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1. Introduction and main results. In this paper we shall study the
higher-power moments of some error terms in analytic number theory, in-
cluding ∆(x), E(t), P (x), A(x) and ∆a(x).

1.1. Higher-power moments of ∆(x). We begin with the Dirichlet divisor
problem. Let d(n) denote the divisor function. Dirichlet first proved that the
error term

∆(x) :=
∑′

n≤x
d(n)− x log x− (2γ − 1)x, x ≥ 2,

satisfies ∆(x) = O(x1/2). The exponent 1/2 was improved by many authors.
The latest result is due to Huxley [10], who showed that

(1.1) ∆(x)� x23/73(log x)315/146.

For a survey of the history of this problem, see Krätzel [19].
For the lower bounds, the best results read

(1.2) ∆(x) = Ω+(x1/4(log x)1/4(log log x)(3+log 4)/4

× exp(−c
√

log log log x)) (c > 0)

due to Hafner [6], and

(1.3) ∆(x) = Ω−(x1/4 exp(c′(log log x)1/4(log log log x)−3/4)) (c′ > 0)

due to Corrádi and Kátai [3]. It is conjectured that

∆(x) = O(x1/4+ε),

which is supported by the classical mean-square result

(1.4)
T�

2

∆2(x) dx =
(ζ(3/2))4

6π2ζ(3)
T 3/2 +O(T log5 T )
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proved by Tong [24]. On the other hand, Voronöı [26] proved that

(1.5)
T�

2

∆(x) dx = T/4 +O(T 3/4),

which in conjunction with (1.4) shows that ∆(x) has a lot of sign changes
and cancellations between the positive and negative portions.

Tsang [25] studied the third- and fourth-power moments of ∆(x). He
proved that

T�

2

∆3(x) dx =
3c1

28π3 T
7/4 +O(T 7/4−δ1+ε),(1.6)

T�

2

∆4(x) dx =
3c2

64π4 T
2 +O(T 2−δ2+ε),(1.7)

where δ1 = 1/14, δ2 = 1/23,

c1 :=
∑

α,β,h∈N
(αβ(α+ β))−3/2h−9/4|µ(h)|d(α2h)d(β2h)d((α+ β)2h),

c2 :=
∑

n,m,k,l∈N√
n+
√
m=
√
k+
√
l

(nmkl)−3/4d(n)d(m)d(k)d(l),

and µ(h) is the Möbius function. (1.6) shows, just as Tsang [25] stated, that
“∆3(x) is biased strongly towards the positive side and does not even out as
much as ∆(x) . . . this suggests that ∆(x) frequently attains exceptionally
large values. This is also consistent with the fact that the Ω+ result in (1.2)
is stronger than the Ω− result in (1.3) (here).”

In this paper we shall improve (1.6) and (1.7) further. We shall also study
the fifth-power moment of ∆(x).

For the third-power moment of ∆(x), we prove the following

Theorem 1. We have

(1.8)
T�

2

∆3(x) dx =
3c1

28π3 T
7/4 +O(T 3/2+ε).

For the fourth-power moment of ∆(x), we prove the following

Theorem 2. Suppose (κ, λ) is any exponent pair. Then the asymptotic
formula

(1.9)
T�

2

∆4(x) dx =
3c2

64π4 T
2 +O(T 2−δ2(κ,λ)+ε)
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holds, where

δ2(κ, λ) :=
1− η(κ, λ)

7
, η(κ, λ) :=

2λ+ 2κ
2 + 2κ

.

Throughout this paper we shall use the definition η(κ, λ) = (2λ + 2κ)/
(2 + 2κ), which is well known in the theory of exponent pairs. If (κ, λ) is an
exponent pair, then

A(κ, λ) :=
(

κ

2 + 2κ
,

λ

2 + 2κ
+

1
2

)
, B(κ, λ) := (λ− 1/2, κ+ 1/2)

are both exponent pairs. Now take

(κ, λ) = BA2(ABA)(AB)2(ABA)(AB)2(ABA)(ABA3)
(

1
2
,

1
2

)

=
(

141841
368018

,
193668
368018

)
.

Then

(κ0, λ0) = A(κ, λ) =
(

141841
1019718

,
703527
1019718

)

is Rankin’s exponent pair [23] such that

η(κ, λ) = 2κ0 + 2λ0 − 1 = 0.65804 . . .

See also p. 58 of Krätzel [19].
The above exponent pair yields

Corollary 1. We have

(1.10)
T�

2

∆4(x) dx =
3c2

64π4 T
2 +O(T 2−2/41).

If the exponent pair hypothesis is true, namely, if (ε, 1/2 + ε) is an ex-
ponent pair, then

(1.11)
T�

2

∆4(x) dx =
3c2

64π4 T
2 +O(T 2−1/14+ε).

For the fifth-power moment of ∆(x), Heath-Brown [9] proved that

(1.12)
T�

2

∆5(x) dx = CT 9/4(1 + o(1))

for some constant C. But Heath-Brown did not give C explicitly. In this
paper we shall prove
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Theorem 3. Suppose (κ, λ) is any exponent pair with 4λ+κ < 3. Then

(1.13)
T�

2

∆5(x) dx =
5(2c3 − c4)

288π5 T 9/4 +O(T 9/4−δ3(κ,λ)+ε),

where

δ3(κ, λ) :=
1
15

(
3
4
− η(κ, λ)

)
,

c3 :=
∑

n,m,k,l,r∈N√
n+
√
m+
√
k=
√
l+
√
r

(nmklr)−3/4d(n)d(m)d(k)d(l)d(r),

c4 :=
∑

n,m,k,l,r∈N√
n+
√
m+
√
k+
√
l=
√
r

(nmklr)−3/4d(n)d(m)d(k)d(l)d(r).

As shown in Section 5, both series above are convergent.
The above exponent pair again yields

Corollary 2. We have

(1.14)
T�

2

∆5(x) dx =
5(2c3 − c4)

288π5 T 9/4 +O(T 9/4−5/816).

If the exponent pair hypothesis is true, then

(1.15)
T�

2

∆5(x) dx =
5(2c3 − c4)

288π5 T 9/4 +O(T 9/4−1/60+ε).

Remark 1. Numerical computation shows that c3 − c4 > 0 and hence
2c3 − c4 > c3. Thus Theorem 3 means that ∆5(x) also has the properties
similar to ∆3(x).

Remark 2. For the third-power moment of ∆(x), it is the most impor-
tant thing to study the distribution of the values of

√
n +
√
m −

√
k for

(n,m, k) ∈ N3. The points (n,m, k) with
√
n +
√
m −

√
k = 0 provide the

main term. For other points, we need two things. First, we need a good
lower bound of |√n +

√
m −

√
k| if

√
n +
√
m −

√
k 6= 0, which was estab-

lished by Lemma 2 of Tsang [25]. Secondly, we need a good upper bound of
the number of solutions of the inequality |√n +

√
m −

√
k| < ∆ for small

∆ > 0, which will be given in Lemma 2.5 below. Note that Lemma 2.5 is
best possible when ∆ is very small. Maybe the exponent 3/2 in Theorem 1
is also best possible.

Lemma 2.5 also plays an important role in the proof of the fifth-power
moment of ∆(x).
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1.2. Higher-power moments of E(t). Let

(1.16) E(t) :=
t�

0

|ζ(1/2 + iu)|2 du− t log(t/2π)− (2γ − 1)t, t ≥ 2.

Many results for E(t) parallel to those for ∆(x) have been obtained (see,
for example, Heath-Brown [8, 9], Jutila [14, 15], Hafner and Ivić [7], Meur-
man [21]). In particular, Meurman [21] proved that

(1.17)
T�

2

E2(t) dt =
2ζ4(3/2)

3ζ(3)
√

2π
T 3/2 +O(T log5 T ),

which is an analogue of (1.4). See Ivić [11] for a survey.
Tsang [25] studied the third- and fourth-power moment of E(t) by using

Atkinson’s formula (see [1]) and proved that

T�

2

E3(t) dt =
6
7

(2π)−3/4c1T
7/4 +O(T 7/4−δ4+ε),(1.18)

T�

2

E4(t) dt =
3

8π
c2T

2 +O(T 2−δ5+ε)(1.19)

with δ4 > 0 and δ5 > 0. On p. 83 of [25], Tsang mentioned that (1.18)
holds for δ4 = 1/36, but did not specify the permissible value of δ5 in (1.19).
Ivić [13] proved in a different way that (1.18) holds with δ4 = 1/14 and
(1.19) holds with δ5 = 1/23.

We prove the following

Theorem 4. We have
T�

2

E3(t) dt =
6
7

(2π)−3/4c1T
7/4 +O(T 7/4−1/12 log3/2 T ),(1.20)

T�

2

E4(t) dt =
3

8π
c2T

2 +O(T 2−2/41),(1.21)

T�

2

E5(t) dt =
5(2c3 − c4)

9(2π)5/4
T 9/4 +O(T 9/4−5/816).(1.22)

Remark 4. The exponent 1/12 in (1.20) comes from Theorem 2 of
Ivić [13]. We believe that it could be replaced by 1/4 in view of the analogy
between E(t) and the Dirichlet divisor problem (Jutila [14, 15]). But we
have not been able to prove this.
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1.3. Higher-power moments of P (x). The Gauss circle problem is to
estimate the error term defined by

P (x) :=
∑′

n≤x
r(n)− πx,

where r(n) denotes the number of ways n can be written as n = x2 + y2 for
x, y ∈ Z. It has been shown that P (x) resembles ∆(x) in many respects. See
Krätzel [19] for a survey of the circle problem.

Kátai [17] proved that

(1.23)
T�

2

P 2(x) dx =
(

1
3π2

∞∑

n=1

r2(n)n−3/2
)
T 3/2 +O(T log2 T ).

Tsang [25] also studied the third- and the fourth-power moments of P (x).
He proved that

T�

2

P 3(x) dx = − 3c5
7
√

2π3
T 7/4 +O(T 7/4−δ6),(1.24)

T�

2

P 4(x) dx =
3c6

16π4 T
2 +O(T 2−δ7),(1.25)

where δ6 > 0 and δ7 > 0 are unspecified constants, while c5 and c6 are con-
stants defined respectively by the formulas for c1 and c2 with d(·) replaced
by r(·).

Lemma 3 of Müller [22] yields a truncated Voronöı formula similar to
that of ∆(x). So by Tsang’s arguments for ∆(x), we know that (1.24) is
true with δ6 = 1/14− ε and (1.25) is true with δ7 = 1/23− ε.

We prove the following

Theorem 5. We have
T�

2

P 3(x) dx = − 3c5
7
√

2π3
T 7/4 +O(T 3/2+ε),(1.26)

T�

2

P 4(x) dx =
3c6

16π4 T
2 +O(T 2−2/41),(1.27)

T�

2

P 5(x) dx = −5(2c7 − c8)

36
√

2π5
T 9/4 +O(T 9/4−5/816),(1.28)

where c7 and c8 are constants defined respectively by the formulas for c3 and
c4 with d(·) replaced by r(·).

1.4. Higher-power moments of A(x). Let a(n) be the Fourier coefficients
of a holomorphic cusp form of weight κ = 2n ≥ 12 for the full modular group
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and define
A(x) :=

∑′

n≤x
a(n), x ≥ 2.

It is well known that A(x) has no main term and A(x) � xκ/2−1/6+ε.
Ivić [12] proved that

(1.29)
T�

1

A2(x) dx = B2T
κ+1/2 +O(Tκ log5 T ),

where

B2 =
1

4κ+ 2

∞∑

n=1

a2(n)n−κ−1/2.

Cai [2] studied the third- and fourth-power moments of A(x). He proved
that

T�

1

A3(x) dx = B3T
(6κ+1)/4 +O(T (6κ+1)/4−1/14+ε),(1.30)

T�

1

A4(x) dx = B4T
2κ +O(T 2κ−1/23+ε),(1.31)

where

B3 :=
3

4(6κ+ 1)π3

∑

n,m,k∈N√
n+
√
m=
√
k

(nmk)−κ/2−1/4a(n)a(m)a(k),

B4 :=
3

64κπ4

∑

n,m,k,l∈N√
n+
√
m=
√
k+
√
l

(nmkl)−κ/2−1/4a(n)a(m)a(k)a(l).

We prove the following

Theorem 6. We have
T�

1

A3(x) dx = B3T
(6κ+1)/4 +O(T 3κ/2+ε),(1.32)

T�

1

A4(x) dx = B4T
2κ +O(T 2κ−2/41),(1.33)

T�

1

A5(x) dx = B5T
(10κ−1)/4 +O(T (10κ−1)/4−5/816),(1.34)

where

B5 =
5(2c9 − c10)

32(10κ− 1)π5 ,
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c9 =
∑

n,m,k,l,r∈N√
n+
√
m+
√
k=
√
l+
√
r

(nmklr)−κ/2−1/4a(n)a(m)a(k)a(l)a(r),

c10 =
∑

n,m,k,l,r∈N√
n+
√
m+
√
k+
√
l=
√
r

(nmklr)−κ/2−1/4a(n)a(m)a(k)a(l)a(r).

1.5. Higher-power moments of ∆a(x). Let −1/2 < a < 0 be a fixed real
number and set

∆a(x) :=
∑′

n≤x
σa(n)− ζ(1− a)x− ζ(1 + a)

1 + a
x1+a +

1
2
ζ(−a),

where σa(n) :=
∑
d|n d

a. Kiuchi [18] proved that

(1.35)
T�

2

∆2
a(x) dx = C2(a)T 3/2+a +O(T 5/4+a/2+ε) (−1/2 < a < 0)

with

C2(a) :=
ζ2(3/2)

2π2(6 + 4a)ζ(3)
ζ(3/2− a)ζ(3/2 + a).

Meurman [20] refined (1.35) to

(1.36)
T�

2

∆2
a(x) dx = C2(a)T 3/2+a +O(T ) (−1/2 < a < 0).

For higher-power moments of ∆a(x), we have the following theorems:

Theorem 7. Suppose 0 > a > (2−
√

13)/6 = −0.267 . . . Then

(1.37)
T�

2

∆3
a(x) dx = C3(a)T (7+6a)/4 +O(T (7+6a)/4−δ1(a)+ε),

where

C3(a) :=
3c1(a)

(28 + 24a)π3 ,

c1(a) :=
∑

n,m,k∈N√
n+
√
m=
√
k

(nmk)−(3+2a)/4σa(n)σa(m)σa(k),

δ1(a) := (3 + 8a− 12a2)/(12− 24a) > 0.

Theorem 8. Suppose 0 > a > (3−
√

17)/8 = −0.140 . . . Then

(1.38)
T�

2

∆4
a(x) dx = C4(a)T 2+2a +O(T 2+2a−δ2(a)+ε),
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where

C4(a) :=
3c2(a)

64(1 + a)π4 ,

c2(a) :=
∑

n,m,k,l∈N√
n+
√
m=
√
k+
√
l

(nmkl)−(3+2a)/4σa(n)σa(m)σa(k)σa(l),

δ2(a) := min
(

1 + 6a− 8a2

8− 16a
,

1
7

(
1
3

+ 2a
))

> 0.

Theorem 9. Suppose 0 > a > −1/30. Then

(1.39)
T�

2

∆5
a(x) dx = C5(a)T (9+10a)/4 +O(T (9+10a)/4−δ3(a)+ε),

where

C5(a) :=
5(2c3(a)− c4(a))
(288 + 320a)π5 ,

c3(a) :=
∑

n,m,k,l,r∈N√
n+
√
m+
√
k=
√
l+
√
r

(nmklr)−(3+2a)/4σa(n)σa(m)σa(k)σa(l)σa(r),

c4(a) :=
∑

n,m,k,l,r∈N√
n+
√
m+
√
k+
√
l=
√
r

(nmklr)−(3+2a)/4σa(n)σa(m)σa(k)σa(l)σa(r),

δ3(a) := (1 + 30a)/180 > 0.

Both (1.35) and (1.36) are true for all −1/2 < a < 0. However for
higher-power moments, we can only get asymptotics in shorter intervals.
We propose the following conjecture, which is partly confirmed by the above
three theorems.

Conjecture. Suppose −1/2 < a < 0, k = 3, 4, 5. Then

(1.40)
T�

2

∆k
a(x) dx = Ck(a)T (4+k+2ka)/4(1 + o(1)).

Notations. N denotes the set of all natural numbers; n ∼ N means
N < n ≤ 2N ; n � N means there exist two absolute positive constants
C1, C2 such that C1N ≤ n ≤ C2N ; #G denotes the number of elements of
a finite set G; ‖t‖ denotes the distance between t and its nearest integer; ε
always denotes a sufficiently small positive constant which may be different
at different places. We will use the inequality d(n) � nε freely. SC(

∑
)

denotes the summation condition of the sum
∑

, and
∑′
n≤x means that the

final term should be weighted with 1/2 if x is an integer.
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2. Some preliminary lemmas. The following lemmas will be needed
in our proof.

Lemma 2.1 ([25, Lemma 2]). If n,m, k are natural numbers such that√
n+
√
m−

√
k 6= 0, then

|√n+
√
m−

√
k| ≥ 1

27
max(n,m, k)−3/2.

Lemma 2.2 ([25, Lemma 3]). If n,m, k, l ∈ N such that
√
n +
√
m −√

k −
√
l 6= 0 or

√
n+
√
m+

√
k −
√
l 6= 0, then respectively ,

|√n+
√
m−

√
k −
√
l| � max(n,m, k, l)−7/2

or
|√n+

√
m+

√
k −
√
l| � max(n,m, k, l)−7/2.

Lemma 2.3. If n,m, k, l, r ∈ N such that
√
n+
√
m+
√
k−
√
l−√r 6= 0

or
√
n+
√
m+

√
k +
√
l −√r 6= 0, then respectively ,

|√n+
√
m+

√
k −
√
l −√r| � max(n,m, k, l, r)−15/2

or
|√n+

√
m+

√
k +
√
l −√r| � max(n,m, k, l, r)−15/2.

Proof. The proof is the same as that of Lemma 2 of [25].

Lemma 2.4. Suppose K ≥ 10, α, β ∈ R, α 6= 0 and 0 < δ < 1/2. Then
for any exponent pair (κ, λ), we have

#{k ∼ K : ‖β + α
√
k‖ < δ} � Kδ + |α|κ/(1+κ)K(2λ+κ)/(2+2κ) + |α|−1K1/2.

The implied constant is absolute.

Proof. Suppose K−1/2 ≤ |α| ≤ K(2+κ−2λ)/2κ; otherwise the estimate is
trivial. We begin with the formula (3.9) of [25], namely,

#{k ∼ K : ‖β + α
√
k‖ < δ} ≤ 2Kδ +KH−1 +

∑

1≤h≤H
h−1|S(h)|,

where
S(h) =

∑

k∼K
e(hα

√
k).

This formula follows from the Erdős–Turán inequality [4].
If 1 ≤ h ≤

√
K/2|α|, by the Kuz’min–Landau inequality [5, Theorem 2.1]

we get

S(h)� K1/2

h|α| .
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For h >
√
K/2|α|, by the exponent pair (κ, λ) we get

S(h)� (h|α|)κKλ−κ/2.

Hence Lemma 2.4 follows by taking H = [|α|−κ/(1+κ)K(2+κ−2λ)/(2+2κ)].

Lemma 2.5. Suppose that 1 ≤ N ≤ M � K and 0 < ∆ < K1/2. Let
A1(N,M,K;∆) denote the number of solutions of the inequality

|√n+
√
m−

√
k| < ∆

with n ∼ N , m ∼M , k ∼ K. Then

A1(N,M,K;∆)� ∆K1/2(MN)1+ε + (MN)1/2+ε.

In particular , if ∆K1/2 � 1, then

A1(N,M,K;∆)� ∆K1/2NM.

Proof. We suppose M ≤ K; the case M > K is the same. Suppose
(n,m, k) satisfies |√n +

√
m −

√
k| < ∆. Then

√
n +
√
m =

√
k + θ∆ for

some |θ| < 1. Thus n+m+ 2
√
nm = k + u with

|u| = |2k1/2θ∆+ θ2∆2| < 2k1/2∆+∆2 < 10K1/2∆.

So A1(N,M,K;∆) does not exceed the number of solutions of the inequality

(2.1) |n+m+ 2
√
nm− k| < 10K1/2∆

with n ∼ N, m ∼M, k ∼ K.
If K1/2∆ � 1, then for fixed (n,m), the number of k for which (2.1)

holds is � 1 +K1/2∆� K1/2∆. Hence

A1(N,M,K;∆)� ∆K1/2NM.

Now suppose K1/2∆ ≤ 1/40. Then for fixed n,m, there is at most one
k such that (2.1) holds. If such a k exists, then ‖2√nm‖ < 10K1/2∆. Let

G = {(n,m) ∈ N2 : ‖2√nm‖ < 10K1/2∆, n ∼ N, m ∼M},
G′ = {n ∈ N : ‖2√n‖ < 10K1/2∆, MN < n ≤ 4MN}.

Then
A1(N,M,K;∆) ≤ #G � #G′(MN)ε.

By Lemma 2.4 with α = 2, β = 0 and (κ, λ) = (1/2, 1/2) we get

#G′ � ∆K1/2MN + (MN)1/2.

Thus
A1(N,M,K;∆) ≤ ∆K1/2(MN)1+ε + (MN)1/2+ε.

Lemma 2.6. Suppose 1 ≤ N ≤ M, 1 ≤ K ≤ L, N ≤ K, M � L,
0 < ∆� L1/2. Let A2(N,M,K,L;∆) denote the number of solutions of the
inequality

(2.2) |√n+
√
m−

√
k −
√
l| < ∆
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with n ∼ N, m ∼ M, k ∼ K, l ∼ L. Then for any exponent pair (κ, λ) we
have

A2(N,M,K,L;∆)� ∆L1/2NMK +NL+NKMη(κ,λ).

In particular , if ∆L1/2 � 1, then

A2(N,M,K,L;∆)� ∆L1/2NMK.

Remark. The term NL appears only when the equation n = k has
solutions with n ∼ N, k ∼ K.

Proof. If (n,m, k, l) satisfies |√n+
√
m−

√
k −
√
l| < ∆, then

l = m+ 2m1/2(
√
n−
√
k) + (

√
n−
√
k)2 + u

with |u| ≤ C∆L1/2 for some absolute constant C > 0. Hence the quantity
A2(N,M,K,L;∆) does not exceed the number of solutions of

(2.3) |2m1/2(
√
n−
√
k) + (

√
n−
√
k)2 +m− l| < C∆L1/2

with n ∼ N, m ∼M, k ∼ K, l ∼ L.
If ∆L1/2 � 1, then for fixed (n,m, k), the number of l for which (2.3)

holds is � 1 +∆L1/2 � ∆L1/2. Hence

A2(N,M,K,L;∆)� ∆L1/2NMK.

Now suppose ∆L1/2 ≤ 1/4C. Let S1 denote the set of solutions of (2.3)
such that n = k, and S2 the set of solutions such that n 6= k, respectively.
Then

A2(N,M,K,L;∆) ≤ #S1 + #S2.

Obviously, #S1 � NL. It remains to estimate #S2. For fixed (n,m, k),
there is at most one l such that (2.3) holds. If such an l exists, then

‖2m1/2(
√
n−
√
k) + (

√
n−
√
k)2‖ < C∆L1/2.

By Lemma 2.4 with α = 2(
√
n−
√
k), β = (

√
n−
√
k)2 we get

#S2 � ∆L1/2NMK + C1M
(2λ+κ)/(2+2κ) + C2M

1/2,

C1 :=
∑

n6=k
|√n−

√
k|κ/(1+κ), C2 :=

∑

n6=k
|√n−

√
k|−1.

Trivially, we have

C1 � NK1+κ/(2+2κ) � NKMκ/(2+2κ).

Moreover,

C2 � K1/2
∑

N<n<k≤2K

1/(k − n)� K1/2N logK � NK.

Now Lemma 2.6 follows from the above estimates.
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Lemma 2.7. Suppose 1 ≤ N ≤ M ≤ K � L and 0 < ∆ � L1/2. Let
A3(N,M,K,L;∆) denote the number of solutions of the inequality

(2.4) |√n+
√
m+

√
k −
√
l| < ∆

with n ∼ N, m ∼ M, k ∼ K, l ∼ L. Then for any exponent pair (κ, λ) we
have

A3(N,M,K,L;∆)� ∆L1/2NMK +NMKη(κ,λ).

In particular , if ∆L1/2 � 1, then

A3(N,M,K,L;∆)� ∆L1/2NMK.

Proof. We omit the proof since it is similar to that of Lemma 2.6.

Lemma 2.8. Suppose 1 ≤ N ≤ M ≤ K, 1 ≤ L ≤ R, K � R and
0 < ∆� R1/2. Let A4(N,M,K,L,R;∆) denote the number of solutions of
the inequality

(2.5) |√n+
√
m+

√
k −
√
l −√r| < ∆

with n ∼ N, m ∼ M, k ∼ K, l ∼ L, r ∼ R. Then for any exponent pair
(κ, λ) we have

A4(N,M,K,L,R;∆)� ∆R1/2NMKL+R(MN)1/2+ε +NMLKη(κ,λ).

In particular , if ∆R1/2 � 1, then

A4(N,M,K,L,R;∆)� ∆R1/2NMKL.

Remark. The term R(MN)1/2+ε appears only when the equation√
n+
√
m =

√
l has solutions with n ∼ N,m ∼M, l ∼ L.

Proof. If (n,m, k, l, r) satisfies (2.5), then

r = k + 2k1/2(
√
n+
√
m−

√
l) + (

√
n+
√
m−

√
l)2 + u

with |u| ≤ C∗∆R1/2 for some absolute constant C∗ > 0. Hence the quantity
A4(N,M,K,L,R;∆) does not exceed the number of solutions of

(2.6) |2k1/2(
√
n+
√
m−

√
l) + (

√
n+
√
m−

√
l)2 + k − r| < C∗∆R1/2

with n ∼ N, m ∼M, k ∼ K, l ∼ L, r ∼ R.
If ∆R1/2 � 1, then for fixed (n,m, k, l), the number of r for which (2.6)

holds is � 1 +∆R1/2 � ∆R1/2. Hence

A4(N,M,K,L,R;∆)� ∆R1/2NMKL.

Now suppose ∆R1/2 ≤ 1/4C∗. Let T1 denote the set of solutions of
(2.6) such that

√
n +

√
m =

√
l, and T2 the set of solutions such that√

n+
√
m 6=

√
l. Then

A4(N,M,K,L,R;∆) ≤ #T1 + #T2.
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We estimate #T1 first. Suppose that the equation
√
n +
√
m =

√
l has

solutions; otherwise #T1 = 0. Since
√
n +
√
m =

√
l, the inequality (2.6)

becomes k = r and hence

#{(k, r) : |
√
k −√r| < ∆} � R.

The equation
√
n +
√
m =

√
l implies

√
mn ∈ N, that is, mn is a square.

Thus

#{(n,m, l) :
√
n+
√
m=
√
l} � #{(n,m) : nm is a square}
� (MN)ε#{n : n is a square}�(MN)1/2+ε.

The above two estimates imply

#T1 � R(MN)1/2+ε.

Now we estimate #T2. For fixed (n,m, k, l), there is at most one r such
that (2.6) holds. If such an r exists, then

‖2k1/2(
√
n+
√
m−

√
l) + (

√
n+
√
m−

√
l)2‖ < C∆R1/2.

By Lemma 2.4 with α = 2(
√
n+
√
m−

√
l), β = (

√
n+
√
m−

√
l)2 we get

#T2 � ∆R1/2NMKL+ C3K
(2λ+κ)/(2+2κ) + C4K

1/2,

C3 :=
∑

n,m,l√
n+
√
m6=
√
l

|√n+
√
m−

√
l|κ/(1+κ),

C4 :=
∑

n,m,l√
n+
√
m6=
√
l

|√n+
√
m−

√
l|−1.

Trivially we have

C3 � NML1+κ/(2+2κ) � NMLKκ/(2+2κ).

Write C4 = C41 + C42, where

C41 =
∑

|√n+
√
m−
√
l|≥L1/2/50

|√n+
√
m−

√
l|−1,

C42 =
∑

0<|√n+
√
m−
√
l|≤L1/2/50

|√n+
√
m−

√
l|−1.

Trivially we have
C41 � NML1/2.

If the inequality

(∗) |√n+
√
m−

√
l| ≤ L1/2/50

has no solutions, then C42 = 0. So we suppose (∗) has solutions, which
implies that M � L. By Lemma 2.1, |√n+

√
m−
√
l| � L−3/2 for any such
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(n,m, l). By a splitting argument and Lemma 2.5 we find that for some
L−3/2 � δ � L1/2,

C42 �
log 2L
δ

∑

δ<|√n+
√
m−
√
l|≤2δ

1

� log 2L
δ

(δL1/2(MN)1+ε + (MN)1/2+ε)

� L1/2(MN)1+ε + L3/2(MN)1/2+ε � N1/2+εM1+εL.

From the above estimates we get

#T2 � ∆R1/2NMKL+NMLKη(κ,λ).

Now Lemma 2.8 follows from the estimates of #T1 and #T2.

Lemma 2.9. Suppose 1 ≤ N ≤ M ≤ K ≤ L � R, 0 < ∆ � R1/2. Let
A5(N,M,K,L,R;∆) denote the number of solutions of the inequality

(2.7) |√n+
√
m+

√
k +
√
l −√r| < ∆

with n ∼ N, m ∼ M, k ∼ K, l ∼ L, r ∼ R. Then for any exponent pair
(κ, λ) we have

A5(N,M,K,L,R;∆)� ∆R1/2NMKL+NMKLη(κ,λ).

In particular , if ∆R1/2 � 1, then

A5(N,M,K,L,R;∆)� ∆R1/2NMKL.

Proof. We omit the proof since it is similar to that of Lemma 2.8 and
much easier.

3. The third-power moment of ∆(x). In this section we prove Theo-
rem 1. We begin with the following truncated form of Voronöı’s formula [11,
(2.25)]

(3.1) ∆(x) = (π
√

2)−1
∑

(x) +O(x1/2+εy−1/2),

where ∑
(x) =

∑

n≤y
d(n)n−3/4x1/4 cos(4π

√
nx− π/4)

and 1 ≤ y � x.
Suppose T ≥ 10 and take y = T in (3.1). From the elementary formula

(a+ b)3 − a3 � |b|a2 + |b|3 and (1.4) we get

(3.2)
2T�

T

∆3(x) dx =
2T�

T

(∑
(x)
)3
dx+O(T 3/2+ε).
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We shall prove

(3.3)
2T�

T

(∑
(x)
)3
dx =

3c1
4
√

2

2T�

T

x3/4 dx+O(T 3/2+ε).

Theorem 1 follows easily from (3.2), (3.3).
Let

g = g(n,m, k) := (nmk)−3/4d(n)d(m)d(k) for n,m, k ≤ T
and g = 0 otherwise. We can write (equation (2.7) of Tsang [25])

(3.4)
(∑

(x)
)3

= S0(x) + S1(x) + S2(x),

where

S0(x) :=
3

4
√

2

∑
√
n+
√
m=
√
k

gx3/4,

S1(x) :=
3
4

∑
√
n+
√
m6=
√
k

gx3/4 cos(4π(
√
n+
√
m−

√
k)
√
x− π/4),

S2(x) :=
1
4

∑
gx3/4 cos(4π(

√
n+
√
m+

√
k)
√
x− 3π/4).

From (2.12) of [25] we get

(3.5)
2T�

T

S0(x) dx =
3c1
4
√

2

2T�

T

x3/4 dx+O(T 3/4+ε).

From (2.14) of [25] we get

(3.6)
2T�

T

S2(x) dx� T 5/4+εy1/4 � T 3/2+ε.

Now we estimate � 2T
T
S1(x) dx. By the second mean-value theorem we get

2T�

T

S1(x) dx�
∑

n,m,k≤T√
n+
√
m6=
√
k

gmin
(
T 7/4,

T 5/4

|√n+
√
m−

√
k|

)
(3.7)

� T εH(N,M,K),

where

H(N,M,K) =
∑

n∼N,m∼M,k∼K√
n+
√
m6=
√
k

gmin
(
T 7/4,

T 5/4

|√n+
√
m−

√
k|

)

with 1� N ≤M .
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If K < M/10, then |√n+
√
m−

√
k| �M1/2 and trivially we have

H(N,M,K)� T 5/4+εNMK

(NMK)3/4M1/2
� T 5/4+εy1/4 � T 3/2+ε.

Similarly if K > 10M , we also have

H(N,M,K)� T 3/2+ε.

Later we always suppose M � K. Write

(3.8) H(N,M,K) = H1(N,M,K) +H2(N,M,K) +H3(N,M,K),

where

H1(N,M,K) = T 7/4
∑

0<|√n+
√
m−
√
k|≤T−1/2

g,

H2(N,M,K) = T 5/4
∑

T−1/2<|√n+
√
m−
√
k|≤(40E1/2)−1

g

|√n+
√
m−

√
k|
,

H3(N,M,K) = T 5/4
∑

|√n+
√
m−
√
k|≥(40E1/2)−1

g

|√n+
√
m−

√
k|
,

E = max(M,K) �M � K.

By Lemma 2.5 we get

H1(N,M,K)� T 7/4+ε

(NMK)3/4
A1(N,M,K;T−1/2)(3.9)

� T 7/4+ε

(NMK)3/4
(T−1/2K1/2MN + (MN)1/2)

� T 5/4+εy1/4 + T 7/4+ε(MN)−1/4K−3/4 � T 3/2+ε,

where we used the estimate E � T 1/3 which follows from Lemma 2.1.
By a splitting argument and Lemma 2.5 we get (notice δ � K−1/2)

H3(N,M,K)� T 5/4+ε

(NMK)3/4δ

∑

δ<|√n+
√
m−
√
k|≤2δ

1(3.10)

� T 5/4+ε

(NMK)3/4
K1/2MN � T 5/4+εy1/4 � T 3/2+ε.

Finally we estimate H2(N,M,K). We consider two cases: NMK3 � T
and NMK3 � T . If NMK3 � T , then by Lemma 2.1 and the estimate

∑

|√n+
√
m−
√
k|≤(40E1/2)−1

1� NM
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we get

H2(N,M,K)� T 5/4+εK3/2MN

(NMK)3/4
� T 5/4+ε(MN)1/4K3/4(3.11)

� T 3/2+ε.

Now suppose NMK3 � T . By the splitting argument and Lemma 2.5
again we get

H2(N,M,K)� T 5/4+ε

(NMK)3/4δ

∑

δ<|√n+
√
m−
√
k|≤2δ

1(3.12)

� T 5/4+ε

(NMK)3/4
(K1/2MN + (MN)1/2δ−1)

� T 5/4+εy1/4 + T 7/4+ε(MN)−1/4K−3/4 � T 3/2+ε.

Thus from (3.7)–(3.12) we get

(3.13)
2T�

T

S1(x) dx� T 3/2+ε.

Now (3.3) follows from (3.4)–(3.6) and (3.13).

4. The fourth-power moment of ∆(x). In this section we prove
Theorem 2. Suppose T ≥ 10. From (3.1) and the inequality (a+ b)4 − a4 �
|b| |a|3 + |b|4, we get

(4.1)
2T�

T

∆4(x) dx

=
1

(π
√

2)4

2T�

T

(∑
(x)
)4
dx+O

(
T 1/2+ε

y1/2

2T�

T

∣∣∣
∑

(x)
∣∣∣
3
dx+

T 3+ε

y2

)

=
1

(π
√

2)4

2T�

T

(∑
(x)
)4
dx+O

(
T 9/4+ε

y1/2

)

for T 1/2 � y � T . Take y = T 3/4. We shall prove that

(4.2)
2T�

T

(∑
(x)
)4
dx =

3c2
8

2T�

T

x dx+O(T 2−δ2(κ,λ)+ε)

for any exponent pair (κ, λ). Theorem 2 follows easily from (4.1), (4.2).
Let

g1 = g1(n,m, k, l) := (nmkl)−3/4d(n)d(m)d(k)d(l) for n,m, k, l ≤ y,
and g1 = 0 otherwise.
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Equation (3.4) of Tsang [25] reads

(4.3)
(∑

(x)
)4

= S3(x) + S4(x) + S5(x) + S6(x),

where

S3(x) :=
3
8

∑
√
n+
√
m=
√
k+
√
l

g1x,

S4(x) :=
3
8

∑
√
n+
√
m6=
√
k+
√
l

g1x cos(4π(
√
n+
√
m−

√
k −
√
l)
√
x),

S5(x) :=
1
2

∑
g1x sin(4π(

√
n+
√
m+

√
k −
√
l)
√
x),

S6(x) := −1
8

∑
g1x cos(4π(

√
n+
√
m+

√
k +
√
l)
√
x).

From (3.7) of [25] we get

(4.4)
2T�

T

S3(x) dx =
3c2
8

2T�

T

x dx+O(T 2−3/16+ε).

By (3.8) of [25] we get

(4.5)
2T�

T

S6(x) dx� T 3/2+εy1/2 � T 2−1/8+ε.

Now let us consider the contribution of S4(x). By the second mean-value
theorem we get

2T�

T

S4(x) dx�
∑

n,m,k,l≤y√
n+
√
m6=
√
k+
√
l

g1 min
(
T 2,

T 3/2

|√n+
√
m−

√
k −
√
l|

)
(4.6)

� T εG(N,M,K,L),

where

G(N,M,K,L) =
∑

1g1 min
(
T 2,

T 3/2

|√n+
√
m−

√
k −
√
l|

)
,

SC(
∑

1) :
√
n+
√
m 6=

√
k +
√
l, 1 ≤ N ≤M ≤ y, 1 ≤ K ≤ L ≤ y,

n ∼ N,m ∼M,k ∼ K, l ∼ L.
If M ≥ 100L, then |√n +

√
m−

√
k −
√
l| � M1/2, so the trivial estimate

yields

G(N,M,K,L)� T 3/2+εNMKL

(NMKL)3/4M1/2
� T 3/2+εy1/2 � T 2−1/8+ε.
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If L > 100M , we get the same estimate. So later we always suppose that
M � L. Let η1 =

√
n+
√
m−

√
k −
√
l. Write

(4.7) G(N,M,K,L,R) = G1 +G2 +G3,

where

G1 := T 2
∑

|η1|≤T−1/2

g1,

G2 := T 3/2
∑

T−1/2<|η1|≤1

g1|η1|−1,

G3 := T 3/2
∑

|η1|�1

g1|η1|−1.

We estimate G1 first. From |η1| ≤ T−1/2 we get M � L � T 1/7 via
Lemma 2.2. By Lemma 2.6 (suppose N ≤ K; the case N > K is the same)
we get

G1 �
T 2+ε

(NMKL)3/4
A2(N,M,K,L;T−1/2)(4.8)

� T 2+ε

(NMKL)3/4
(T−1/2L1/2NMK +NL+NKMη(κ,λ))

� T 3/2+ε(NMK)1/4L−1/4 + T 2+εN1/4K−3/4L−1/2

+ T 2+ε(NK)1/4M−(3/2−η(κ,λ))

� T 3/2+εy1/2 + T 2+εL−1/2 + T 2+εM−(1−η(κ,λ))

� T 2−1/14+ε + T 2−δ2(κ,λ)+ε � T 2−δ2(κ,λ)+ε.

Now we estimate G2. Suppose also N ≤ K. By a splitting argument and
Lemma 2.6 again we see for some T−1/2 � δ < 1 that

G2 �
T 3/2+ε

(NMKL)3/4δ
A2(N,M,K,L; 2δ)(4.9)

� T 3/2+ε

(NMKL)3/4δ
(δL1/2NMK +NL+NKMη(κ,λ))

� T 3/2+εy1/2 + T 3/2+εL−1/2δ−1 + T 3/2+εM−(1−η(κ,λ))δ−1.

We consider two cases: M � L � T 1/7 and M � L � T 1/7. If M � T 1/7,
from Lemma 2.2 we get δ−1 �M7/2. Thus (4.9) gives

G2 � T 3/2+εy1/2 + T 3/2+εM3 + T 3/2+εM5/2+η(κ,λ)(4.10)

� T 2−δ2(κ,λ)+ε.

If M � L� T 1/7, using δ−1 � T 1/2 (4.9) yields

(4.11) G2 � T 3/2+εy1/2T 2+εL−1/2 +T 2+εM−(1−η(κ,λ)) � T 2−δ2(κ,λ)+ε.
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For G3, by a splitting argument and Lemma 2.6 again (notice |η1| � 1) we
get

G3 �
T 3/2+ε

(NMKL)3/4δ

∑

δ<|η1|≤2δ, δ�1

1(4.12)

� T 3/2+ε

(NMKL)3/4
L1/2NMK � T 3/2+εy1/2 � T 2−1/8+ε.

Combining (4.7)–(4.12), we get

(4.13)
2T�

T

S4(x) dx� T 2−δ2(κ,λ)+ε.

In the same way we can show that

(4.14)
2T�

T

S5(x) dx� T 2−δ2(κ,λ)+ε

if we use Lemma 2.7 instead of Lemma 2.6. Now (4.2) follows from (4.4),
(4.5), (4.13) and (4.14).

5. The fifth-power moment of ∆(x). In this section we prove The-
orem 3. Suppose T ≥ 10. From (3.1) and the inequality (a + b)5 − a5 �
|b|a4 + |b|5, we get

(5.1)
2T�

T

∆5(x) dx

=
1

(π
√

2)5

2T�

T

(∑
(x)
)5
dx+O

(
T 1/2+ε

y1/2

2T�

T

(∑
(x)
)4
dx+

T 7/2+ε

y5/2

)

=
1

(π
√

2)5

2T�

T

(∑
(x)
)5
dx+O

(
T 5/2+ε

y1/2

)

for T 1/2 � y � T . Take y = T 3/5. We shall prove

(5.2)
1

(π
√

2)5

2T�

T

(∑
(x)
)5
dx =

5(2c3 − c4)
288π5 T 9/4 +O(T 9/4−δ3(κ,λ)+ε),

where (κ, λ) is any exponent pair with 4λ+κ < 3. Theorem 2 follows easily
from (5.1), (5.2).

Let
g2 = g2(n,m, k, l, r)

:= (nmklr)−3/4d(n)d(m)d(k)d(l)d(r) for n,m, k, l, r ≤ y,
and g2 = 0 otherwise.
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Similar to equation (2.7) of Tsang [25], we can write

(5.3)
(∑

(x)
)5

= S7(x) + S8(x) + S9(x) + S10(x) + S11(x),

where

S7(x) :=
5 cos(π/4)

8

∑
√
n+
√
m+
√
k=
√
l+
√
r

g2x
5/4,

S8(x) :=
5
8

∑
√
n+
√
m+
√
k 6=
√
l+
√
r

g2x
5/4

× cos(4π(
√
n+
√
m+

√
k −
√
l −√r)√x− π/4),

S9(x) :=
5 cos(−3π/4)

16

∑
√
n+
√
m+
√
k+
√
l=
√
r

g2x
5/4,

S10(x) :=
5
16

∑
√
n+
√
m+
√
k+
√
l 6=√r

g2x
5/4

× cos(4π(
√
n+
√
m+

√
k +
√
l −√r)√x− 3π/4),

S11(x) :=
1
16

∑
g2x

5/4 cos(4π(
√
n+
√
m+

√
k +
√
l +
√
r)
√
x− 5π/4).

Let us consider the sum S7(x) first. The classical result of Besicovitch
says that the square roots of squarefree numbers are linearly independent
over the integers. From this result we know that

√
n+
√
m+
√
k =
√
l+
√
r

if and only if (n,m, k, l, r) satisfies one of the following cases:

Case 1.1: l = n, m = m2
∗h, k = k2

∗h, r = r2
∗h, m∗ + k∗ = r∗, µ(h) 6= 0;

Case 1.2: l = m, n = n2
∗h, k = k2

∗h, r = r2
∗h, n∗ + k∗ = r∗, µ(h) 6= 0;

Case 1.3: l = k, m = m2
∗h, n = n2

∗h, r = r2
∗h, m∗ + n∗ = r∗, µ(h) 6= 0;

Case 1.4: r = n, m = m2
∗h, k = k2

∗h, l = l2∗h, m∗ + k∗ = l∗, µ(h) 6= 0;
Case 1.5: r = m, n = n2

∗h, k = k2
∗h, l = l2∗h, n∗ + k∗ = l∗, µ(h) 6= 0;

Case 1.6: r = k, m = m2
∗h, n = n2

∗h, l = l2∗h, m∗ + n∗ = l∗, µ(h) 6= 0;
Case 2: n = n2

∗h, m = m2
∗h, k = k2

∗h, l = l2∗h, r = r2
∗h, n∗ +m∗ + k∗ =

l∗ + r∗, µ(h) 6= 0, l∗ 6= n∗, l∗ 6= m∗, l∗ 6= k∗, r∗ 6= n∗, r∗ 6= m∗, r∗ 6= k∗.

So in the sum
∑

√
n+
√
m+
√
k=
√
l+
√
r

g2

=
∑

n,m,k,l,r≤y√
n+
√
m+
√
k=
√
l+
√
r

(nmklr)−3/4d(n)d(m)d(k)d(l)d(r),
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if we let the variables n,m, k, l, r run over all natural numbers, the error is

�
∑

n>y

n−3/2d2(n) +
∣∣∣

∑

n,m,k≤y√
n+
√
m=
√
k

(nmk)−3/4d(n)d(m)d(k)− c1
∣∣∣

+
∑

n2h>y, l2h�y
h−15/4(nmklr)−3/2d(n2)d(m2)d(k2)d(l2)d(r2)d5(h)

� y−1/2+ε +
∑

n2h>y, l2h�y
h−15/4(nl)−3/2d(n2)d(l2)d5(h)

� y−1/2+ε.

Thus we get

(5.4)
2T�

T

S7(x) dx =
5
√

2
16

c3

2T�

T

x5/4 dx+O(T 9/4−3/10+ε).

Similarly, we get

(5.5)
2T�

T

S9(x) dx = −5
√

2
32

c4

2T�

T

x5/4 dx+O(T 9/4−3/10+ε).

The contribution of S11(x) is
2T�

T

S11(x) dx�
∑

n,m,k,l,r≤y

g2T
7/4

√
n+
√
m+

√
k +
√
l +
√
r

(5.6)

� T 7/4+ε
∑

n≤m≤k≤l≤r≤y
(nmklr)−3/4r−1/2

� T 7/4+εy3/4 � T 11/5+ε.

Now let us consider the contribution of S8(x). By the second mean-value
theorem we get

(5.7)
2T�

T

S8(x) dx

�
∑

n,m,k,l,r≤y√
n+
√
m+
√
k 6=
√
l+
√
r

g2 min
(
T 9/4,

T 7/4

|√n+
√
m+

√
k −
√
l −√r|

)

� T εF (N,M,K,L,R),

where

F (N,M,K,L,R) =
∑

2g2 min
(
T 9/4,

T 7/4

|√n+
√
m+

√
k −
√
l −√r|

)
,
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SC(
∑

2) :
√
n+
√
m+

√
k 6=
√
l +
√
r, 1 ≤ N ≤M ≤ K ≤ y, 1 ≤ L ≤ R ≤ y,

n ∼ N, m ∼M, k ∼ K, l ∼ L, r ∼ R.
If R < K/100, then |√n +

√
m +

√
k −
√
l − √r| � K1/2, so the trivial

estimate yields

F (N,M,K,L,R)� T 7/4+εNMKLR

(NMKLR)3/4K1/2
� T 7/4+εy3/4 � T 11/5+ε.

If R > 100K, we get the same estimate. So later we always suppose that
R � K. Let η2 =

√
n+
√
m+

√
k −
√
l −√r. Write

(5.8) F (N,M,K,L,R) = F1 + F2 + F3,

where

F1 := T 9/4
∑

|η2|≤T−1/2

g2,

F2 := T 7/4
∑

T−1/2<|η2|≤1

g2|η2|−1,

F3 := T 7/4
∑

|η2|�1

g2|η2|−1.

We estimate F1 first. From |η2| ≤ T−1/2 we get R� T 1/15 via Lemma 2.3.
By Lemma 2.8 (suppose M ≤ L; the case L < M is the same) we get

F1 �
T 9/4+ε

(NMKLR)3/4
A4(N,M,K,L,R;T−1/2)(5.9)

� T 9/4+ε

(NMKLR)3/4
(T−1/2R1/2NMKL+R(MN)1/2

+NMLKη(κ,λ))

� T 7/4+εy3/4 +
T 9/4+ε

(MN)1/4L3/4R1/2
+

T 9/4+ε

R3/4−η(κ,λ)

� T 9/4−1/30+ε + T 9/4−δ3(κ,λ)+ε � T 9/4−δ3(κ,λ)+ε.

Now we estimate F2. Suppose also M ≤ L. By a splitting argument and
Lemma 2.8 again we infer for some T−1/2 � δ < 1 that

F2 �
T 7/4+ε

(NMKLR)3/4δ
A2(N,M,K,L,R; 2δ)(5.10)

� T 7/4+εy3/4 +
T 7/4+ε

(MN)1/4L3/4R1/2δ
+

T 7/4+ε

R3/4−η(κ,λ)δ
.

We consider two cases: K � R� T 1/15 and K � R� T 1/15. If R� T 1/15,



Higher-power moments of ∆(x) 391

from Lemma 2.3 we get δ−1 �M15/2. Thus (5.10) gives

F2 � T 7/4+εy3/4 + T 7/4+εR7 + T 7/4+εR27/4+η(κ,λ)(5.11)

� T 9/4−1/30+ε + T 2−δ3(κ,λ)+ε � T 9/4−δ3(κ,λ)+ε.

If R� T 1/15, using δ−1 � T 1/2 and (5.10) yields

(5.12) F2 � T 7/4+εy3/4 +
T 9/4+ε

R1/2
+

T 9/4+ε

R3/4−η(κ,λ)
� T 9/4−δ3(κ,λ)+ε.

For F3, by a splitting argument and Lemma 2.8 again (notice |η2| � 1) we
get

F3 �
T 7/4+ε

(NMKLR)3/4δ

∑

δ<|η|≤2δ, δ�1

1(5.13)

� T 7/4+ε

(NMKLR)3/4
R1/2NMKL

� T 7/4+εy3/4 � T 11/5+ε.

Combining (5.7)–(5.13), we get

(5.14)
2T�

T

S8(x) dx� T 9/4−δ3(κ,λ)+ε.

In the same way we can show that

(5.15)
2T�

T

S10(x) dx� T 9/4−δ3(κ,λ)+ε

if we use Lemma 2.9 instead of Lemma 2.8.
Now (5.2) follows from (5.4)–(5.6), (5.14) and (5.15).

6. Proofs of Theorems 4–9. P (x) has the following truncated Voronöı
formula:

(6.1) P (x) = − 1
π

∑

n≤y
r(n)n−3/4x1/4 cos(4π

√
nx+ π/4) +O(x1/2+εy−1/2)

for 1 ≤ y � x, which follows from Lemma 3 of Müller [22]. A(x) has the
following truncated Voronöı formula:

A(x) =
1

π
√

2
xκ/2−1/4

∑

n≤y
a(n)n−κ/2−1/4 cos(4π

√
nx− π/4)(6.2)

+O(xκ/2+εy−1/2)

for 1 ≤ y � x, which is a special case of Theorem 1.1 of Jutila [16]. ∆a(x)
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has the following truncated Voronöı formula [18]:

∆a(x) =
1

π
√

2

∑

n≤y
σa(n)n−3/4−a/2x1/4+a/2 cos(4π

√
nx− π/4)(6.3)

+O(x1/2+εy−1/2)

for 1 ≤ y � x. So by the same arguments of ∆(x), we get Theorems 5–9
immediately. Note that in the proofs of Theorems 8 and 9, only the exponent
pair (1/2, 1/2) was used.

Now we prove Theorem 4. We shall follow Ivić [13]. Let

(6.4) ∆∗(x) :=
1
2

∑

n≤4x

(−1)nd(n)− x(log x+ 2γ − 1), x ≥ 1.

Then for 1� N � x, we have [13, (7)]

∆∗(x) =
1

π
√

2

∑

n≤N
(−1)nd(n)n−3/4x1/4 cos(4π

√
nx− π/4)(6.5)

+O(x1/2+εN−1/2).

Jutila [15] proved that

(6.6)
T�

0

(
E(t)− 2π∆∗

(
t

2π

))2

dt� T 4/3 log3 T,

which means that E(t) is well approximated by 2π∆∗(t/2π) at least in the
mean square sense.

Ivić [13] proved that

T�

0

E3(t) dt = (2π)4
T/2π�

0

(∆∗(t))3 dt+O(T 5/3 log3/2 T ),(6.7)

T�

0

E4(t) dt = (2π)5
T/2π�

0

(∆∗(t))4 dt+O(T 23/12 log3/2 T ).(6.8)

Using Ivić’s argument we can get

(6.9)
T�

0

E5(t) dt = (2π)6
T/2π�

0

(∆∗(t))5 dt+O(T 13/6 log3/2 T ).

We need the estimates

(6.10)
T�

0

|E(t)|A dt� T 1+A/4,

T�

0

|∆∗(t)|A dt� T 1+A/4 (0 ≤ A ≤ 9),

which follow from Heath-Brown [9].
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By (6.6), (6.10) and Cauchy’s inequality we get

T�

0

E5(t) dt− (2π)6
T/2π�

0

(∆∗(t))5 dt

=
T�

0

(
E5(t)−

(
2π∆∗

(
t

2π

))5)
dt

�
T�

0

∣∣∣∣E(t)− 2π∆∗
(
t

2π

)∣∣∣∣
(
E4(t) +∆∗

(
t

2π

)4)
dt

�
{ T�

0

∣∣∣∣E(t)− 2π∆∗
(
t

2π

)∣∣∣∣
2

dt

}1/2{ T�

0

(
E8(t) +∆∗

(
t

2π

)8)
dt

}1/2

� (T 4/3 log3 T )1/2T 3/2 � T 13/6 log3/2 T,

that is, (6.9) holds.
Now the problem is reduced to evaluating the integral � T0 (∆∗(t))k dt (k =

3, 4, 5). By the same arguments as those for ∆(x), we get
T�

0

(∆∗(t))3 dt =
3c∗1

28π3 T
7/4 +O(T 3/2+ε),(6.11)

T�

0

(∆∗(t))4 dt =
3c∗2

64π4 T
2 +O(T 2−2/41),(6.12)

T�

0

(∆∗(t))5 dt =
5(2c∗3 − c∗4)

288π5 T 9/4 +O(T 9/4−5/816),(6.13)

where

c∗1 :=
∑

√
n+
√
m=
√
k

(−1)n+m+k(nmk)−3/4d(n)d(m)d(k),

c∗2 :=
∑

√
n+
√
m=
√
k+
√
l

(−1)n+m+k+l(nmkl)−3/4d(n)d(m)d(k)d(l),

c∗3 :=
∑

√
n+
√
m+
√
k=
√
l+
√
r

(−1)n+m+k+l+r(nmklr)−3/4d(n)d(m)d(k)d(l)d(r),

c∗4 :=
∑

√
n+
√
m+
√
k+
√
l=
√
r

(−1)n+m+k+l+r(nmklr)−3/4d(n)d(m)d(k)d(l)d(r).

Ivić [13] proved that c∗1 = c1, c∗2 = c2. Now we prove that c∗3 = c3.
Suppose (n,m, k, l, r) ∈ N5 is such that

√
n +
√
m +

√
k =

√
l +
√
r. We

shall prove that n + m + k + l + r ∈ 2N. In Section 4 we concluded that
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(n,m, k, l, r) must satisfy one of Cases 1.1 to 1.6 or Case 2. We only consider
Case 1.1 and Case 2. Suppose n = l. Then

√
m +

√
k =

√
r. By the result

of Besicovitch again we get

m = α2h, k = β2h, r = γ2h, α+ β = γ.

Hence n+m+k+ l+ r = 2n+h(2α2 + 2β2 + 2αβ) ∈ 2N. Now suppose that
(n,m, k, l, r) satisfies Case 2. Then

n = n2
∗h, m = m2

∗h, k = k2
∗h, l = l2∗h, r = r2

∗h, n∗ +m∗ + k∗ = l∗ + r∗.

Using the simple congruence n2 ≡ n (mod 2), we get

n+m+ k + l + r = (n2
∗ +m2

∗ + k2
∗ + l2∗ + r2

∗)h

≡ (n∗ +m∗ + k∗ + l∗ + r∗)h

= (2l∗ + 2r∗)h ≡ 0 (mod 2),

that is, n+m+ k + l + r ∈ 2N. Thus c∗3 = c3. Similarly we get c∗4 = c4.
Now Theorem 4 follows from (6.7)–(6.9), (6.11)–(6.13).
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