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1. Introduction. Let g ≥ 2 be a fixed integer base, and consider the
base-g representation of an arbitrary integer s ≥ 0:

s =
∑

j≥0

dg(j, s)gj, dg(j, s) ∈ {0, 1, . . . , g − 1}.

For any fixed set of digits D ⊂ {0, 1, . . . , g − 1} with 0 ∈ D, we denote by
Ag(n,D) the collection of integers s such that 0 ≤ s < gn, gcd(s, g) = 1,
and dg(j, s) ∈ D for j = 0, 1, . . . , n− 1. Clearly, one has

#Ag(n,D) = #E(#D)n−1,

where E = {d ∈ D | gcd(d, g) = 1}. We also assume that the elements of D
do not share a nontrivial common divisor, that is, gcd({d | d ∈ D}) = 1
(otherwise most of our results fail for obvious reasons).

For the special case g = 2, we also consider the collection B(n, k) of odd
integers s in the range 1 ≤ s < 2n such that d2(j, s) = 1 for precisely k
values of j, where n ≥ 4 and 2 ≤ k ≤ n− 2. Since d2(0, s) = 1, it is easy to
see that

#B(n, k) =
(
n− 1
k − 1

)
.

Recall that for any fixed integer l ≥ 2, a positive integer s is said to be
l-powerfree if it is not divisible by pl for any prime number p; in particular,
when l = 2 one obtains the squarefree integers.

Various arithmetical questions (such as properties of divisibility, distri-
bution in arithmetic progressions, character sums, etc.) about integers whose
g-ary digits are restricted in certain ways have been considered by numerous
authors; see, for example, [1, 3–13, 15, 16, 18] and the references contained
therein. In this paper, we obtain asymptotic formulas for the
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• sum of the values of the Euler function and the sum of divisors function
over Ag(n,D) and B(n, k),
• number of elements of Ag(n,D) and B(n, k) that are relatively prime

to a given number t ≥ 1,
• number of pairs of relatively prime elements in Ag(n,D) and B(n, k),
• number of elements of Ag(n,D) and B(n, k) that are l-powerfree,

and our results show that these quantities are close to their expected values
for a wide range in the values of #D, k and n.

In particular, our Theorem 3 gives a partial answer to an open problem
of Erdős, Mauduit and Sárközy (see Problem 5 in [5]). Moreover, Theorem 3
can easily be extended from N = gn−1 to arbitrary N with gn−1 ≤ N < gn

since both of the main ingredients of the proof are present in this gen-
erality. Indeed, Corollary 2 to Theorem 1 of [11] holds for all N in this
range, although we only use the special case N = gn − 1 in our proof of
Lemma 1. The estimate of Lemma 2 is an upper bound, and the analo-
gous bound in the case where gn−1 ≤ N < gn clearly holds at the cost of
an extra factor of g, which is irrelevant to our proof of Theorem 3. Hence,
without substantial modifications, the same techniques solve this problem
completely.

Also, our Theorem 12 provides an substantial improvement of the range
of k in the Theorem 3 of [16] in the case g = 2 (we remark that the settings
are slightly different but it seems plausible that our results can be extended
to cover those of Theorem 3 of [16] in full).

Our treatment of each of these questions involves some common tech-
niques and therefore yields results that all have a similar flavor. On the other
hand, significant differences in the structure of the sets Ag(n,D) and B(n, k)
lead to results that are nontrivial for very different ranges of the involved
parameters for each of the problems we consider. We remark that for some
special values of g and D, an asymptotic formula for squarefree elements of
Ag(n,D) has been given in [6].

As usual, for an integer m ≥ 1 we denote by ϕ(m) the Euler function,
by τ(m) and σ(m) the number and the sum (respectively) of distinct posi-
tive integer divisors of m, and by µ(m) the Möbius function; we recall that
µ(1) = 1, µ(m) = 0 if m is not squarefree, and µ(m) = (−1)ω(m) other-
wise, where ω(m) is the number of distinct prime divisors of m ≥ 2. We
also denote by ζ(l) (for l ≥ 2) the special value of the Riemann zeta func-
tion:

ζ(l) =
∞∑

m=1

1
ml

=
∏

pprime

(
1− 1

pl

)−1

.

Finally, lnx denotes the natural logarithm of a real number x > 0, while
the notation log x is reserved for the binary logarithm: log x = (lnx)/(ln 2).
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In what follows, we occasionally make use of the following estimates for
ϕ(m) and τ(m):

m

ϕ(m)
= O(ln ln(m+ 2)), ln τ(m) = O

(
lnm

ln ln(m+ 2)

)
;(1)

see Theorems 5.1 and 5.2 of Chapter 1 of [17]. We also make frequent use of
the inclusion-exclusion principle with the Möbius function; see, for example,
Theorem 2.1 in Chapter 2 of [17]. In particular, one has

ϕ(m)
m

=
∑

d|m

µ(d)
d

;(2)

see (5.1) in Chapter 1 of [17].
Throughout the paper, let g ≥ 2 and l ≥ 2 be fixed integer parameters.

All constants that occur in what follows, including any implied constants in
the “O” symbol, may depend on g and l but are absolute otherwise.

We use the same symbols α and β to denote the constants that appear
in all of the theorems of Section 2 and Section 3, respectively (in fact, the
theorems of Section 2 hold for the same value of α and β anyway). On the
other hand, we number our constants in the auxiliary statements and in the
proofs since we need some specific relations among them.

Acknowledgements. The authors are very grateful to Christian Mau-
duit for a careful reading of the manuscript and many useful comments, in
particular, for pointing out to us the relevance of the results of this paper to
Problem 5 in [5]. During the preparation of this paper, W. B. was supported
in part by NSF grant DMS-0070628 and I. S. was supported in part by
ARC grant DP0211459. Parts of this paper were written during a visit by
W. B. to Macquarie University (Sydney); the support and hospitality of this
institution are gratefully acknowledged.

2. Arithmetic properties of Ag(n,D). Throughout this section, we
always assume that g ≥ 3, since our main results are trivial otherwise.
Indeed, when g = 2 the only possible choices of D are D = {0} or D = {0, 1};
in the former case, the results are trivial, while in the latter case, Ag(n,D)
is the set of all odd numbers less than 2n and the results are well known. In
particular, we use the fact that ln g > 1 for g ≥ 3.

2.1. Divisibility of numbers from Ag(n,D). For any q ≥ 1 with gcd(q, g)
= 1, let Ag(n,D; q) be the number of integers s ∈ Ag(n,D) such that s ≡ 0
(mod q).

Let Ãg(n,D) be defined in the same way as Ag(n,D) but without the
condition gcd(s, g) = 1; then clearly #Ãg(n,D) = (#D)n. We also define
Ãg(n,D; a, q) to be the number of integers s ∈ Ãg(n,D) that satisfy the
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congruence s ≡ a (mod q). We remark that

Ag(n,D; q) =
∑

d∈E
Ãg(n− 1,D;−dg, q),

where g is the multiplicative inverse of g modulo q. One of our principal tools
is Corollary 2 to Theorem 1 of [11], which in turn is an extension of Theo-
rem 1 of [4]. Using that result (which applies to #Ãg(n,D) and Ãg(n,D; a, q)
rather than #Ag(n,D) and Ag(n,D; a, q)) and partial summation, we derive
the following estimate.

Lemma 1. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g − 1} be a set of
digits with 0 ∈ D and gcd({d | d ∈ D}) = 1. There exists a constant α1 > 0
such that for all M ≤ exp(α1n),

∑

1≤q≤M
gcd(q,g)=1

∣∣∣∣Ag(n,D; q)− #Ag(n,D)
q

∣∣∣∣ = O(#Ag(n,D) exp(−α1n
1/2)).

We also need to estimate Ag(n,D; q) for larger values of q.

Lemma 2. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g − 1} be a set of
digits. Then

Ag(n,D; q) ≤ g2q−ϑ#Ag(n,D),

where ϑ = (ln #D)/(ln g).

Proof. We observe that if q lies in the range gr ≤ q < gr+1 and if q | s
for some s ∈ Ag(n,D), then the g-ary digits of s in the rightmost r positions
are uniquely determined by the g-ary digits in the leftmost n− r positions.
Therefore,

Ag(n,D; q) ≤ (#D)n−r ≤ (#D)n+1q−ϑ.

Using the estimate
(#D)n+1 ≤ g2(#D)n−1 ≤ g2#E(#D)n−1 = g2#Ag(n,D),

the result follows.

2.2. Average values of ϕ and σ on Ag(n,D)

Theorem 3. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g− 1} be a set of
digits with 0 ∈ D and gcd({d | d ∈ D}) = 1. Then

∑

s∈Ag(n,D)

ϕ(s)
s

=
6
π2

∏

p|g
p prime

p2

p2 − 1
#Ag(n,D)(1 +O(exp(−αn1/2))),

∑

s∈Ag(n,D)

σ(s)
s

=
π2

6

∏

p|g
p prime

(
1− 1

p2

)
#Ag(n,D)(1 +O(exp(−αn1/2)))

for some constant α > 0.
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Proof. If the set E = {d ∈ D | gcd(d, g) = 1} is empty, then the bound
is trivial; hence we may assume that E 6= ∅. From (2) we obtain

∑

s∈Ag(n,D)

ϕ(s)
s

=
∑

s∈Ag(n,D)

∑

q|s

µ(q)
q

=
∑

1≤q<gn
gcd(q,g)=1

µ(q)
q

Ag(n,D; q).(3)

Using Lemma 1 for q ≤M = exp(α1n), we see that
∑

1≤q≤M
gcd(q,g)=1

µ(q)
q

Ag(n,D; q)

= #Ag(n,D)
∑

1≤q≤M
gcd(q,g)=1

µ(q)
q2 +O(#Ag(n,D) exp(−α1n

1/2)).

The main term can be estimated as follows:
∑

1≤q≤M
gcd(q,g)=1

µ(q)
q2 =

∑

q≥1
gcd(q,g)=1

µ(q)
q2 +O(M−1) =

∏

gcd(p,g)=1
pprime

(
1− 1

p2

)
+O(M−1)

=
∏

p prime

(
1− 1

p2

) ∏

p|g
p prime

p2

p2 − 1
+O(M−1)

=
1
ζ(2)

∏

p|g
p prime

p2

p2 − 1
+O(M−1).

Therefore
∑

1≤q≤M
gcd(q,g)=1

µ(q)
q

Ag(n,D; q)

= #Ag(n,D)
(

6
π2

∏

p|g
p prime

p2

p2 − 1
+O(exp(−α1n

1/2))
)
.

Hence, from (3) we derive that
∑

s∈Ag(n,D)

ϕ(s)
s

= #Ag(n,D)
(

6
π2

∏

p|g
pprime

p2

p2 − 1
+O(exp(−α1n

1/2))
)

+O(R),

where

R =
∑

M<q<gn

gcd(q,g)=1

Ag(n,D; q)
q

.
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Using Lemma 2, we have

R = O
(

#Ag(n,D)
∑

M<q<gn

q−1−ϑ
)

= O(M−ϑ#Ag(n,D)) = O(#Ag(n,D) exp(−α1n
1/2/ln g)).

Taking α = α1/ln g, the first statement of the theorem follows.
The proof of the second statement is completely identical, except that

we use the formula
σ(m)
m

=
∑

d|m

1
d

instead of (2); thus the main term becomes

∑

1≤q≤M
gcd(q,g)=1

1
q2 =

∑

q≥1
gcd(q,g)=1

1
q2 +O(M−1) =

∏

gcd(p,g)=1
p prime

(
1− 1

p2

)−1

+O(M−1)

= ζ(2)
∏

p|g
pprime

(
1− 1

p2

)
+O(M−1),

which finishes the proof.

2.3. Coprimality of numbers in Ag(n,D). For any t≥1 with gcd(t, g)=1,
letA∗g(n,D; t) be the number of integers s ∈ Ag(n,D) such that gcd(s, t) = 1.

Theorem 4. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g− 1} be a set of
digits with 0 ∈ D and gcd({d | d ∈ D}) = 1. There exists a constant α > 0
such that

A∗g(n,D; t) =
ϕ(t)
t

#Ag(n,D)(1 +O(R)),

where
R = (exp(−αn1/2) + τ(t) exp(−αn)) ln ln(t+ 2).

Proof. From the inclusion-exclusion principle and the relation (2), it
follows that

A∗g(n,D; t)− ϕ(t)
t

#Ag(n,D) =
∑

q|t
µ(q)

(
Ag(n,D; q)− #Ag(n,D)

q

)
.

By Lemma 1, there exists a constant α1 > 0 such that
∣∣∣∣A∗g(n,D; t)− ϕ(t)

t
#Ag(n,D)

∣∣∣∣ ≤
∑

q|t
q>M

∣∣∣∣Ag(n,D; q)− #Ag(n,D)
q

∣∣∣∣

+O(#Ag(n,D) exp(−α1n
1/2)),
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where M = exp(α1n). Using Lemma 2, we also see that
∑

q|t
q>M

(
Ag(n,D; q) +

#Ag(n,D)
q

)
≤ 2g2τ(t)M−ϑ#Ag(n,D)

= O(τ(t)#Ag(n,D) exp(−α1n/ln g)).

Taking any constant α such that 0 < α < α1/ln g and using (1), the result
follows.

Let us now define

Vg(n,D) = {(s, t) ∈ Ag(n,D)×Ag(n,D) | gcd(s, t) = 1}.
Theorem 5. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g− 1} be a set of

digits with 0 ∈ D and gcd({d | d ∈ D}) = 1. Then

#Vg(n,D) =
6
π2

∏

p|g
p prime

p2

p2 − 1
#Ag(n,D)2(1 +O(exp(−αn1/2)))

for some constant α > 0.

Proof. We have

#Vg(n,D) =
∑

s∈Ag(n,D)

A∗g(n,D; s).

By Theorem 4, there exists a constant α2 > 0 such that

#Vg(n,D) =
∑

s∈Ag(n,D)

(
ϕ(s)
s

#Ag(n,D)(1 +O(Rs))
)
,

where
Rs = (exp(−α2n

1/2) + τ(s) exp(−α2n)) ln ln(s+ 2).

Since s < gn, we have ln ln(s+ 2) = O(ln(n+ 1)), and by (1) it follows that

ln τ(s) = O

(
n

ln(n+ 1)

)
.

Hence for any 0 < α3 < α2, we have

#Vg(n,D) = #Ag(n,D)(1 +O(exp(−α3n
1/2)))

∑

s∈Ag(n,D)

ϕ(s)
s
.

The result now follows from Theorem 3.

An alternative way to prove Theorem 5 would be via the identity

#Vg(n,D) =
∑

1≤q<gn
µ(q)A(n,D; q)2,

with consecutive use of Lemmas 1 and 2, as in the proof of Theorem 11
below.
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2.4. Powerfree numbers in Ag(n,D). Let us define

Pg(n,D; l) = {s ∈ Ag(n,D) | s is l-powerfree}.
The following result is very similar to Theorem 4 of [4] (but not com-

pletely equivalent). We present it here for the sake of completeness.

Theorem 6. Let g ≥ 2 be fixed , and let D ⊂ {0, 1, . . . , g− 1} be a set of
digits with 0 ∈ D, gcd({d | d ∈ D}) = 1 and #D > g1/l. Then

#Pg(n,D; l) =
1
ζ(l)

∏

p|g
p prime

pl

pl − 1
#Ag(n,D)(1 +O(exp(−αn1/2)))

for some constant α > 0.

Proof. If the set E = {d ∈ D | gcd(d, g) = 1} is empty, then the bound
is trivial; hence we may assume that E 6= ∅. From the inclusion-exclusion
principle it follows that

#Pg(n,D; l) =
∑

1≤m<gn/l
gcd(m,g)=1

µ(m)Ag(n,D;ml).(4)

Using the trivial estimate
∑

1≤m≤M
gcd(m,g)=1

∣∣∣∣Ag(n,D;ml)−#Ag(n,D)
ml

∣∣∣∣≤
∑

1≤q≤Kl

gcd(q,g)=1

∣∣∣∣Ag(n,D; q)−#Ag(n,D)
q

∣∣∣∣,

we apply Lemma 1 with M = K l, where K = exp(α1n/l), to see that∑

1≤m≤K
gcd(m,g)=1

µ(m)Ag(n,D;ml)

= #Ag(n,D)
∑

1≤m≤K
gcd(m,g)=1

µ(m)
ml

+O(#Ag(n,D) exp(−α1n
1/2)).

As in the proof of Theorem 3, we can estimate
∑

1≤m≤K
gcd(m,g)=1

µ(m)
ml

=
1
ζ(l)

∏

p|g
p prime

pl

pl − 1
+O(K−1).

Taking α4 = α1/l, we have∑

1≤m≤K
m odd

µ(m)Ag(n,D;ml)

= #Ag(n,D)
(

1
ζ(l)

∏

p|g
p prime

pl

pl − 1
+O(exp(−α4n

1/2))
)
.
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Hence, from (4) we derive that

#Pg(n,D; l)

= #Ag(n,D)
(

1
ζ(l)

∏

p|g
p prime

pl

pl − 1
+O(exp(−α4n

1/2))
)

+O(R),

where
R =

∑

K<m<gn/l

gcd(m,g)=1

Ag(n,D;ml).

The condition #D > g1/l guarantees that lϑ > 1. Using Lemma 2, we can
estimate the error term as follows:

R = O
(

#Ag(n,D)
∑

K<m<gn/l

m−lϑ
)

= O(K1−lϑ#Ag(n,D)).

Thus, with the choice

α = min
{
α4,

α1(lϑ− 1)
l

}
,

we obtain the stated result.

For example, for the base g = 3 and the set of digits D = {0, 1}, we find
that the density of squarefree numbers in A3(n, {0, 1}) is approximately
27/(4π2) ≈ 0.6839 as n→∞.

3. Arithmetic properties of B(n, k). Throughout this section, for
simplicity, we formulate and prove our results only for the case k ≤ n/2.
However, since the sets B(n, k) and B(n, n−k) are virtually indistinguishable
from an arithmetic standpoint, the case where k ≥ n/2 can be handled
simply by replacing k with n−k everywhere in the statements of our results
and in their proofs, as the reader may easily verify.

3.1. Divisibility of numbers from B(n, k). For any q ≥ 1, let B(n, k; q)
be the number of integers s ∈ B(n, k) such that s ≡ 0 (mod q).

The following statement follows from Theorem 2 of [16].

Lemma 7. There exists an absolute constant β1 > 0 such that
∣∣∣∣B(n, k; q)− #B(n, k)

q

∣∣∣∣ = O

(
#B(n, k)

q
exp(−β1k/ln q)

)

for all q ≤M , where M = exp(β1k
1/2).

We also need to estimate B(n, k; q) for larger values of q.
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Lemma 8. If q ≤ 2n−2k+2, then

B(n, k; q) ≤ ekq−ϑ#B(n, k), where ϑ =
k − 1

(n− 1) ln 2
.

Proof. We observe that if q lies in the range 2r ≤ q < 2r+1 and if q | s
for some s ∈ B(n, k), then the binary digits of s in the rightmost r positions
are uniquely determined by the binary digits in the leftmost n− r positions.
Recalling that s is odd, it therefore follows that

B(n, k; q) ≤
k−1∑

j=0

(
n− r
j

)
.(5)

Now the inequality 1− x ≤ exp(−x) holds for any x ≥ 0; in particular,

n− r − j
n− 1− j ≤ exp

(
− r − 1
n− 1− j

)
≤ exp

(
− r − 1
n− 1

)

for j = 0, 1, . . . , k − 2, and it follows that
(
n− r
k − 1

)
≤
(
n− 1
k − 1

)
exp
(
−(k − 1)(r − 1)

n− 1

)
.(6)

Because r ≤ log q ≤ n− 2k + 2, from (5) we obtain the estimate

B(n, k; q) ≤ k2−(r−1)ϑ
(
n− 1
k − 1

)
≤ ekq−ϑ

(
n− 1
k − 1

)
= ekq−ϑ#B(n, k)

(here we have used the fact that ϑ < 1/ln 4).

For very large values of q (e.g., for q > 2n−2k+2), the trivial estimate

B(n, k; q) < 2n/q(7)

suffices for our applications.

3.2. Average values of ϕ and σ on B(n, k)

Theorem 9. For some constant β > 0,
∑

s∈B(n,k)

ϕ(s)
s

=
8
π2 #B(n, k)(1 +O(exp(−βk3/2n−1))),

∑

s∈B(n,k)

σ(s)
s

=
π2

8
#B(n, k)(1 +O(exp(−βk3/2n−1)))

for some constant α > 0.

Proof. From (2) we obtain
∑

s∈B(n,k)

ϕ(s)
s

=
∑

s∈B(n,k)

∑

q|s

µ(q)
q

=
∑

1≤q<2n
q odd

µ(q)
q

B(n, k; q).(8)
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Using Lemma 7 for q ≤M = exp(β1k
1/2), we see that

∑

1≤q≤M
q odd

µ(q)
q

B(n, k; q) = #B(n, k)
∑

1≤q≤M
q odd

µ(q)
q2 +O(#B(n, k) exp(−k1/2)).

As in the proof of Theorem 3, we can estimate
∑

1≤q≤M
q odd

µ(q)
q2 =

4
3ζ(2)

+O(M−1) =
8
π2 +O(exp(−β1k

1/2)).(9)

Taking β2 = min{β1, 1}, it follows that
∑

1≤q≤M
q odd

µ(q)
q

B(n, k; q) = #B(n, k)
(

8
π2 +O(exp(−β2k

1/2))
)
.

Hence, from (8) we derive that
∑

s∈B(n,k)

ϕ(s)
s

= #B(n, k)
(

8
π2 +O(exp(−β2k

1/2))
)

+O(R),

where

R =
∑

M<q<2n
q odd

B(n, k; q)
q

.

Using Lemma 8 and the estimate (11), we have

R = O
(

#B(n, k)k
∑

M<q<2n
q−1−ϑ

)
= O(kM−ϑ#B(n, k))

= O(k exp(−β1k
3/2n−1)#B(n, k)).

Choosing any β such that 0 < β < β2, we obtain the first statement of the
theorem.

As in the proof of Theorem 3, the proof of the second statement is
completely identical except for the constant appearing in (9), which now
becomes 3ζ(2)/4.

3.3. Coprimality of numbers in B(n, k). For any odd integer t ≥ 1, let
B∗(n, k; t) be the number of integers s ∈ B(n, k) such that gcd(s, t) = 1.

Theorem 10. There exists a constant β > 0 such that

B∗(n, k; t) =
ϕ(t)
t

#B(n, k)(1 +O(R)),

where
R = exp(−βk3/2n−1)τ(t) ln ln(t+ 2).
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Proof. From the inclusion-exclusion principle, we see that

B∗(n, k; t) =
∑

q|t
µ(q)B(n, k; q).(10)

Let β1 > 0 be selected as in Lemma 7, and put M = exp(β1k
1/2). We

consider two separate cases.
First, suppose that M < 2n−2k+1, and put L = 2n−2k+1. We apply

Lemma 7 for q ≤ M , Lemma 8 for M < q ≤ L, and the bound (7) for
q > L. Therefore, from (10) we derive that

B∗(n, k; t) = #B(n, k)
∑

q|t
q≤M

µ(q)
q

+O(R1 +R2 +R3),

where

R1 = #B(n, k)
∑

q|t
q≤M

exp(−β1k/ln q),

R2 = #B(n, k)k
∑

q|t
M<q≤L

q−ϑ, R3 = 2n
∑

q|t
q>L

q−1.

Using (2), we have
∑

q|t
q≤M

µ(q)
q

=
ϕ(t)
t

+O(τ(t)M−1) =
ϕ(t)
t

+O(τ(t) exp(−β1k
1/2)).

Also,
R1

#B(n, k)
= O(τ(t) exp(−β1k/lnM)) = O(τ(t) exp(−k1/2)).

Next, for k ≥ 2 we have (k − 1)/(n− 1) ≥ (k − 1)/n ≥ k/2n, thus

Mϑ = exp(β1ϑk
1/2) ≥ exp

(
β1k

3/2

2n ln 2

)
≥ exp(β1k

3/2n−1).(11)

Hence
R2

#B(n, k)
= O(τ(t)kM−ϑ) = O(τ(t)k exp(−β1k

3/2n−1)).

Finally, using (6) with r = n− 2k + 2, we have

22k−2 ≤ (2k − 2)
(

2k − 2
k − 1

)
≤(2k − 2)

(
n− 1
k − 1

)
exp
(
−(n− 2k + 1)(k − 1)

n− 1

)

= (2k − 2)#B(n, k)2−ϑ(n−2k+1) ≤ (2k − 2)#B(n, k)M−ϑ

≤ (2k − 2)#B(n, k) exp(−β1k
3/2n−1).
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Then

R3 = O(τ(t)2nL−1) = O(τ(t)22k) = O(τ(t)k exp(−β1k
3/2n−1)#B(n, k)).

Choosing any β such that 0 < β < min{β1, 1} and using the above estimates
together with (1), the result follows for the case M < 2n−2k+1.

Next we turn to the case M ≥ 2n−2k+1. Taking L = M and proceeding
as before with the same choice of β, we see that

R1 = O(τ(t) exp(−k1/2)#B(n, k)), R2 = 0,

R3 = O(τ(t)2nM−1) = O(τ(t) exp(−β1k
1/2)2n).

Consequently,

B∗(n, k; t) =
ϕ(t)
t

#B(n, k) +O(τ(t) exp(−βk1/2)(#B(n, k) + 2n)).

We claim that

2n = O

(
n1/2

(
n− 1
k − 1

))
= O(n1/2#B(n, k))(12)

in this case. Assuming that (12) is correct we see that in this case the result
also holds with any β such that 0 < β < min{β1, 1}.

To prove (12), we use the following estimate (see Lemma 8 of [14]):(
n− 1
k − 1

)
≥ (2n)−1/22(n−1)H((k−1)/(n−1)),(13)

where
H(x) = −x log x− (1− x) log(1− x), 0 < x < 1.

Note that H(x) is strictly increasing for 0 < x < 1/2, as is easily verified.
From the estimate log(1± η) = O(η), it follows that

H

(
1− η

2

)
= 1 +O(η2), 0 < η < 1.

From the condition on M , we derive the inequality
1
2
≥ k − 1
n− 1

≥ 1
2
− logM

2(n− 1)
=

1− η
2

,

where

η =
logM
n− 1

= O(n−1/2).

Therefore,

H

(
k − 1
n− 1

)
≥ H

(
1− η

2

)
= 1 +O(n−1).

Thus, from (13) we see that (12) holds, which completes the proof.

Let us now define

W(n, k) = {(s, t) ∈ B(n, k)× B(n, k) | gcd(s, t) = 1}.
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Theorem 11. Let δ > 0 be fixed , and let k and n be integers such that

ln 2 + δ

2
≤ k

n
≤ 1

2
.

Then

#W(n, k) =
8
π2 #B(n, k)2(1 +O(exp(−βδn−1/2)))

for some constant β > 0.

Proof. We start with the identity

#W(n, k) =
∑

1≤q<2n
q odd

µ(q)B(n, k; q)2,(14)

which follows from the inclusion-exclusion principle.
To estimate the main term, let β1 be selected as in Lemma 7, and put

M = exp(β1k
1/2). Applying Lemma 7 for q ≤M , we see that

∑

1≤q≤M
q odd

µ(q)B(n, k; q)2 =
∑

1≤q≤M
q odd

µ(q)
(

#B(n, k)
q

(1 +O(exp(−β1k/ln q)))
)2

= #B(n, k)2
∑

1≤q≤M
q odd

(
µ(q)
q2 +O(q−2 exp(−k1/2))

)
.

By (9), it follows that
∑

1≤q≤M
q odd

µ(q)B(n, k; q)2 =
8
π2 #B(n, k)2(1 +O(exp(−β2k

1/2))),

where β2 = min{β1, 1} as in Theorem 9. Hence, from (14) we derive that

#W(n, k) =
8
π2 #B(n, k)2(1 +O(exp(−β2k

1/2))) +O(R),(15)

where

R =
∑

M<q<2n
q odd

B(n, k; q)2.

We now turn to the estimation of the error term R. Let L = 2n−2k+2 be
fixed in what follows.

First, we consider the case M < L. In this case, we split R into two
summations,

R = R1 +R2,
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where
R1 =

∑

M<q≤L
q odd

B(n, k; q)2, R2 =
∑

L<q≤2n
q odd

B(n, k; q)2.

Taking into account the lower bound specified for k, we have

1− 2ϑ = 1− 2(k − 1)
(n− 1) ln 2

= 1− 2k
n ln 2

+O(n−1)

≤ 1− ln 2 + δ

ln 2
+O(n−1) = − δ

ln 2
+O(n−1) ≤ −δ

provided that n is large enough. Using Lemma 8 for M < q ≤ L, we have

R1 = O
(
k2#B(n, k)2

∑

M<q≤L
q−2ϑ

)
= O(k2M1−2ϑ#B(n, k)2)

= O(k2M−δ#B(n, k)2) = O(exp(−β3δk
1/2)#B(n, k)2),

where β3 is any constant such that 0 < β3 < β2. Using the trivial bound (7)
for m > L, we also have

R2 = O

( ∑

L<m<2n

22n

q2

)
= O(22nL−1) = O(24kL).

As before, we have

22k−2 ≤ (2k − 2)
(

2k − 2
k − 1

)
≤(2k − 2)

(
n− 1
k − 1

)
exp
(
−(n− 2k + 1)(k − 1)

n− 1

)

= (2k − 2)2−ϑ(n−2k+1)#B(n, k) ≤ (2k − 2)e1/2L−ϑ#B(n, k).

Therefore,

R2 = O(k2L1−2ϑ#B(n, k)2) = O(k2M1−2ϑ#B(n, k)2)

= O(exp(−β3δk
1/2)#B(n, k)2).

Thus, for M < L, we have

R = R1 +R2 = O(exp(−β3δk
1/2)#B(n, k)2).

Combining this estimate with (15), the proof is completed in this case.
Next, we turn to the case M ≥ L. Using the trivial bound (7) for q > M ,

we have

R = O

( ∑

M<q<2n

22n

q2

)
= O(22nM−1) = O(22n exp(−β1k

1/2)).

The condition M ≥ L is equivalent to (n − 2k + 2) ln 2 ≤ β1k
1/2, which

implies the inequality

1
2
≥ k − 1
n− 1

>
1
2
− β1k

1/2

2(n− 1) ln 2
=

1− η
2

,
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where

η =
β1k

1/2

(n− 1) ln 2
= O(n−1/2).

Thus, the estimate (12) is valid in this situation, and the result follows.

An alternative way to study #W(n, k) would be via the identity

#W(n, k) =
∑

s∈B(n,k)

B∗(n, k; s),

making use of Theorem 10 as in the proof of Theorem 5. However, in the
case of the set B(n, k), this approach leads to a much weaker result.

3.4. Powerfree numbers in B(n, k). Let us define

Q(n, k; l) = {s ∈ B(n, k) | s is l-powerfree}.
Theorem 12. Let l ≥ 2 and δ > 0 be fixed , and let k and n be integers

such that
ln 2 + δ

l
≤ k

n
≤ 1

2
.

Then

#Q(n, k; l) =
1
ζ(l)

2l

2l − 1
#B(n, k)(1 +O(exp(−βδn1/2)))

for some constant β > 0.

Proof. As before, let β2 = min{β1, 1} where β1 is selected as in Lemma 7.
Put M = exp(β2k

1/2/l). As in the proof of Theorem 6, we begin with a
relation of the form

#Q(n, k; l) =
∑

1≤m<2n/l
m odd

µ(m)B(n, k;ml).(16)

Applying Lemma 7 for m ≤M , we see that
∑

1≤m≤M
m odd

µ(m)B(n, k;ml)

= #B(n, k)
∑

1≤m≤M
m odd

(
µ(m)
ml

+O(exp(−β1k/lnml))
)
.

As in the proof of Theorem 3, we have the estimate
∑

1≤m≤M
m odd

µ(m)
ml

=
1
ζ(l)

2l

2l − 1
+O(M−1) =

1
ζ(l)

2l

2l − 1
+O(exp(−β2k

1/2/l)).
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We also have∑

1≤m≤M
m odd

exp(−β1k/lnml) ≤M exp(−β1k/lnM l)

= O(exp((β2/l − β1/β2)k1/2)).

For our choice of β2, we have 2β2/l ≤ β2 ≤ β1/β2, thus

0 < β2/l ≤ β1/β2 − β2/l.

Consequently,
∑

1≤m≤M
m odd

µ(m)B(n, k;ml) =
1
ζ(l)

2l

2l − 1
#B(n, k)(1 +O(exp(−β4k

1/2))),

where β4 is any constant such that 0 < β4 < β2/l. Hence, from (16) we
derive that

#Q(n, k; l) =
1
ζ(l)

2l

2l − 1
#B(n, k)(1 +O(exp(−β4k

1/2))) +O(R),(17)

where
R =

∑

M<m<2n/l
m odd

B(n, k;ml).

We now turn to the estimation of the error term R. Let L = 2(n−2k+2)/l

be fixed in what follows.
First, we consider the case M < L. In this case, we split R into two

summations,
R = R1 +R2,

where

R1 =
∑

M<m≤L
m odd

B(n, k;ml), R2 =
∑

L<m≤2n/l
m odd

B(n, k;ml).

Taking into account the lower bound specified for k, one has

1− lϑ = 1− (k − 1)l
(n− 1) ln 2

= 1− kl

n ln 2
+O(n−1)

≤ 1− ln 2 + δ

ln 2
+O(n−1) = − δ

ln 2
+O(n−1) ≤ −δ

provided that n is large enough. Using Lemma 8 for M < m ≤ L, we have

R1 = O
(
k#B(n, k)

∑

M<m≤L
m−lϑ

)
= O(kM1−lϑ#B(n, k))

= O(kM−δ#B(n, k)) = O(exp(−β4δk
1/2)#B(n, k)).
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Using the trivial bound (7) for m > L, we also have

R2 = O

( ∑

L<m<2n/l

2n

ml

)
= O(2nL1−l) = O(22kL).

As before, we have

22k−2 ≤ (2k − 2)
(

2k − 2
k − 1

)
≤(2k − 2)

(
n− 1
k − 1

)
exp
(
−(n− 2k + 1)(k − 1)

n− 1

)

= (2k − 2)2−ϑ(n−2k+1)#B(n, k) ≤ (2k − 2)e1/2L−lϑ#B(n, k).

Therefore,

R2 = O(kL1−lϑ#B(n, k)) = O(kM1−lϑ#B(n, k))

= O(exp(−β4δk
1/2)#B(n, k)).

Thus, for M < L, we have

R = R1 +R2 = O(exp(−β4δk
1/2)#B(n, k)).

Combining this estimate with (17), the proof is completed in this case.
Next, we turn to the case M ≥ L. Using the trivial bound (7) for m > M ,

we have

R = O

( ∑

M<m<2n/l

2n

ml

)
= O(2nM1−l) = O(2nM−1) = O(2n exp(−β1k

1/2)).

The condition M ≥ L is equivalent to (n − 2k + 2)ln 2 ≤ β2k
1/2/l, which

implies the inequality

1
2
≥ k − 1
n− 1

>
1
2
− β2k

1/2

2(n− 1)l ln 2
=

1− η
2

,

where

η =
β2k

1/2

(n− 1)l ln 2
= O(n−1/2).

Thus, the estimate (12) is valid in this situation, and the result follows.

In view of the comments given at the beginning of this section, we now
see, for example, that in the special case l = 2, the density of squarefree
numbers in B(n, k) is close to 8/π2 ≈ 0.8106 for 0.35 < k/n ≤ 0.65 provided
that n is sufficiently large.

4. Remarks. Analogues of Theorems 3 and 9 also hold for σ(s)/s where
σ(s) is the sum of divisors function. However, we do not have any nontrivial
bounds for sums of ϕ(s), σ(s) and τ(s) over the elements of the sets Ag(n;D)
and B(n, k).

Unfortunately, it is probably infeasible nowadays to study prime val-
ues in Ag(n;D) and B(n, k). However, it should be possible to study some
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other interesting subsets of Ag(n;D) and B(n, k) that are defined by certain
arithmetic properties.

It would be very interesting to determine the analogue of our results
for smaller (or larger) values of k. Results in the case k = o(n) would be
particularly useful and interesting.

One might try to address similar questions for integers whose digits in a
certain base are restricted in other ways.

For example, it would be interesting to extend the results of Section 3 to
collections of integers with a fixed sum of digits in an arbitrary base g ≥ 2.
Although the analogue of our basic tool Lemma 7 is known in this setting
(see Theorem 2 of [16]), working with formulas for the cardinalities of such
sets and other associated estimates (such as the analogue of Lemma 8) would
be technically rather complicated.

Recently some arithmetic properties of palindromes have been studied
in [2], including asymptotic formulas for palindromes in arithmetic progres-
sions and an upper bound on the number of prime values. It is certainly
very natural to try to establish analogues of our results for palindromes as
well.
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