . . , aN+k−1) is uniformly
distributed among its offsprings. Hence, µ satisfies Kolmogorov’s consistency
condition and so can be uniquely extended to a probability measure sup-
ported on D∞.

According to the distribution of the mass on D∞, the mass of a basic
interval IN+k(a1, . . . , aN+k) ∈ Dk concentrates on one of its subintervals
JN+k(a1, . . . , aN+k), i.e.

µ(IN+k(a1, . . . , aN+k)) = µ(JN+k(a1, . . . , aN+k)).

Finally, we make a remark on (3.5): for each j ≥ 1,

qN+j(a1, . . . , aN+j)
τ([a1,...,aN+j ]) ≤ aN+j+1(3.6)

< 2qN+j(a1, . . . , aN+j)
τ([a1,...,aN+j ]).

Thus, by Proposition 2.1(ii), (iv), we have

(3.7) µ(JN+k(a1, . . . , aN+k)) ≤ 2k
N+k∏
j=N+1

1

aj
≤ 4k

c

qN+k(a1, . . . , aN+k)
,

where the absolute constant c can be taken to be qN (a1, . . . , aN ).

3.2.3. Hölder exponent of µ. Now we estimate the measure of an arbi-
trary ball B(x, r) with center x ∈ D∞ and radius r > 0 small enough. Let
x = [a1, a2, . . . ] be the continued fraction expansion. Let k ≥ 1 be the integer
such that

(3.8) 1
2 |JN+k(a1, . . . , aN+k)| ≤ r < 1

2 |JN+k−1(a1, . . . , aN+k−1)|.
Then B(x, r) ⊂ IN+k−1(a1, . . . , aN+k−1) by Corollary 2.3(ii).

To estimate the measure of B(x, r) we distinguish two cases.

Case (i): 1
2 |JN+k(a1, . . . , aN+k)| ≤ r < |IN+k(a1, . . . , aN+k)|. By Lem-

ma 2.4 and the fact that aN+k 6= 1, B(x, r) can intersect at most five kth
order basic intervals. Since these basic intervals have the same µ-measure,

µ(B(x, r)) ≤ 5µ(IN+k(a1, . . . , aN+k)) = 5µ(JN+k(a1, . . . , aN+k)).
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By the estimates (3.7) on the measure of JN+k and (3.4) on its length, we
have

µ(B(x, r)) ≤ 5 · c · 4k · 1

qN+k(a1, . . . , aN+k)

= 5 · c · 4k ·
[(

1

qN+k(a1, . . . , aN+k)

)τ([a1,...,aN+k])+2] 1
τ([a1,...,aN+k])+2

≤ 5 · c · 4k · (8 · |JN+k(a1, . . . , aN+k)|)
1

τ([a1,...,aN+k])+2

≤ 5 · c · 4k+2 · |JN+k(a1, . . . , aN+k)|
1

τ([a1,...,aN+k])+2

≤ 5 · c · 4k+2 · r
1

τ−ε+2 .

Case (ii): |IN+k(a1, . . . , aN+k)| ≤ r < 1
2 |JN+k−1(a1, . . . , aN+k−1)|. As

µ is supported on basic intervals, we only need to count the basic intervals
of order k intersecting B(x, r). Moreover, by (3.6) and Corollary 2.3(iii), all
the basic intervals of order k contained in IN+k−1(a1, . . . , aN+k−1) are of
equivalent length in the sense that

1/4 ≤ |IN+k(a1, . . . , aN+k−1, a)|
|IN+k(a1, . . . , aN+k−1, a′)|

≤ 4,

where IN+k(a1, . . . , aN+k−1, a), IN+k(a1, . . . , aN+k−1, a
′) are any two basic

intervals of order k contained in IN+k−1(a1, . . . , aN+k−1).
Note that

|IN+k(a1, . . . , aN+k)| ≥
(

1

qN+k(a1, . . . , aN+k)

)2

.

Hence the ball B(x, r) which is contained in IN+k−1(a1, . . . , aN+k−1) can
intersect at most 8rq2N+k(a1, . . . , aN+k) basic intervals of order k. As a con-
sequence,

µ(B(x, r)) ≤ min
{
µ(JN+k−1(a1, . . . , aN+k−1)),

8rq2N+k(a1, . . . , aN+k)µ(JN+k(a1, . . . , aN+k))
}

≤ c · 4k+2 ·min

{
1

qN+k−1(a1, . . . , aN+k−1)
, rqN+k(a1, . . . , aN+k)

}
.

Notice that by Proposition 2.1(ii) and (3.6),

qN+k(a1, . . . , aN+k) ≤ 2aN+kqN+k−1(a1, . . . , aN+k−1)

≤ 4(qN+k−1(a1, . . . , aN+k−1))
τ([a1,...,aN+k−1])+1

≤ 4(qN+k−1(a1, . . . , aN+k−1))
τ+ε+1.

Then using the elementary inequality min{a, b} ≤ a1−sbs with a, b > 0 and
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0 < s < 1, and letting s = 1
τ+ε+2 , we get

µ(B(x, r)) ≤ c · 4k+3

· 1

qN+k−1(a1, . . . , aN+k−1)
min

{
1, r(qN+k−1(a1, . . . , aN+k−1))

τ+ε+2
}

≤ c · 4k+3 · r
1

τ+ε+2 .

In order to use the mass distribution principle (Proposition 3.1) to get the
desired upper bound of the Hausdorff dimension, we should show that r is
much smaller than 4k. First we prove that qn(x) grows much faster than an
exponential function. By (3.6) and Proposition 2.1(ii),

qN+k(a1, . . . , aN+k) ≥ aN+kqN+k−1(a1, . . . , aN+k−1)

≥ qN+k−1(a1, . . . , aN+k−1)
τ([a1,...,aN+k−1])+1

≥ qN+k−1(a1, . . . , aN+k−1)
τ−ε+1

≥ · · · ≥ qN (a1, . . . , aN )(τ−ε+1)k = c(τ−ε+1)k .

Then by (3.4) and (3.8),

r <
1

2
|JN+k−1(a1, . . . , aN+k−1)|

≤ 1

2

(
1

qN+k−1(a1, . . . , aN+k−1)

)2+τ([a1,...,aN+k−1])

≤ c−(τ−ε+1)k−1(τ−ε+2).

Finally, by Proposition 3.1,

dimHD∞ ≥ min

{
1

τ + ε+ 2
,

1

τ − ε+ 2

}
.

Since ε is arbitrary and τ can be taken close to min{τ(x) : x ∈ [0, 1]}, we
arrive at

dimH F (τ) ≥
1

min{τ(x) : x ∈ [0, 1]}+ 2
=

1

τ0 + 2
.

With almost the same argument, one can also show that a similar result
holds when the set F (τ) is restricted in a closed interval.

Theorem 3.3. Let U be a closed interval, and τ : U → R+ be a strictly
positive continuous function. Then

dimH(F (τ) ∩ U) =
1

2 +min{τ(x) : x ∈ U}
.

Proof. Instead of choosing a cylinder IN (a1, . . . , aN ) such that τ(x) is
close tomin{τ(x) : x ∈ [0, 1]} for all x ∈ IN (a1, . . . , aN ) as in (3.2), we choose
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a cylinder IN (a1, . . . , aN ) such that τ(x) is close to min{τ(x) : x ∈ U} for all
x ∈ IN (a1, . . . , aN ). The remaining argument can be carried out similarly.

4. Proof of Theorem 1.2. First, we show that dimH F (τ) ≥ 1/2 for
any τ with min{τ(x) : x ∈ [0, 1]} = 0.

Case (i): τ(x) = 0 for all x ∈ [0, 1]. In this case, it is trivial that the
set of points with bounded partial quotients is a subset of F (τ). So, by
Lemma 2.6, we have dimH F (τ) = 1.

Case (ii): τ(x) 6= 0 for some x ∈ [0, 1]. By the continuity of τ , the closed
set

{x ∈ [0, 1] : τ(x) = 0}

is nonempty and not dense. Thus for any η > 0, we can find 0 < δ < η and
a closed interval U such that

δ/2 ≤ τ(x) ≤ δ for all x ∈ U.

Applying Theorem 3.3, we arrive at

dimH F (τ) ≥
1

2 + η
.

Since η is arbitrary, we get dimH F (τ) ≥ 1/2.

Secondly, we prove that there is a dense subset S of [1/2, 1] such that for
any s∈S, one can construct a continuous function τ such that dimH F (τ)=s.

Recall the Texan conjecture (Lemma 2.7):

{dimH JΛ : Λ is a finite subset of N} is dense in [0, 1].

For any finite subset Λ ⊂ N with dimH JΛ ≥ 1/2, we will construct a con-
tinuous function τ with min{τ(x) : x ∈ [0, 1]} = 0 but

dimH F (τ) = dimH JΛ.

Since Λ is a finite set, we have two obvious facts: the compactness of JΛ
and the boundedness of the partial quotients of each element in JΛ. Define

τ(x) = d(x, JΛ), x ∈ [0, 1],

where d(x,E) is the distance from the point x to the set E. The compactness
of JΛ implies that

(4.1) τ(x) = 0 ⇔ x ∈ JΛ.

On the one hand, the boundedness of the partial quotients for each x ∈ JΛ
implies that

lim
n→∞

log an+1(x)

log qn(x)
= 0 = τ(x) for all x ∈ JΛ.
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Therefore JΛ ⊂ F (τ). Hence
(4.2) dimH JΛ ≤ dimH F (τ).

On the other hand, we divide the set F (τ) into two parts according to
whether τ(x) = 0 or not. By (4.1), it follows that

F (τ) ⊂
{
x ∈ [0, 1) \ JΛ : lim

n→∞

log an+1(x)

log qn(x)
= τ(x) > 0

}
∪ JΛ.

Clearly, the first set on the right side is contained in{
x ∈ [0, 1] : lim

n→∞
an(x) =∞

}
,

so has Hausdorff dimension less than 1/2 by Lemma 2.6. As a result,

(4.3) dimH F (τ) ≤ max{1/2,dimH JΛ} = dimH JΛ.

Combining (4.2) and (4.3), we arrive at dimH F (τ) = dimH JΛ.
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