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1. Introduction. For various linear groups, there is a representation of
the local Hecke algebra in which the representation space can be identified
with a ring of polynomials invariant under the action of an associated Weyl
group [5]. This representation has been exploited in the case of GLn (see [3])
to define new families of Hecke operators the sum of whose generating series
has an especially nice expression as a rational function. In this paper, we
extend Serre’s work on trees [7] by defining a natural representation of the
local Hecke algebra for GLn in which the Hecke operators act on the vertices
of the Bruhat–Tits building for SLn(Qp). We also give a specific geometric
characterization (Theorem 2.4) showing that the endpoints of minimal walks
on the (1-subcomplex of the) building correspond to the action of a sum of
Hecke operators.

Fix a prime p, let Γ = GLn(Zp), and consider the local Hecke algebra
Hp generated by all double cosets of the form Γ diag(pi1 , . . . , pin)Γ , for in-
tegers i1, . . . , in. The integral Hecke algebra Hp is generated by the n Hecke
operators

Tnk (p) = Γ diag(1, . . . , 1︸ ︷︷ ︸
n−k

, p, . . . , p︸ ︷︷ ︸
k

)Γ, k = 1, . . . , n,

and the full Hecke algebra Hp is generated by the n elements above, plus
the element T nn (p)−1.

In the next section we give a representation of Hp in which the Hecke
operators act on the vertices of the building for SLn(Qp).

2. Hecke operators on buildings. Before we define the representa-
tion, we briefly remind the reader about buildings. The Bruhat–Tits build-
ing for SLn(Qp), denoted ∆n, is an (n − 1)-dimensional simplicial complex
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whose vertices are homothety classes of lattices in a fixed n-dimensional
vector space V over Qp (see [2] or [4]). One defines an incidence relation
on the vertices and the resulting flag complex is the building. Of particular
interest are the apartments in the building whose structure is determined by

the affine Coxeter group Ãn. We will exploit the structure of an apartment
later to give a geometric characterization of our Hecke operators acting on
the building.

To set up the representation, we need to talk about the correspondence
between lattices in V and double cosets inHp. We begin a bit more generally.

2.1. Lattices and elementary divisors. Let E be a global or local field,
O its ring of integers, and U an n-dimensional vector space over E. Let
Γ = GLn(O) and G = GLn(E). We need recall some basic facts about
lattices and elementary divisors. To that end, we assume that O is a PID
(e.g., if E is any local field or a global field of class number one), and let
S = E×/O×. For E = Q, we can take S to be the positive rationals, and for
E = Qp, we let S = {pν | ν ∈ Z}. The following facts follow from obvious
modifications to §3.2 of [8].

Proposition 2.1. With the notation as above:

(1) Let ξ ∈ GLn(E). Then every double coset ΓξΓ has a unique repre-
sentative Γ diag(a1, . . . , an)Γ with ai ∈ S, ai | ai+1 for all 1 ≤ i ≤ n.

(2) Let L be a lattice of rank n in U . Then Γ can be identified with the
stabilizer in G of L. It follows that for ξ1, ξ2 ∈ G we have Γξ1 = Γξ2 if and
only if Lξ1 = Lξ2.

(3) For two rank n lattices L and M in U , denote by {L :M} the set of
elementary divisors of M in L. If {L : M} = {a1, . . . , an} (ai ∈ S), this
means there exists an O-basis {e1, . . . , en} of L so that {a1e1, . . . , anen} is an
O-basis ofM. Then for lattices L,M,N of U , we have {L :M} = {L : N}
if and only if there exists ξ ∈ Γ with M = N ξ.

(4) Let ξ ∈ G and ΓξΓ = Γ diag(a1, . . . , an)Γ . Then the correspondence
Γξν 7→ Lξν gives a one-to-one correspondence between the right cosets Γξν ⊂
ΓξΓ and lattices M in U with {L :M} = {a1, . . . , an}.

2.2. An action of the Hecke algebra on the building for SLn. Let V and
∆n be as above. For a rank n lattice L in V (free Zp-module of rank n),
denote by [L] its homothety class, i.e., [L] = {M | M = αL, α ∈ Q×p }.
The vertices of the building, Vert(∆n), are in one-to-one correspondence
with homothety classes of lattices in V of rank n, and we let B denote the
rational vector space with basis Vert(∆n).

For ξ ∈ GLn(Qp), and Γ = GLn(Zp), any double coset ΓξΓ can be
represented by a diagonal element, so we assume that henceforth. Let ξ =
diag(pa1 , . . . , pan) ∈ GLn(Qp), and write the double coset ΓξΓ as the disjoint



Hecke operators 133

union of a collection of right cosets {Γξν}. If L is a lattice in V of which
Γ is the stabilizer, then by Proposition 2.1, the right cosets, {Γξν}, are
in one-to-one correspondence with the collection of lattices {M} for which
{L : M} = {pa1 , . . . , pan}. Given that the normal action of double cosets on
an automorphic form is to sum over the action by the right cosets determined
by the double coset, it is natural (using the notation above) to define the
operator TB(ξ) = TB(pa1 , . . . , pan) ∈ End(B) induced by

TB(ξ)([L]) = TB(pa1 , . . . , pan)([L]) =
∑

ξν

[Lξν ] =
∑

{L:M}={pa1 ,...,pan}
[M ].

To ease the notation, when ξ = diag(pa1 , . . . , pan), we usually write
TB(ξ)([L]) =

∑
{L:M}=ξ[M ] for

∑
{L:M}={pa1 ,...,pan}[M ].

2.3. The representation. In this section we show that the correspondence
ΓξΓ 7→ TB(ξ) is (essentially) a faithful representation of the local Hecke
algebra.

Let ξ1 =diag(pa1 , . . . , pan), ξ2 =diag(pb1 , . . . , pbn) be elements of GLn(Qp)
and write Γξ1Γ as the disjoint union

⋃
Γαi, and write Γξ2Γ as the disjoint

union
⋃
Γβj . In the Hecke algebra Hp, the multiplication law is defined by

(e.g., see Section 3.1 of [1])

(Γξ1Γ )(Γξ2Γ ) = Γξ1Γξ2Γ =
∑

i,j

Γαiβj

where the right cosets are not necessarily distinct. More precisely,

(Γξ1Γ )(Γξ2Γ ) =
∑

i,j

Γαiβj =
∑

ΓξΓ

c(ξ)ΓξΓ

where the sum is over all double cosets ΓξΓ ⊂ Γξ1Γξ2Γ , and where c(ξ) is
the number of pairs (i, j) for which Γαiβj = Γξ.

Theorem 2.2. With the notation as above, the correspondence ΓξΓ 7→
TB(ξ) induces a representation Ψ : Hp → End(B), whose kernel consists of
double cosets of the form ΓξΓ with ξ = pµIn, µ ∈ Z.

Proof. The correspondence induces a linear map Ψ , so we first verify
that Ψ is a ring homomorphism. Using the notation above, we have

TB(ξ1)TB(ξ2)([L]) = TB(ξ1)
( ∑

{L:M}=ξ2
[M ]

)
=

∑

{L:M}=ξ2

∑

{M :N}=ξ1
[N ].

Recall that Γξ1Γ =
⋃
Γαi, Γξ2Γ =

⋃
Γβj . By Proposition 2.1, each

lattice M for which {L : M} = ξ2 is of the form M = Lβj . Now

{M : N} = ξ1 ⇔ {Lβj : N} = ξ1 ⇔ {L : Nβ−1
j } = ξ1.

Now let P be such that {L : P} = ξ1. Then again by Proposition 2.1,
P = Lαi for some i. But then P = Nβ−1

j , so N = Pβj = Lαiβj .
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Thus,

TB(ξ1)TB(ξ2)([L]) =
∑

{L:M}=ξ2

∑

{M :N}=ξ1
[N ] =

∑

i,j

[Lαiβj ].

From the discussion before the theorem (and again Proposition 2.1), this last
sum is exactly

∑
ΓξΓ c(ξ)TB(ξ)([L]), which is the image of (Γξ1Γ )(Γξ2Γ ).

To compute the kernel of Ψ , suppose
∑

ΓξΓ c(ξ)TB(ξ) is the trivial map.
Then ∑

ΓξΓ

c(ξ)TB(ξ)([L]) =
∑

ΓξΓ

c(ξ)
∑

{L:M}=ξ
[M ] = [L]

for all vertices [L] ∈ Vert(∆n). But the elements [M ] ∈ Vert(∆n) are a
basis for B, so we have only one ξ, and for that ξ, c(ξ) = 1. Thus we
have

∑
{L:M}=ξ[M ] = [L] for all [L]. Now if ΓξΓ =

⋃
Γξν , then by Propo-

sition 2.1,
∑
{L:M}=ξ[M ] =

∑
ν [Lξν ] = [L], so there can be only one right

coset: ΓξΓ = Γξ, and [Lξ] = [L]. Since {L : Lξ} = ξ, we must have ξ = pµIn
for some integer µ.

2.4. A comparison to Serre’s operators on trees. In this section, we ob-
serve that the operators defined above are natural generalizations of those
defined by Serre [7] on trees. In particular, we show that when n = 2, they
can be combined to produce an operator which coincides with Serre’s. In
the following section, we give a detailed interpretation of the higher rank
operators, and connect them to walks on the building.

Since the action of T nn (p) is trivial, we may restrict our attention to the
integral local Hecke algebra. To that end, we need only consider double cosets
Γ diag(pi1 , . . . , pin)Γ with the ik non-negative integers. For positive integers
n and l, denote by Pn(l) the set of partitions of l into n non-negative pieces.
A typical element of Pn(l) is denoted i = (i1, . . . , in) with 0 ≤ i1 ≤ . . . ≤ in
and

∑
ik = m.

Using the operators already defined, we define more familiar, but less
discriminating, operators which sum all of the basic Hecke operators corre-
sponding to the partitions in Pn(l):

TB(pl) =
∑

i∈Pn(l)

TB(pi1 , . . . , pin).

We recall that V is our fixed n-dimensional vector space over Qp. By the
elementary divisor theorem, given two rank n lattices L andM in V , there
exists a basis {e1, . . . , en} of V and rational integers a1, . . . , an so that

L = Zpe1 ⊕ . . .⊕ Zpen, M = Zppa1e1 ⊕ . . .⊕ Zppanen.
Given this notation, Serre [7], in the case of n = 2, defines as |a1 − a2|

the distance between the two vertices represented by the lattices L andM.
Actually, this notion of distance is well defined on homothety classes of
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lattices. Generalizations of the notion of distance for n > 2 appear in [6].
Using this distance function, Serre defines a graph letting the vertices be
homothety classes of lattices and by placing an edge between any two vertices
which are unit distance apart. It then follows that the resulting graph (which
is the Bruhat–Tits building for SL2(Qp)) is a (p+ 1)-regular tree, and that
vertices which are distance m from a given vertex are simply the endpoints
of walks without backtracking of length m.

Serre defines a family of Z-linear operators θl which act on the free
abelian group generated by the vertices of the tree by setting

θl(v) =
∑

d(v,w)=l

w,

that is, a vertex is mapped to the sum of its neighbors at distance l. From
the structure of the tree, he notes that

θ1θ1 = θ2 + (p+ 1)θ0, θ1θl = θl+1 + pθl−1 for l ≥ 2.

Compared to the recursions satisfied by classical Hecke operators T (pl) (or
merely in terms of simplicity of expression) the recursion is slightly off in
the base case. To correct this, Serre defines new operators

T0 = θ0, T1 = θ1, Tl = θl + Tl−2 for l ≥ 2,

which yields (for all l ≥ 1) the relation

T1Tl = Tl+1 + pTl−1.

While the sum of the generating series for the θl operators is not quite as
simple, the generating series for the Tl operators sums to a rational function
with a familiar form: ∑

l≥0

Tlu
l = [1− T1u+ pu2]−1.

Identifying the vertices of the graph with homothety classes of lattices, we
rewrite Serre’s operators as

θl([L]) =
∑

d([L],[M])=l

[M], l ≥ 1, θ0 = 1

and

Tl([L]) = θl([L]) + Tl−2([L]), l ≥ 2, T0 = θ0, T1 = θ1,

and show that his operators Tl agree with our TB(pl):

Proposition 2.3. For n = 2, we have Tl = TB(pl).

Proof. By Serre’s definition of distance,

d([L], [M]) = l iff {L :M} = {pa, pb} with l = |a− b|.
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Since [M] = [pkM] we have

θl([L]) =
∑

{L:M}={1,pl}
[M].

Also, by definition, we have TB(pl) =
∑[l/2]

k=0 TB(pk, pl−k).
To see Tl = TB(pl) we proceed by induction on l. For l = 0 this is

trivial. For l = 1, we observe that T1([L]) = θ1([L]) =
∑
{L:M}={1,p}[M] =

TB(1, p)([L]) = TB(p)([L]).
Now assume that l ≥ 2. Then

Tl([L]) = θl([L]) + Tl−2([L])

=
∑

{L:M}={1,pl}
[M] + TB(pl−2)([L]) by induction

= TB(1, pl)([L]) +

[(l−2)/2]∑

k=0

TB(pk, pl−2−k)([L])

= TB(1, pl)([L]) +

[(l−2)/2]∑

k=0

TB(p, p)TB(pk, pl−2−k)([L])

= TB(1, pl)([L]) +

[(l−2)/2]∑

k=0

TB(pk+1, pl−1−k)([L])

= TB(1, pl)([L]) +

[l/2]∑

k=1

TB(pk, pl−k)([L])

=

[l/2]∑

k=0

TB(pk, pl−k)([L]) = TB(pl)([L]).

2.5. Hecke operators and walks. The Bruhat–Tits building ∆n is the
union of subcomplexes known as apartments whose structure is completely

specified by the affine Weyl group Ãn.
To specify an apartment in ∆n, choose an unordered set of n one-

dimensional subspaces V1, . . . , Vn, such that V = V1 ⊕ . . . ⊕ Vn. The ver-
tices in the apartment can be viewed as homothety classes of lattices L =
Zpv1 ⊕ . . .⊕ Zpvn with vi ∈ Vi for each i. Now fix an ordering of the chosen
subspaces Vi, which we will refer to as an orientation of the apartment. In the
end, we will let the symmetric group, Sn, act on the apartment, so the situa-
tion will be independent of orientation. To begin, fix a vertex v in the apart-
ment, and let v correspond to the class of the lattice L0 = Zpe1⊕ . . .⊕Zpen.
Then the vertices of the apartment are in one-to-one correspondence with the
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classes of lattices Zppa1e1⊕ . . .⊕Zppanen, where the ai run over Z. Focusing
attention on the ordered n-tuple (a1, . . . , an), the vertices of the apartment
are thus in one-to-one correspondence with the elements of Zn/Z(1, . . . , 1).

Following [2], if u = (u1, . . . , un) and v = (v1, . . . , vn) are in Zn, write

u � v if ui ≤ vi ≤ ui + 1 for all i.

Calling two elements of Zn/Z(1, . . . , 1) incident if they admit representatives
u and v with u � v produces a flag complex which defines the full simplicial
structure of the apartment. Consider our fixed vertex v represented by the
lattice L0 = Zpe1⊕. . .⊕Zpen. Any chamber (i.e., (n−1)-simplex) containing
v corresponds to a maximal flag of lattices:

pL0 = Ln ( Ln−1 ( . . . ( L1 ( L0.

Fix such a (fundamental) chamber, by choosing

Li = Zppe1 ⊕ . . .⊕ Zppei ⊕ Zpei+1 ⊕ . . .⊕ Zpen.
The rest of the apartment is labeled by letting the generators of the

Coxeter group act on the fundamental chamber. For example, if we denote
by [a1, . . . , an] the class of the lattice Zppa1e1⊕ . . .⊕Zppanen, we obtain the
following labeling of a piece of an apartment for SL3:

[0, 2, 0]

tttt JJJJ
[1, 2, 0]

tttt JJJJ
[2, 2, 0]

tttt JJJJ
[3, 2, 0]

tttt JJJJ

[0, 2, 1]

JJJJ
[0, 1, 0]

tttt JJJJ
[1, 1, 0]

tttt JJJJ
[2, 1, 0]

tttt JJJJ
[3, 1, 0]

tttt

[0, 1, 1]

tttt JJJJ
[0, 0, 0]

tttt JJJJ
[1, 0, 0]

tttt JJJJ
[2, 0, 0]

tttt JJJJ

[0, 1, 2]

JJJJ
[0, 0, 1]

tttt JJJJ
[1, 0, 1]

tttt JJJJ
[2, 0, 1]

tttt JJJJ
[3, 0, 1]

tttt

[0, 0, 2] [1, 0, 2] [2, 0, 2] [3, 0, 2]

There is a natural group operation defined on the vertices as we have iden-
tified the vertices with the elements of Zn/Z(1, . . . , 1). Moreover there is a
natural geometric interpretation as well. The vertices adjacent to [0, . . . , 0]
(for n = 3 labeled counterclockwise [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 0, 1],
[1, 0, 1]) define directions in which to move within the apartment, which is
consistent with the group law: For example, moving from [0, 0, 0] to [1, 0, 0]
and then in the direction indicated by [0, 1, 0] brings us to the same vertex as
moving from [0, 0, 0] in the direction indicated by [1, 1, 0]. Thus we can think
of a vertex [a1, . . . , an] as the endpoint of a walk (along the 1-subcomplex
of the apartment) from [0, . . . , 0] to [a1, . . . , an] which takes a1 steps in the
[1, 0, . . . , 0] direction, a2 steps in the [0, 1, 0, . . . , 0] direction, . . . , and an
steps in the [0, . . . , 0, 1] direction.
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Now the geometric action of our Hecke operator TB(pi1 , . . . , pin) becomes
a bit clearer. Recall

TB(pa1 , . . . , pan)([L]) =
∑

{L:M}={pa1 ,...,pan}
[M ],

so at least restricted to an apartment, we see that the sum consists of those
vertices [aσ(1), . . . , aσ(n)] for σ in the symmetric group Sn, that is, the end-
points of walks proceeding aσ(i) units in the ith “standard” direction.

The interpretation of TB(pa1 , . . . , pan) on the building, ∆n, is a bit more
complicated. By a minimal walk between two vertices, we simply mean a
walk (a sequence of vertices {v1, . . . , vm} each pair {vi, vi+1} connected by an
edge) between the two vertices which is of minimal length. We characterize
the endpoints of minimal walks in the building in the following theorem.

Theorem 2.4. Let v0 = [L] be a vertex in the Bruhat–Tits building ∆n

for SLn(Qp) which is represented by the homothety class of the lattice L.
The set of vertices in the building which are endpoints of minimal walks of
length m from v0 is

∑

0≤k1≤...≤kn−2≤m
TB(1, pk1 , . . . , pkn−2 , pm)([L]).

Proof. Consider a minimal walk, γ, between two vertices v0 and vm in
∆n. Denote the walk by the sequence of vertices through which it passes:
γ = {v0, v1, . . . , vm}. Choose chambers C0 and Cm with v0 ∈ C0 and vm ∈
Cm, and let A be an apartment containing the chambers C0 and Cm. Finally,
let % = %A,C0 be the canonical retraction of ∆n onto A centered at C0.

Since the retraction % is a simplicial map, it takes the walk γ to another
walk %(γ) = {%(v0), %(v1), . . . , %(vm)} contained in A. But v0 and vm are
both in A, so are fixed pointwise by %, making %(γ) a walk in A from v0

to vm. Moreover, it is clear that %(γ) has length at most m, since it has at
most m+ 1 distinct vertices defining the walk. Finally, since m is the length
of any minimal walk from v0 to vm, it must be that %(γ) has length m, and
hence is a minimal walk in A from v0 to vm.

Since our interest is only to count the endpoints of minimal walks of
length m, we may assume from the argument above that any such walk
is wholly contained in an apartment. Thus we need only characterize the
vertices of an apartment which are the endpoints of minimal walks (in that
apartment) of length m. Recall that there is a one-to-one correspondence
between the vertices of an apartment and elements in Zn/Z(1, . . . , 1). Let
v be a vertex in a fixed apartment A, and without loss normalize v as
[a1, . . . , an] where some ai = 0 and all aj ≥ 0.

We claim that v is the endpoint of a minimal walk starting from [0, . . . , 0]
of length max{a1, . . . , an}. By the action of the Weyl group on the apartment
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(in this case the Weyl group is the symmetric group Sn), there is no loss
in assuming that v = [a1, . . . , an] where 0 = a1 ≤ a2 ≤ . . . ≤ an. Fixing
a fundamental chamber with vertices [0, . . . , 0], [0, . . . , 0, 1], . . . , [0, 1, . . . , 1]
defines the “directions” in which one may walk, so the walk is achieved
simply by proceeding a2 units in the [0, 1, . . . , 1] direction, followed by a3−a2

units in the [0, 0, 1, . . . , 1] direction, and so on until an − an−1 units in the
[0, . . . , 0, 1] direction. It is clear no walk can reach the vertex in fewer than
an steps, so this walk is minimal.

For a vertex v, denote by vSn the orbit of v under the action of the
symmetric group. Then in a given apartment, the endpoints of minimal
walks of length m starting from [0, . . . , 0] are given by

∑

0≤k1≤...≤kn−2≤m
[0, k1, . . . , kn−2,m]Sn.

The identification of the vertices of an apartment with the elements of
Zn/Z(1, . . . , 1) has also been characterized earlier in terms of elementary
divisors, namely if [0, . . . , 0] = [L], then [a1, . . . , an] represents the class
of a lattice M with elementary divisors {L : M} = {pa1 , . . . , pan}, and
conversely. From this, the theorem follows immediately.

Remark 2.5. Note that in the case n = 2,

∑

0≤k1≤...≤kn−2≤m
TB(1, pk1 , . . . , pkn−2 , pm)

reduces to TB(1, pm) = θm, Serre’s original operator on the tree.
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