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Annihilators for the class group
of a cyclic field of prime power degree

by

C. Greither (Neubiberg) and R. Kučera (Brno)

Introduction. It is well known that the theory of Euler systems pro-
duces bounds on the size of the class group of suitable number fields K. The
word “size” means here just the order of the class group, or the order of the
χ-part of the p-primary part of the class group of K, where χ is a character
of the Galois group G of the field K over some other field, and the order
of G is prime to p. We are interested in a more general situation where p
may divide the order of G. The first substitute for the “size” that comes
to mind is the Zp[G]-Fitting ideal of the p-part of the class group, but it
is doubtful whether the standard method of Kolyvagin and Rubin (see for
instance [R2]) is able to produce bounds on Fitting ideals in general, the
main problem being that the inductive step of Kolyvagin amounts to a re-
duction to the case of a module which is cyclic over Zp[G], and in general
one cannot calculate Fitting ideals by multiplicativity and reduction to the
cyclic case.

On the other hand, the first step in the Euler system method, in other
words, Thaine’s construction [Th] of annihilators (as generalized by Ru-
bin [R1]) works over Zp[G] from the very start and thus produces Zp[G]-
annihilators when given so-called special units as input. Again, the standard
source of special units are cyclotomic units (and elliptic units). So what else
is there to say on annihilators?

In this paper we study G-abelian extensions K/Q for which the obvious
choice of a special unit (to wit, the conductor-level Sinnott unit) would lead
to an annihilation statement that is far too weak. The main reason for this
is that in our examples the class group has a big predictable piece which is a
G-trivial module, by genus theory. So we try to find better special units (or
rather numbers), by extracting certain deep roots of the obvious special unit.
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Our main result seems to be optimal in general. This is to say that we cannot
expect anything better if the non-genus part of the class group is cyclic. If
that group is non-cyclic, it is reasonable to expect that its annihilator will
be strictly larger than the lower bound given by our theorem.

The construction of these new special numbers is non-obvious and tricky;
it goes back to methods of [GK], and we give full details for the reader’s
convenience, even in places where the changes with respect to [GK] are
small. We are actually forced to work with a somewhat clumsy weakened
notion of specialness, since our new numbers are not special in Rubin’s sense,
and even the proof of the weaker property requires some work. Finally the
standard machinery of Thaine and Rubin has (of course) to be adapted in
several places. In particular one has to be very careful in the choice of the
map α (notation of [R1]) and in the application of Chebotarev’s theorem;
loosely speaking, we are but just able to make it. To conclude, let us remark
that we really have to work with special numbers that are not units; Rubin
raised the question in [R1] whether there was any need for such non-units,
remarking that there were no such cases known at that time.

Our setting and our results will be explained in detail presently, in Sec-
tion 1. Notation will be introduced as needed, but we mention here a fre-
quently used shorthand: for any abelian group X, by X/M we mean X/XM ,
if X is written multiplicatively, and we mean X/MX, if X is written addi-
tively. This is used as well when X is a ring; then of course X/M is again a
ring.

1. Formulation of the problem and the result. Let p be an odd
prime, l = pk with k an arbitrary positive integer, s ≥ 2, p1, . . . , ps be differ-
ent primes all congruent to 1 modulo l. Suppose that K/Q is a cyclic exten-
sion of degree l, totally ramified at each pi, unramified outside {p1, . . . , ps}.

Let Cl(K) be the class group of K and h(K) = |Cl(K)| the class number,
let Cl(K)p and h(K)p denote the corresponding p-parts. Let G = Gal(K/Q)
be the Galois group of K and σ ∈ G a fixed generator. Let pi be the prime
of K above pi for any i = 1, . . . , s. Let N =

∑
τ∈G τ be the norm operator.

The ring S is defined to be S = Zp[G]/(N).
Let E = Zp ⊗Z O∗K be the p-adic completion of the group of units of K.

Let η denote the “Sinnott circular unit of conductor level”, i.e.

η = NQ(ζp1...ps )/K(1− ζp1 . . . ζps),

where ζn means a fixed nth root of unity. By abuse of notation we shall
denote by η also its image in E. By 〈η〉 we understand the Zp[G]-span of η
in E.

For any i = 1, . . . , s, let Ki be the unique absolute degree l field of
conductor pi. Let K be the compositum of these fields for i = 1, . . . , s. By
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considering ramification indices over Q, it is easy to see that K is the genus
field of K. For any i = 1, . . . , s, let σi ∈ Gal(K/Q) be the automorphism
determined by the following conditions: σi has trivial restriction to each
Kj , j 6= i, and the restriction of σi to K is σ. Then the restriction of σi
to Ki generates Gal(Ki/Q). We define an s × s matrix A = (aij)1≤i,j≤s
over Z/lZ in the following way: the non-diagonal entries are given by the
condition that the restriction of σ

aij
j is the Frobenius automorphism of pi

in Kj . The diagonal entries are chosen such that the matrix A has zero row
sums: aii = −∑j 6=i aij .

Definition. We say that K satisfies the Minors Condition if Ai = 0 for
each i = 1, . . . , s, where Ai ∈ Z is the lift of the (i, i)th minor of the matrix
A satisfying 0 ≤ Ai < l.

Theorem 1. There is ε ∈ K∗ which is a unit outside of {p1, . . . , ps}
such that

ε(σ−1)s−1
= η

and

NK/Q(ε) =
s∏

i=1

p
(−1)s−1Ai
i .

Moreover ε ∈ O∗K if and only if the Minors Condition holds for K.

In both cases, i.e. whether the Minors Condition holds true for K or not,
we have εσ−1 ∈ E, so we can consider E/〈εσ−1〉. We remind the reader that
for any S-module X, the ideal AnnS(X) is just the set {s ∈ S : sX = 0}.
We shall prove the following

Theorem 2. AnnS(E/〈εσ−1〉) ⊆ AnnS((σ − 1)Cl(K)p).

Comment. One may call (σ − 1)Cl(K)p the non-genus part of Cl(K)p,

and one may ask whether the S-Fitting ideal of (σ − 1)Cl(K)p is equal to

AnnS(E/〈εσ−1〉). We have

AnnS(E/〈εσ−1〉) = FitS(E/〈εσ−1〉),
AnnS((σ − 1)Cl(K)p) ⊇ FitS((σ − 1)Cl(K)p),

where the second formula is a general property of Fitting ideals and the
first formula will be explained in the following Remark. If (σ − 1)Cl(K)p
is cyclic, then equality holds in the second formula as well, and we shall
see in the following Remark that in this case the inclusion of Theorem 2 is
also an equality. Taking all this together we infer that if (σ − 1)Cl(K)p is

cyclic, we do get equality of the Fitting ideals of (σ−1)Cl(K)p and E/〈εσ−1〉.
Similarly, we have this equality of Fitting ideals if l = p, since in this case
S is a discrete valuation ring, and the two modules involved have the same
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cardinality, as explained in the following Remark. But we have no idea how
to approach this question in general.

Remark. Since all primes which ramify in K are totally and tamely
ramified, the intersection of any cyclotomic field with K equals either K
or Q. Therefore the Sinnott group of circular units is generated by −1 and
by all conjugates of η. Sinnott’s Class Number Formula (see [S, Theorem 4.1,
p. 207]) gives

(E : 〈η〉) = l−1h(K)p,

where we have used Theorem 5.3 on p. 221 of [S] to see that the index
(R : U) = 1 since K is cyclic. Since 〈εσ−1〉 is a free S-module of rank one,

(〈εσ−1〉 : 〈η〉) = (〈εσ−1〉 : 〈ε(σ−1)s−1〉) = (S : (σ − 1)s−2) = ls−2.

Hence

(1) (E : 〈εσ−1〉) = l1−sh(K)p.

Let H be the p-class field of K, so Gal(H/K) ∼= Cl(K)p. Since the degree

of the genus field K over K is a p-power, K is a subfield of H. On the
other hand, the largest subfield of H which is absolutely abelian corresponds
to the largest quotient of Gal(H/K) on which G acts trivially, that is, to
Cl(K)p/(σ − 1)Cl(K)p. Therefore

Gal(H/K) = (σ − 1) Gal(H/K) ∼= (σ − 1)Cl(K)p.

Thus

|(σ − 1)Cl(K)p| = |Gal(H/K)| = [H : K]/[K : K] = [H : K]/ls−1

= l1−sh(K)p.

Consequently, the two modules involved in Theorem 2 have the same cardi-
nality. This shows the theorem is in some sense optimal. If (σ − 1)Cl(K)p is
S-cyclic, we can be more specific:

(S : AnnS((σ − 1)Cl(K)p)) = |(σ − 1)Cl(K)p|.
Moreover the Pontryagin dual of E/〈εσ−1〉 is S-cyclic. (This follows from
[Sch, Theorem 2.2]; let us briefly give the argument. Let B = E/〈εσ−1〉
and pick M ∈ Z large enough so that MB = 0. A quick application of
the snake lemma shows that B is isomorphic to the kernel of the obvious
map i : C/M → E/M where C is short for 〈εσ−1〉. Now the ring S/M is
Gorenstein, and C/M is free cyclic over it. Taking Pontryagin duals shows
that Bdu is isomorphic to the cokernel of idu, and the target module of idu is
(C/M)du which is again free cyclic over S/M by the Gorenstein property.)
Therefore we obtain

(S : AnnS(E/〈εσ−1〉)) = |E/〈εσ−1〉|
as well. Hence the inclusion of Theorem 2 becomes an equality in this case.
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Let for the moment X = E/〈εσ−1〉. Then X and Xdu have the same
annihilator, and they also have the same Fitting ideal over S, since they have
the same Fitting ideal over Zp[G] by cyclicity of G (see Eisenbud’s appendix

in [MW]). This and the cyclicity of Xdu imply that AnnS(X) = FitS(X),
which was already used in the Comment after Theorem 2.

Let us conclude this Remark by saying that Cl(K)p is cyclic if and only
if s ≤ 2; actually it is zero for s = 1.

Theorem 2 will be proved by showing the equivalent statement

(2) (σ − 1) AnnS(E/〈εσ−1〉) ⊆ AnnS(Cl(K)p).

We now prepare for the proof of (2). The main ingredients come from
the annihilation theorems of Thaine and Rubin. In particular we need a
technical variant of Rubin’s special units.

Definition. Let M be any p-power divisible by ls−1. For any prime
q ≡ 1 (modM) let K(q) be the compositum of K with the cyclic field Q(q)
of absolute degree M and conductor q. Let

QM = {q prime : q totally split in K, q ≡ 1 +M (modM 2),

pi is an Mth power modulo q for i = 1, . . . , s}.
A number ε′ ∈ K∗ will be called M -semispecial if for all but finitely

many q in QM , there exists εq ∈ O∗K(q) satisfying

• NK(q)/K(εq) = 1 (“norm condition”);
• if q̃ is the product of all primes of K(q) dividing q, then ε′ and εq have

the same image in (OK(q)/q̃ )∗/(M/ls−1) (“congruence condition”).

Remark. Rubin’s special units are M -semispecial for any p-power M
that is divisible by ls−1.

We want to prove:

Theorem 3. ε (see Theorem 1) is M -semispecial for all p-powers M
with ls−1 |M .

We mention that if the Minors Condition above fails, then ε is a non-unit,
and that Rubin remarked in [R1] that so far special non-units apparently
had not come in useful.

Theorem 4. Let ε′ ∈ K∗ be a unit outside of {p1, . . . , ps} and M -
semispecial for all sufficiently large p-powers M . Let E/〈(ε′)σ−1〉 be finite.
If β ∈ AnnS(E/〈(ε′)σ−1〉), then (σ − 1)β annihilates Cl(K)p.

These two theorems taken together with (1) prove (2) and hence Theo-
rem 2.
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2. Cyclotomic units. Fix an odd prime p, some p-power l = pk, in-
tegers 1 < s ≤ s′ and a high power L of p such that l |L. Let p1, . . . , ps′
be different primes all congruent to 1 modulo l. Put I = {1, . . . , s} and
I ′ = {s+ 1, . . . , s′}. Assume that pi ≡ 1 (modL) for each i ∈ I ′. There is a
reason for this non-symmetry: later on we shall apply results of this section
to a situation, where the primes p1, . . . , ps will be given, while I ′ will either
be empty or contain just one auxiliary prime.

For any i ∈ I ∪ I ′ let ζi be a fixed pith primitive root of unity. For any
i ∈ I let Ki be the unique degree l subfield of Q(ζi), while for any i ∈ I ′ we
let Ki be the unique degree L subfield of Q(ζi). For any subset J ⊆ I∪I ′ we
define ζJ =

∏
i∈J ζi. Let C be the group of circular numbers of Q(ζI∪I′), i.e.,

the subgroup of Q(ζI∪I′)× generated by all non-zero 1 − ζaI∪I′ with a ∈ Z.
(Thus the intersection of C and the group E of all units of Q(ζI∪I′) is

the group of circular units of Q(ζI∪I′).) Let G̃ = Gal(Q(ζI∪I′)/Q). For any

i ∈ I ∪ I ′ let σi ∈ G̃ be a fixed generator of Gal(Q(ζI∪I′)/Q(ζ(I∪I′)−{i})).
Let

R =
∏

i∈I′

(pi−1)/L∑

b=1

σbLi ,

so R = 1 if I ′ = ∅. For any i ∈ I we define

Ti =

(pi−1)/l∑

b=1

σbli , Ni =
l∑

a=1

σai .

It is easy to see that R can be understood as the norm operator from Q(ζI′)
to the compositum K ′ of all fields Kj , j ∈ I ′. Similarly, for each i ∈ I, the
norm operator from Q(ζi) to Ki is Ti.

For any J ⊂ I such that J ∪ I ′ 6= ∅ let

αJ = NQ(ζJ∪I′ )/K′
∏
i∈J Ki

(1− ζJ∪I′) = (1− ζJ∪I′)R
∏
i∈J Ti .

We define the polynomial f(t) ∈ Z[x] by means of the sequence dc, defined
in [GK, p. 740], as follows:

f(t) =

s−1∑

i=1

(−l)i−1ds−1−i

(
t+ i− 1

i

)
.

Let f (n)(t) be the nth difference of f(t), i.e. f (n)(t) = f (n−1)(t)−f (n−1)(t−1)

for any positive integer n, and f (0)(t) = f(t). For any J ⊆ J1 ⊆ I let

%
(n)
J1,J

=
∑

x: J1→{0,1,...,l−1}
(−1)nf (n)

(∑

i∈J
x(i)

) ∏

i∈J1

σ
x(i)
i ∈ Z[G].

Recall the definition of the s × s matrix A = (aij)1≤i,j≤s. The non-

diagonal entries are given by the condition that the restriction of σ
aij
j is the
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Frobenius automorphism of pi in Kj . The diagonal entries are chosen so as
the matrix A has zero row sums: aii = −∑j 6=i aij .

Let J ⊆ I and let T be a tree on J with root r ∈ J (i.e., a directed graph
with the set of vertices J without circuits such that the out-degree of r is 0
and out-degree of any other vertex equals 1). We denote the root r of T by√
T and define

A(T ) =
∏

(i,j)∈E(T )

aij ,

where (i, j) means the edge going from i to j and runs through the set E(T )
of all edges of T .

Let us make the following

Assumption 5. For each i ∈ I and j ∈ I ′, the Frobenius automorphism
of pi is trivial on Kj .

Lemma 6. If s > 1 then the (s − 1)th difference of f(t) is a constant

polynomial f (s−1)(t) = (−l)s−2 and

(3) f(t)− f(t− l) = ls−1
s−2∑

n=0

(−1)n
(
t

n

)(
l − n− 1

s− 2− n

)
.

Proof. An easy observation shows that for any integers a, b with b ≥ 1
we have

(
t+ a

b

)(1)

=

(
t+ a− 1

b− 1

)
and

(
t+ a

0

)(1)

= 0.

So

f (s−1)(t) =
s−1∑

i=1

(−l)i−1ds−1−i

(
t+ i− 1

i

)(s−1)

= (−l)s−2.

The proof of (3) is given by induction with respect to s. Since we need
to consider the polynomial f(t) for different s at the same time, we shall
write fs(t) instead of f(t) during the proof. Suppose first that s = 2. Then
f2(t) = t, so f2(t)− f2(t− l) = l, which equals the right hand side of (3).

We shall suppose now that s > 2 and that (3) has been proved for s− 1.
Let us compute the first difference of fs(t):

f (1)
s (t) =

s−1∑

i=1

(−l)i−1ds−1−i

(
t+ i− 2

i− 1

)
= ds−2 +

s−2∑

i=1

(−l)ids−2−i

(
t+ i− 1

i

)

= ds−2 − lfs−1(t).
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Therefore f
(1)
s (t) − f (1)

s (t − l) = −lfs−1(t) + lfs−1(t − l) and the induction
hypothesis gives

f (1)
s (t)− f (1)

s (t− l) = −ls−1
s−3∑

n=0

(−1)n
(
t

n

)(
l − n− 1

s− 3− n

)

= − ls−1

(
l − 1

s− 3

)
− ls−1

s−3∑

n=1

(−1)n
((

t− 1

n− 1

)
+

(
t− 1

n

))(
l − n− 1

s− 3− n

)

= − ls−1
s−3∑

n=1

(−1)n
(
t− 1

n− 1

)(
l − n− 1

s− 3− n

)

− ls−1
s−2∑

n=1

(−1)n−1

(
t− 1

n− 1

)(
l − n

s− 2− n

)

= ls−1
s−3∑

n=1

(−1)n
(
t− 1

n− 1

)(
−
(
l − n− 1

s− 3− n

)
+

(
l − n

s− 2− n

))

+ ls−1(−1)s−2

(
t− 1

n− 1

)

= ls−1
s−2∑

n=1

(−1)n
(
t− 1

n− 1

)(
l − n− 1

s− 2− n

)

=

(
ls−1

s−2∑

n=0

(−1)n
(
t

n

)(
l − n− 1

s− 2− n

))(1)

.

Therefore there is a constant c such that

(4) fs(t)− fs(t− l) = c+ ls−1
s−2∑

n=0

(−1)n
(
t

n

)(
l − n− 1

s− 2− n

)
.

To finish the proof of (3) we need to show that c = 0. Let us substitute
t = l − 1 into (4). It is easy to see that

fs(−1) =
s−1∑

i=1

(−l)i−1ds−1−i

(
i− 2

i

)
= −ds−2

and using Lemma 3 of [GK] we obtain

fs(l − 1) =
s−1∑

i=1

(−l)i−1ds−1−i

(
l + i− 2

i

)
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= (l − 1)ds−2 +
s−3∑

i=0

(−l)i+1ds−3−i

(
l + i

i+ 2

)

= (l − 1)ds−2 + (−l)ds−2 = −ds−2.

Now, let us compute the sum on the right hand side of (4) for t = l − 1. If

n ≥ l then
(
l−1
n

)
= 0. If n < l and s > l + 1 then

(
l−n−1
s−2−n

)
= 0. So the sum

equals zero if s > l + 1. Let us now consider the case s ≤ l + 1:

s−2∑

n=0

(−1)n
(
l − 1

n

)(
l − n− 1

s− 2− n

)

=
s−2∑

n=0

(−1)n
(l − 1)!(l − 1− n)!

n!(l − 1− n)!(s− 2− n)!(l − s+ 1)!

=
s−2∑

n=0

(−1)n
(s− 2)!(l − 1)!

n!(s− 2− n)!(s− 2)!(l − s+ 1)!

=

(
l − 1

s− 2

) s−2∑

n=0

(−1)n
(
s− 2

n

)
= 0.

The lemma is proved.

Corollary 7. For any integer a and any n ≥ 0 we have

f (n)(a) ≡ f (n)(a− l) (mod ls−1).

Definition. Define

T =
∏

i∈I
Ti, Γ =

∑

(j1,...,js)∈{0,1,...,l−1}s
l|j1+...+js

∏

i∈I
σjii , ∆ =

l−1∑

a=1

aσa1 .

Remark. Γ can be understood as the norm operator fromK ′
∏
i∈I Ki to

K ′K, where K is the subfield of
∏
i∈I Ki determined by Gal(

∏
i∈I Ki/K) =

〈σiσ−1
1 ; i ∈ I〉.

Theorem 8. Suppose that Assumption 5 holds and s > 1. Define β =

(1− ζI∪I′)RTΓ∆
s−1

. If I ′ 6= ∅ then β ∈ C ls−1
. If I ′ = ∅ then

β ≡
∏

i∈I
p

(−l)s−2Ai
i (modC l

s−1
),

where Ai is a lift of the (i, i)th minor of matrix A.
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Proof. We have β = αΓ∆
s−1

I . Consider the identity given by Lemma 7 of
[GK] for c = s− 1:

Γ∆s−1 = (−l)s−1Γs−1 −
1

l

(
ds−1 −

(
l

2

)s−1)
Φ0 +

s−1∑

i=1

(−l)i−1ds−1−iΦi,

where

Φ0 =

s(l−1)∑

t=0

St and Φi =

s(l−1)∑

t=0

St

(
t+ i− 1

i

)

with

St =
∑

(j1,...,js)∈{0,1,...,l−1}s
j1+...+js=t

s∏

i=1

σjii .

We have α
(−l)s−1 Γs−1

I ∈ C ls−1
because Γs−1 ∈ Z[G]. Moreover Φ0 =

∏
i∈I Ni,

so s > 1 gives αΦ0
I = 1, where we have used Assumption 5 if I ′ 6= ∅. Finally,

s−1∑

i=1

(−l)i−1ds−1−iΦi = %
(0)
I,I .

Therefore

(5) β ≡ α%
(0)
I,I

I (modC l
s−1

).

Let us begin by the easy observation that for any non-zero a ∈ Z and any
non-constant polynomial g(t) ∈ Z[t] of degree d, the polynomial g(t)−g(t−a)

is of degree d−1. Therefore, since f (s−1)(t) is a constant non-zero polynomial
by Lemma 6, for any 0 ≤ n < s−1 the polynomial f (n)(t) is of degree s−1−n.

Let ∅ 6= J1 ⊆ I. For any polynomial g(t) ∈ Z[t] of degree d, we easily
show by induction that for any mapping x : J1 → Z,

∑

J⊆J1

(−1)|J |g
(
t+

∑

i∈J
x(i)

)

is a polynomial of degree at most d− |J1|. Therefore
∑

J⊆J1

(−1)|J |f (s−|J1|)
(∑

i∈J
x(i)

)
= 0,

which gives
∑

J⊆J1

(−1)|J |%(s−|J1|)
J1,J

=
∑

x: J1→{0,1,...,l−1}

(∏

i∈J1

σ
x(i)
i

) ∑

J⊆J1

(−1)s−|J1|+|J |f (s−|J1|)
(∑

i∈J
x(i)

)
= 0.
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Suppose that J ( J1. We have %
(s−|J1|)
J1,J

= %
(s−|J1|)
J,J

∏
i∈J1−J Ni. If J ∪ I ′ 6= ∅

then

α
%

(s−|J1|)
J1,J

J1
= α

%
(s−|J1|)
J,J

∏
i∈J1−J Ni

J1
= α

%
(s−|J1|)
J,J

∏
i∈J1−J (Frob(pi)−1)

J .

Therefore, by Assumption 5, if J = ∅ and I ′ 6= ∅ then

α
%

(s−|J1|)
J1,∅
J1

= 1.

If J = I ′ = ∅ and |J1| > 1 then

α
%

(s−|J1|)
J1,∅
J1

= α
%

(s−|J1|)
∅,∅

∏
i∈J1

Ni

J1
= 1.

Finally, if J = I ′ = ∅ and J1 = {i} then

%
(s−|J1|)
J1,J

= %
(s−1)
{i},∅ = (−1)s−1f (s−1)(0)Ni = −ls−2Ni,

due to Lemma 6, and

α
%

(s−|J1|)
J1,J

J1
= p−l

s−2

i

in this case.
We have thus obtained the following result: if I ′ 6= ∅ or |J1| > 1 then

α
%

(s−|J1|)
J1,J1
J1

=
∏

∅6=J(J1

α
(−1)1+|J1−J|%(s−|J1|)

J,J

∏
i∈J1−J (Frob(pi)−1)

J .

Now, suppose that ∅ 6= J ( J1. Assumption 5 gives

%
(s−|J1|)
J,J

∏

i∈J1−J
(Frob(pi)− 1) = %

(s−|J1|)
J,J

∏

i∈J1−J

∑

j∈J
a′i,j(σj − 1)

for suitable a′i,j ∈ Z[G], which are mapped to ai,j by the augmentation map

(see [GK, p. 748]). Hence

%
(s−|J1|)
J,J

∏

i∈J1−J
(Frob(pi)− 1) = %

(s−|J1|)
J,J

∑

y:J1−J→J

∏

i∈J1−J
a′i,y(i)(σy(i) − 1)

or, writing y−1(j) = {i ∈ J1 − J : y(i) = j}, we have

%
(s−|J1|)
J,J

∏

i∈J1−J
(Frob(pi)− 1)

= %
(s−|J1|)
J,J

∑

y:J1−J→J

( ∏

i∈J1−J
a′i,y(i)

)∏

j∈J
(σj − 1)|y

−1(j)|.
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For any j ∈ J and any n ≥ s− |J1|,
σj%

(n)
J,J =

∑

x: J→{0,1,...,l−1}
(−1)nf (n)

(∑

i∈J
x(i)

)
σj
∏

i∈J
σ
x(i)
i

=
∑

x: J→{0,1,...,l−1}
(−1)nf (n)

(∑

i∈J
x(i)

)
σ
x(j)+1
j

∏

i∈J−{j}
σ
x(i)
i

=
∑

x: J→{0,1,...,l−1}
(−1)nf (n)

(
−1 +

∑

i∈J
x(i)

)∏

i∈J
σ
x(i)
i

+
∑

x: J−{j}→{0,1,...,l−1}
(−1)ndx

∏

i∈J−{j}
σ
x(i)
i ,

where

dx = f (n)
(
l − 1 +

∑

i∈J−{j}
x(i)

)
− f (n)

(
−1 +

∑

i∈J−{j}
x(i)

)
≡ 0 (mod ls−1)

by Corollary 7. Hence

(σj − 1)%
(n)
J,J ≡ %

(n+1)
J,J (mod ls−1).

Repeating the argument
∑

j∈J |y−1(j)| = |J1 − J | times, we arrive at

%
(s−|J1|)
J,J

∏

i∈J1−J
(Frob(pi)− 1) ≡ %(s−|J |)

J,J

∑

y: J1−J→J

∏

i∈J1−J
a′i,y(i) (mod ls−1).

Putting things together, we have obtained: if I ′ 6= ∅ or |J1| > 1 then

(6) α
%

(s−|J1|)
J1,J1
J1

≡
∏

∅6=J(J1

α
(−1)1+|J1−J|%(s−|J|)

J,J

∑
y: J1−J→J

∏
i∈J1−J a

′
i,y(i)

J (modC l
s−1

),

while if I ′ = ∅ and J1 = {i} then

(7) α
%

(s−|J1|)
J1,J1
J1

= α
%

(s−|J1|)
J1,∅
J1

= p−l
s−2

i

in this case.

By induction we shall prove that for any J ⊆ I, J 6= ∅, we have α
%

(s−|J|)
J,J

J ∈
C l

s−1
if I ′ 6= ∅, and

(8) α
%

(s−|J|)
J,J

J ≡
∏

i∈J
p−l

s−2bi
i (modC l

s−1
)

if I ′ = ∅, where

bi =
∑

T a tree on J,
√
T=i

A(T ),

the summation running over all trees T on J with root i.
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Consider the I ′ = ∅ case first. If J = {i} then there is just one tree T on
J with A(T ) = 1, so the statement follows from (7). Suppose that J1 ⊆ I,
|J1| > 1 and that for all non-empty proper subsets of J1 the statement has
been proved. Using the induction hypothesis we make the substitution (8)
on the right hand side of (6). We need to show that for each i ∈ J1,

bi ≡
∑

J(J1, i∈J
(−1)1+|J1−J |

∑

T a tree on J√
T=i

A(T )
∑

y: J1−J→J

∏

i∈J1−J
ai,y(i) (mod ls−1)

(recall that a′i,y(i) goes to ai,y(i) under the augmentation map). It is clear

that the function y describes how to add leaves to the tree T to obtain a
new tree on the whole set J1. Moreover, the same tree on J1 can be obtained
for different subsets J . Fix a tree T1 on J1 with the set J0 of leaves. We see
that we obtain T1 from a unique subtree T on J for each J ( J1 satisfying
J1 − J ⊆ J0 and that the common summand of all these subtrees is∑

J(J1, J1−J⊆J0

(−1)1+|J1−J |A(T1) = A(T1)
∑

∅6=J2⊆J0

(−1)1+|J2| = A(T1).

The case I ′ = ∅ is proved. The other case can be proved similarly.
The theorem follows from (5), (8) for J = I, and, in the I ′ = ∅ case, the

Kirchhoff–Tutte theorem as stated in [GK, p. 756].

3. Proof of Theorem 1. We shall use Theorem 8 for I = {1, . . . , s}
and I ′ = ∅. Then η = αΓI , and Theorem 8 implies that β = η∆

s−1
satisfies

β ≡
s∏

i=1

p
(−l)s−2Ai
i (modC l

s−1
),

where Ai ∈ Z is the lift of the (i, i)th minor of the matrix A satisfying
0 ≤ Ai < l. Therefore there is ε ∈ Q(ζp1...ps) such that

β = εl
s−1

s∏

i=1

p
(−l)s−2Ai
i .

Since we work in an absolutely abelian field, l is odd, and β ∈ K, we have
ε ∈ K. Since ηN = 1, we have η(σ−1)∆ = ηl−N = ηl and

ηl
s−1

= η(σ−1)s−1∆s−1
= β(σ−1)s−1

= εl
s−1(σ−1)s−1

,

hence η=ε(σ−1)s−1
. Moreover β is a unit, so ε is a unit outside of {p1, . . . , ps},

and is a unit if and only if K satisfies the Minors Condition. Taking norms
gives

1 = NK/Q(β) = NK/Q(ε)l
s−1

s∏

i=1

p
−(−l)s−1Ai
i ,

and Theorem 1 follows.
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4. Proof of Theorem 3. Let M be a p-power divisible by ls−1, let
q ∈ QM and

ηq = NQ(ζp1...ps ,ζq)/K(q)(1− ζp1 . . . ζpsζq).

The proof consists of two steps: first, we shall construct εq. We use The-
orem 8 for I = {1, . . . , s} and I ′ = {s + 1} with ps+1 = q and L = M .

Then ηq = αΓI and Theorem 8 gives β = η∆
s−1

q ∈ C ls−1
. Therefore there is

εq ∈ Q(ζp1...ps , ζq) such that

(9) η∆
s−1

q = εl
s−1

q .

Since we work in an absolutely abelian field, l is odd, and ηq ∈ O∗K(q), we

have ε ∈ O∗K(q).

Lemma 9. NK(q)/Q(q)(ηq) = 1.

Proof. Since the pi are Mth powers modulo q, their Frobenius is triv-
ial on Q(q), so the norm relations for cyclotomic units give NK(q)/Q(q)(ηq)
= 1.

Lemma 9 gives ηN
q = 1, so we have η

(σ−1)∆
q = ηl−N

q = ηlq and

ηl
s−1

q = η(σ−1)s−1∆s−1

q = εl
s−1(σ−1)s−1

q ,

so

(10) ε(σ−1)s−1

q = ηq.

Second, we shall now verify that εq satisfies the norm condition and the
congruence condition.

Remark. In (9) and (10), σ is given on K and acts trivially on the
extension Q(q).

From the standard norm relations for cyclotomic units and the condition
“q totally split in K” we obtain NK(q)/K(ηq) = 1. From (9) we get

NK(q)/K(εq)
ls−1

= 1

and so NK(q)/K(εq) = 1.

The congruence condition is slightly trickier: let K̃ = Q(ζp1 , . . . , ζps).
Since ζq ≡ 1 modulo ζq − 1, which generates the prime of Q(ζq) over q, we

have 1− ζp1 . . . ζpsζq ≡ 1− ζp1 . . . ζps modulo every prime of K̃(ζq) over q, so

NK̃(ζq)/K(ζq)
(1− ζp1 . . . ζpsζq) ≡ NK̃/K(1− ζp1 . . . ζps) = η

modulo every prime of K(ζq) over q, hence

ηq = NK(ζq)/K(q)(NK̃(ζq)/K(ζq)
(1− ζp1 . . . ζpsζq)) ≡ η(q−1)/M
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modulo every prime of K(q) over q, but η(q−1)/M equals η times an Mth
power since q ≡ 1+M (modM 2). This shows: ηq and η have the same image
in X = (OK(q)/q̃ )∗/M .

Since OK(q)/q̃∼=OK/qOK and q is totally split in K, we get X∼=Z/M [G]
as a Z[G]-module. Write the map {x ∈ OK(q) : (q, x) = 1}→X→Z/M [G]

by an overbar. So ηq = η, and Theorem 1 and (10) give (σ − 1)s−1εq =

(σ−1)s−1ε.

Lemma 10. Let x ∈ Z/M [G] be in the augmentation kernel and

(σ − 1)s−1x = 0.

Then x ≡ 0 (modM/ls−1).

Proof. Recalling that (σ−1)∆ = l−N in Z[G], where ∆ =
∑l−1

i=1 iσ
i and

N =
∑l−1

i=0 σ
i, we see that ls−1x = ∆s−1(σ − 1)s−1x = 0 in Z/M [G], since

Nx = 0 in Z/M [G].

Lemma 11. NK/Q(ε) is an M th power modulo q.

Proof. Theorem 1 gives

NK/Q(ε) =
s∏

i=1

p
(−1)s−1Ai
i .

Since q ∈ QM , the pi are Mth powers modulo q, and the same holds true
for NK/Q(ε).

Notice that εq and ε are in the augmentation kernel (for ε see Lemma 11,
for εq Lemma 9) and Lemma 10 applied to εq − ε shows that εq and ε have
the same image in X/(M/ls−1) = (OK(q)/q̃ )∗/(M/ls−1). Note that we lost

the factor ls−1 in the passage from ηq, η to εq, ε.
This concludes the proof of Theorem 3.

5. Proof of Theorem 4. We first translate Theorem 4 into a statement
in the spirit of Rubin’s Theorem. We keep the notation of the previous
sections, so K is a cyclic field of absolute degree l = pk, p being an odd
prime, p1, . . . , ps, with s ≥ 2, are primes, which ramify totally and tamely
in K, and K is unramified outside {p1, . . . , ps}. Moreover, Cl(K) is the class
group of K and E = Zp⊗ZO∗K is the p-adic completion of the group of units
of K.

For the rest of the paper, we will tacitly assume that ls−1 divides M ,
and we let M ′ = M/ls−1, without further mention.

Theorem 12. Fix a large p-power M . Assume that ε′∈K∗ is M -semi-
special , suppose that V ⊆ K∗/M is a finitely generated Zp[G]-submodule,
and that ε′ ∈ V . Let α : V → Z/M [G] be a Zp[G]-linear map such that
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α(V ∩ Q) = 0, where V ∩ Q means V ∩ (Q∗K∗M/K∗M ). Then α(ε′)
annihilates Cl(K)p/M

′.

Let us prove that Theorem 12 implies Theorem 4. Choose and fix β ∈
AnnS(E/〈(ε′)σ−1〉). Put π = ε′ ·p1 if ε′ is a unit and π = ε′ otherwise. Notice
that π isM -semispecial because p1 isM -semispecial (to show that p1 is really
M -semispecial just take 1 as the corresponding εq). Then πσ−1 = (ε′)σ−1,
π is not a unit, but π is a unit outside of {p1, . . . , ps} and

E/〈(ε′)σ−1〉 = E/〈πσ−1〉 = E/(E ∩ 〈π〉) ∼= 〈π〉E/〈π〉.
So β ∈ AnnS(〈π〉E/〈π〉).

Lemma 13. π is not annihilated by any non-zero element of Zp[G].

Proof. Suppose that π% = 1 for some % ∈ Zp[G]. There are r ∈ Zp and
%′ ∈ Zp[G] satisfying % = r + (σ − 1)%′. Then πr ∈ E and so r = 0. Let
u ∈ E be a Minkowski unit. Since E/〈(ε′)σ−1〉 = E/〈πσ−1〉 is finite, there
is a positive integer c such that uc ∈ 〈πσ−1〉, hence there is γ ∈ Zp[G] such

that uc = π(σ−1)γ. Therefore

uc%
′

= π(σ−1)%′γ = π%γ = 1.

We have shown that %′ is a multiple of N and so % = 0.

Having β ∈ AnnS(〈π〉E/〈π〉), we construct a map α1 : 〈π〉E → Zp[G] as
follows: for any u ∈ 〈π〉E we have βu ∈ 〈π〉 and the equation βu = α1(u)π
has a unique solution α1(u) in Zp[G] due to Lemma 13. It is obvious that
α1 is Zp[G]-linear and α1(π) = β. Let α0 : (〈π〉E)/M → Z/M [G] be the
reduction of α1 modulo M .

Let Ṽ = (〈π〉E)/M and V be the image of Ṽ in K∗/M under the canon-

ical mapping j : Ṽ → V .

Lemma 14. The kernel ker(j) is a trivial G-module.

Proof. Let x = πzu ∈ ker(j), where u ∈ E and z ∈ Zp[G]. Then πzu =
yM for a suitable y ∈ K∗, so

xσ−1 = π(σ−1)zuσ−1 = (yσ−1)M .

Looking at valuations we see that yσ−1 is a unit. So xσ−1 is the trivial

element of Ṽ .

Recall that we are using Rubin’s shorthand V ∩Q = V ∩(Q∗K∗M/K∗M ).

Lemma 15. V ∩Q is contained in j(Ṽ G).

Proof. Let x ∈ 〈π〉E, j(x) ∈ V ∩ Q. So there are m ∈ Q∗, y ∈ K∗ with
x = m · yM . This implies

xσ−1 = (yσ−1)M ,
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and as in the last proof yσ−1 must be a unit. This is enough to show that
x ∈ (〈π〉E)/M is fixed under σ.

As a consequence we get

Proposition 16. If α0 : Ṽ → Z/M [G] is any Z[G]-homomorphism,
then (σ − 1)α0 factors through a Z[G]-homomorphism α : V → Z/M [G]
which has the extra property that α(V ∩Q) = 0.

Ṽ
j //

(σ−1)α0

��

V

α{{w
w

w
w

w

Z/M [G]

Proof. We know that (σ − 1)α0 annihilates ker(j) by Lemma 14. Hence

α exists. Any v ∈ V ∩Q has the form j(ṽ) for some ṽ ∈ Ṽ G by Lemma 15,
so α(v) = αj(ṽ) = (σ − 1)α0(ṽ) = α0((σ − 1)ṽ) = α0(0) = 0.

Now we can use Theorem 12 for the mapping α : V → Z/M [G] given by
Proposition 16 for the mapping α0 constructed above, and we deduce that

α(ε′) = (σ − 1)α0(ε′) = α0((σ − 1)ε′) = α0((σ − 1)π) = (σ − 1)α0(π),

which is the class of (σ − 1)α1(π) = (σ − 1)β modulo M , annihilates
Cl(K)p/M

′. We have proved that Theorem 4 follows from Theorem 12: it

suffices to take M large enough that M ′ annihilates Cl(K)p.

The proof of Theorem 12 is very much in the style of Rubin’s paper [R1].
A rough outline is as follows:

• Thaine’s idea gives principality statements on ideals in K, depending
on existence and behaviour of certain units in K(q) ([R1, Theorem 5.1]).
• Roughly speaking, Rubin’s Theorem 5.5 (which uses the theorem of

Chebotarev) produces enough primes q.
• Then one has to provide the connection between ε′ and the units used

in the first step ([R1, p. 525]).

Major changes only occur in the second step. We will formulate and
prove our version of this second step first:

Theorem 17. Fix a p-power M , suppose that V ⊆ K∗/M is a finitely
generated Zp[G]-submodule; assume that α : V → Z/M [G] is Zp[G]-linear
and α(V ∩Q) = 0. Then for any c ∈ Cl(K)p there are infinitely many unram-
ified primes q in K of absolute degree 1 satisfying the following conditions,
where q is the rational prime below q:

(i) [q] = c, where [q] is the projection of the ideal class of q into Cl(K)p;

(ii) q ≡ 1 +M (modM2);
(iii) pi is an M th power modulo q for each i = 1, . . . , s;



194 C. Greither and R. Kučera

(iv) V has a set of generators whose support does not contain q, and there
is a Zp[G]-linear map ϕ : (OK/q)∗/M → Z/M [G] so that a commutative
diagram arises (ψ being the reduction map)

V
α //

ψ
��

Z/M [G]

(OK/q)∗/M
ϕ

77pppppp

Proof. LetH be the p-Hilbert class field ofK; letK ′=K(ζM , ker(α)1/M),

K ′′ = K(ζM , V
1/M), and L = K(ζM , P

1/M), where P = pZ1 . . . p
Z
s , and finally

K ′′′ = K ′′L(ζM2). Consider the following diagram of fields.

K ′′′

jjjjjjjjjjjjjjjjj

RRRRRRRRRRRRRR

H

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII K ′′(ζM2)

SSSSSSSSSSSSSSS K ′′L
kkkkkkkkk

kkkkkkkkkk
QQQQQQQ

QQQQQQQQQ

L(ζM2)

mmmmmmmmmmmmm

K ′′

IIIIIIIIII K(ζM2) L

zzzzzzzzzzzzzzzzzzzzz

K ′

HHHHHHHHH

K(ζM)

K

Lemma 18. (a) K(ζM2) is the largest subfield of K ′′′ that is abelian
over K.

(b) K(ζM ) is the largest subfield of K ′′L that is abelian over K.
(c) K ′′′ ∩H = K.

Proof. (a) We have an exact sequence of Galois groups

1→ Gal(K ′′′/K(ζM2))→ Gal(K ′′′/K)→ Gal(K(ζM2)/K)→ 1,

where Gal(K(ζM2)/K) ∼= (Z/M2)∗. We have K ′′′ = K(ζM2)(V 1/M , P 1/M).
By Kummer theory, B = Gal(K ′′′/K(ζM2)) is an abelian p-group and the
action of (Z/M2)∗ is the cyclotomic one (i.e. the natural one, given by
exponentiating: (Z/M 2)∗×B → B sends (u, %) to %u). (Cf. [R1, Lemma 1.6].)
So the coinvariants of B under the action vanish, and the largest abelian
quotient of Gal(K ′′′/K) is Gal(K(ζM2)/K).
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(b) This can be proved by the same reasoning as (a).
(c) By (a) we only need to show that K(ζM2) ∩ H = K. This is easy

since K(ζM2)/K is totally ramified at p.

By Chebotarev’s theorem and Lemma 18(c) we find that for any τ ∈
Gal(K ′′′/K) there exist infinitely many degree one primes q of K whose
Frobenius on K ′′′ is τ and whose class is c. We shall built a suitable τ in
three steps.

First step: Let e0 ∈ Hom(Z/M [G], µM) be given by

e0

( l−1∑

i=0

aiσ
i
)

= ζa0
M .

Then e0 generates Hom(Z/M [G], µM) as a Z[G]-module: σ−je0 maps∑l−1
i=0 aiσ

i to ζ
aj
M . Therefore the Z-span of the σ−je0, where j = 1, . . . , l,

is Hom(Z/M [G], µM). Moreover, by Kummer theory,

Gal(K ′′/K ′) ∼= ker(Hom(V, µM)→ Hom(ker(α), µM))
∼= Hom(im(α), µM),

which is canonically an epimorphic image of Hom(Z/M [G], µM). Let τ1 be
the image of e0 under this isomorphism; so τ1 is a generator of Z[G]-module
Gal(K ′′/K ′).

Next step: We claim τ1 can be extended to τ2 ∈ Gal(K ′′L/K(ζM)) so
that τ2 is trivial on L. For this we need that τ1 is identity on L ∩K ′′. Now
by Kummer theory

L ∩K ′′ = K(ζM )(P 1/M) ∩K(ζM )(V 1/M ) = K(ζM )((V ∩ P )1/M).

Since V ∩ P ⊆ V ∩ Q, and we assumed α(V ∩ Q) = 0, we get L ∩ K ′′ ⊆
K(ζM , ker(α)1/M) = K ′ as desired.

Last step: We note τ2 is the identity on K(ζM); we want to extend τ2 to

τ ∈ Gal(K ′′′/K) so that τ(ζM2) = ζ1+M
M2 . For this it suffices to have K ′′L ∩

K(ζM2) = K(ζM ). Indeed, K(ζM2) is abelian over K, and by Lemma 18(b)
any subfield of K ′′L that is abelian over K must be contained in K(ζM).

As said above we now pick a degree one prime q of K, not over any
pi or p, and such that V has generating set supported outside q, whose
Frobenius in K ′′′ is τ and whose class in Cl(K)p is c. This already satisfies (i).

Let q be the rational prime below q. The property (ii) now follows from

τ(ζM2) = ζ1+M
M2 . For (iii), let Q be a prime of K(ζM) above q; then Q is

again degree 1 since q splits totally in K(ζM ). Moreover, Q has to split
totally in L, by construction of q. Therefore every pi has to be an Mth
power in the completion K(ζM)Q and so in OK(ζM )/Q which is just Z/q.
For (iv): Since Z/M [G] is self-injective, it suffices to find ϕ0 which fills the
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diagram

V
α //

ψ

��

Z/M [G]

im(ψ)

ϕ0

99t
t

t
t

t

Obviously, ϕ0 exists if and only if ker(α) ⊇ ker(ψ); let us check the latter
inclusion. Let v ∈ V ; we find

v ∈ ker(ψ) ⇒ locally at every G-conjugate of q, v is an Mth power

⇒ all G-conjugates of q split in K(ζM , v
1/M)

⇒ all G-conjugates of τ1 ∈ Gal(K ′′/K ′) are trivial

on K(ζM , v
1/M)

⇒ Gal(K ′′/K ′) acts trivially on K(ζM , v
1/M);

the last implication holds since τ1 was chosen to be a Z[G]-generator of
Gal(K ′′/K ′). Now by Galois theory we obtain

v ∈ ker(ψ) ⇒ K(ζM , v
1/M) ⊆ K ′ = K(ζM , ker(α)1/M)

⇒ v ∈ ker(α)

as desired. Theorem 17 is thus proved.

Before proving Theorem 12, we formulate the required result of Thaine
(see [R1, Theorem 5.1]) in the case which we need.

Theorem 19. Let q be a rational prime which is totally split in K, and
let L be a finite extension of K, abelian over Q, such that only the primes
above q in K ramify , but those ramify totally and tamely. Let q̃ be the product
of all primes over q in L, and let A be the Z/(q − 1)[G]-annihilator of the
cokernel of the reduction map

{ε ∈ O∗L; NL/K(ε) = 1} → (OL/q̃ )∗.

(Note that (OL/q̃ )∗ is free cyclic over Z/(q − 1)[G].) Then for every prime
q of K over q, A annihilates [q] ∈ Cl(K)/[L : K].

The given statement is slightly weaker than [R1, Theorem 5.1]. We will
apply it with L = K(q).

In order to finally prove Theorem 12, suppose α and ε′ are as in its state-
ment. We must prove that the image of any class c ∈ Cl(K)p in Cl(K)p/M

′

is annihilated by α(ε′). To this end we apply Theorem 17. This produces a
rational prime q and a degree one prime q of K above q, with properties
(i)–(iv). Also, there are infinitely many possibilities for q.

Since ε′ is supposed to be M -semispecial, we may assume by (ii) and (iii)
in Theorem 17 the existence of a unit εq in K(q) with NK(q)/K(εq) = 1, and
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such that ε′ and εq have the same image in (OK(q)/q̃ )∗/M ′ ∼= (OK/q)∗/M ′.
Here K(q) = KQ(q), Q(q) being the degree M subfield of Q(ζq). By Theo-
rem 19, the annihilator A of B = (OK(q)/q̃ )∗/〈im(εq)〉 annihilates the class
of q in Cl(K)/M . By property (ii), M is the exact p-power dividing q − 1.
So the p-part of B is

B/M = ((OK(q)/q̃ )∗/M)/〈im(εq)〉,
and the projection Ap of A to Z/M [G] is the annihilator of B/M . So Ap
again annihilates [q] in Cl(K)p/M .

From this it follows directly that A′, the projection of Ap to Z/M ′[G],
annihilates [q] in Cl(K)p/M

′. Since (OK(q)/q̃ )∗/M is free cyclic over Z/M [G],

it is also clear that A′ is the annihilator of ((OK(q)/q̃ )∗/M ′)/〈im(εq)〉 =
B/M ′.

Thus we are left with showing that α(ε′) lies in A′. But since εq and ε′

have the same image in (OK(q)/q̃ )∗/M ′, A′ is likewise the annihilator of

((OK(q)/q̃ )∗/M ′)/〈im(ε′)〉 = ((OK/q)∗/M ′)/〈ψ(ε′)〉,
where ψ is the reduction map from Theorem 17 (now considered modulo
M ′). We look at the following diagram which arises by reading diagram (iv)
in Theorem 17 modulo M ′:

V/M ′ α //

ψ
��

Z/M ′[G]

(OK/q)∗/M ′
ϕ

77ooooooooooo

Since (OK/q)∗/M ′ is Z/M ′[G]-free cyclic, we have ϕ(ψ(ε′)) ∈ A′. (To see
this, let T be the ring Z/M ′[G], N the T -module (OK/q)∗/M ′, and pick
a T -isomorphism i : T → N . Then putting U = 〈ψ(ε′)〉, we find N/U ∼=
T/i−1(U), and comparing annihilators we see that i−1(U) is exactly the
annihilator of N/U , so i−1(U) = A′. Hence ϕ(ψ(ε′)) ∈ ϕi(A′), and this is
contained in A′ since ϕi is defined on the T -module T .) Therefore α(ε′) ∈ A′
as was to be shown.
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