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the transcendence of certain series

by
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1. Introduction. If « is an algebraic number, we denote by [a] the
maximum of the absolute values of the conjugates of o and by den(«) the
least positive integer such that den(a)a is an algebraic integer, and we
set ||a| = max{lal,den(a)}. Then for nonzero algebraic «, we have the
fundamental inequalities

o > [|af| 2@ and a7t < (o 2O

(cf. [12, Lemma 2.10.2]).

Let K be an algebraic number field and Ok be the ring of integers in K.
Let r and L be integers such that » > 2 and L > 1. We consider the function

> By (z™)

Po(x) = m;

k=0
where

Ek(l’) = ap1T + akng +...+ akaL S K[:L’],

Fk(ﬂj) =1+ bz + bk2$2 +...+ bkLSCL S OK[Z‘],
log [lag ||, log |bw|| = o(r*), 1 <1<L.
The aim of this paper is to study the arithmetical nature of @,(a) when
acK,0<|af <1, and Fk(o/’k) # 0 for every k > 0.

It should be noticed that in some cases o (z) can be explicitly computed
as a rational function. Specific examples are, with r = 2:
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The first equality is due to Lucas [9]. The latter two equalities are proved

in Duverney [4] but are evidently older. In the case where r = 3, we have
for example

43t 23t 11— a2

i 3kg3" (1 — x2'3k) x
k=0
This equality is proved in Duverney and Shiokawa [7]. Clearly for these

examples, &y(a) € K if o € K.
Our main result will be

TRANSCENDENCE CRITERION. @q(«) is algebraic if and only if $o(x) is
a rational function.

In fact we will prove the more precise Theorem 6 below (see Section 3),
which will also give us a way of proving that ®¢(z) ¢ K(z). The proof of
Theorem 6 (and therefore of the transcendence criterion) relies on Mahler’s
transcendence method, more precisely on the following result, which is a
special case of a theorem of Loxton and van der Poorten [8] (cf. [12, Theo-
rem 2.9.1]).

THEOREM 1. Let K be an algebraic number field, r > 2 be an integer,
{Dn () }n>0 be a sequence in the ring of formal power series K|[[x]] and
a € K with 0 < |a| < 1. If the following three properties are satisfied, then
&y () is transcendental.

n

(I) &, (™) = anPo() + by, where ay,, b, € K, and log ||a,||,log | by, ||
=0(r").
() If &,(z) = > 12 Jl(")xl, then for any € > 0 there is a positive
integer ng such that
log o™ < er"(1+1)
for anyn >ng and 1 > 0.
(III) Let {s;}i>0 be variables and

F(z;s) = F(z; {si}i1>0) = Z sz,
1=0
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i such a way that
Then for any polynomials Py(x,s), ..., Py(z,s) € K[z, {s;}i>0] and

d
E(x,s) =) Pz, s)F(x;s),
j=0

there is a positive integer I with the following property: if n is sufficiently
large and Py(z,0™),. .., Py(z,0(™) are not all zero, then ord E(z,c™)
< I, where ord denotes the zero order at 0.

However, applying Theorem 1 to @o(x) will not be an easy task, because
of condition (III). Thus the second section will be devoted to the proof
of Theorem 3, in which condition (III) will be replaced by a simpler one,
namely, some kind of irrationality measure of the function ®¢(x). The tool
in this section is an inductive method developed in Duverney [5].

Then, in the third section, we will use rather classical tools in approxima-
tion theory, in order to compute this irrationality measure. By introducing
low-order Padé approximants of the functions @, (x) connected to @¢(x) by
the equality (41), we will arrive at Theorem 6, which implies the transcen-
dence criterion and will enable us to obtain transcendence results. These
results will be developed in Section 5 (see Theorems 7-11).

2. An inductive method

THEOREM 2. Let K be an algebraic number field, r and L be integers
such thatr > 2 and L > 1, and

0 k

Ei(z")

S =dy(x) = (@)’

k=0

where
Ex(z) = a1z + apox’ + ... +arzt € K|x],

Fk(l‘) =14+bp1z+ bk21'2 + ...+ bkLZL‘L S K[x}

Suppose that there is a positive constant c¢1 such that for any M > 1 and any
polynomials Ao, A1 € K|z|, not both zero, satisfying deg Ay, deg A; < M,

(].) 0rd(A0+AlS) < ClM.

Then for any positive integer d there is a positive constant cq such that
for any M > 1 and any polynomials Ay, A1, ...,Aq € Klz]|, not all zero,
satisfying deg A; < M,0 < i < d,

(2) ord(Ag + A1S 4 ... + AgS?) < cqM.
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Proof. Let

k(@)

0 k(@)
Then S = T, + R,,. We prove (2) by induction on d. If d = 1, then (2) is
the same as (1). Suppose that for a given d > 2, we have

(3) OI‘d(BO +B1S+...+ Bd,lsd_l) <cqg_1M,

for any By,...,Bq—1 € K|[z], not all zero, with deg B; < M, 0<1i<d— 1.
We may assume c4_1 > 1 and Ay # 0. Let e = dL. For every n > 0, there
exist Qn(x) € K[z] with Q,(z) # 0, and P,1(z),..., Pyi(xz) € K[z] such
that

—~~
8
3
ko
~
3
7
—_
&

b, (z) = R, =®,(" ), T,=

= En+k
2 T’

il
&

dean Sdea degpnz Sde) 1 Slgdv
(4) Qn ()8 (2)" = Poi(x) = 2%+ Gpi(w), 1<i<d,

where

Gri(x) = ng'lxl € K{[z]].

For this we choose @, (x) in such a way that the terms of degrees de + 1,
...,de + e vanish in the Taylor expansion of Q,(z)®,(z)! fori = 1,...,d.
We only have to solve a linear homogeneous system which has de equations
and de + 1 unknowns.

LEMMA 1. ord Gp1(x) <7y, where v = c1(de + L) — (de + e+ 1).
Proof. In (4), replacing = by =", we have
Oz )(S = Tp) — P (™) = aldete+Dr" g ("),
Multiplying both sides by D,, = Z;é Fy, (:U”k), we have
DpQn(z")S — Qu(z" ) Dy Ty, — Dy Py (27 ) = 24+t D Gy (27).
Since deg D,,,deg D, T, < Lr™,
deg DnQn(a:T"), deg(Qn(:vrn)DnTn + DnPnl(:E’"")) < (L+de)r™.
By (1) we have
ord G (2"") < (e1(de + L) — (de + e 4 1))r™,

which implies the lemma.

We define Poo(z) = Qn(x), Gno(x) = 0. In (4), replacing x by =", we
obtain, for every i =0,1,...,d,

n n

(5) Qu(z™)(S = Tp)! = Pus(a"") = aldetetDr g (™).



Transcendence of series 309

We develop (S — T,,)" and write the equality (5) in matrix form. Then we
get

1 PnO (xr”) 0
n S Py (xrn) . | Gma (xrn)
(6) Qn(-TfT )Mn : _ ) — x(de+e+1)r . ’
Sd Pnd(l‘rn) Gnd(l‘TH)
where
1 0 0
-T, 1 0
M, = T2 —2T,, 0
()T (~D T L1
In [5] it is shown that
1 0 0
T, 1 0
M;l = Tﬁ 2T, 0
Td . (d)Td_1 ........ 1
- )Ty

Note that D¢ M ! has entries in K [x]. Multiplying (6) on the left by M1,
we get

! Pa(a”) 0
(7) Qn(iﬁrn) S —M;l Pm(‘m ) :x(de+e+1)r"M;1 Gnl('m )
Sd Pnd<x7"n) Gnd<1'7m)

Multiplying (7) on the left by the row matrix D% (Ay,..., A;) we obtain
d
(8) Un(D AnS") = Vi = aldererr g,
h=0

where

U, =D%Q,(z"") € K[z,

Vi = (Ao, ..., Ag)DIM;? ) € K],
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0
d g1 G (2"")
Gnd(.fErn)
Let n be the positive integer such that
9) "t <eg M <™.
Then, as e =dL and cq4_1 > 1,
(10) degV,, < M +dLr"™ +der™ < (de + e+ 1)r".

Let m be the least integer such that (0, gnim,-- - Gnam) # 0. By Lemma 1,
m < 7. Let

0
0 :
9Inim 0
. Inim ’ g #
9ndm
Indm
Then, modulo z(™m+tD"™  we have
0
— nd -1 0
HTL = Dn(AO, - 7Ad)Mn gnlmxmrn
gndmxmrn
0 0 0 0
............................. I
1 0O ... 0 O n
EDg(AO,...,Ad) : ™"
(HTdt Lo Lo 1 0] \Yndm
7 n
(HTd— 1
0 0O ... 0 O
............................. i
1 0O ... 0 O n
EDg(AO,...,Ad) : ™"
(st o 1 0 \Yndm
(&5 1

 DY(By 4+ BiSt ..+ By Sty
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where By, ...,Bq_; € K[x] and
d
Bi_; = Ad(.)gnim #0, degBy <M, 0<h<d-—i.
(3

Since ord D,, = 0, by (3) and (9) we obtain

ord(DY(By + B1S + ...+ Bg_iSTHa™") < g1 M +mr™ < (1+m)r"

Hence H,, # 0 mod ™+ Suppose that V;, # 0. By (10) we get
ordV,, < (de+e+1)r"

Therefore by (8), (9) we obtain

d
ord (Z Ah5h> <(de+e+1)r" < (de+e+ 1)recg_1 M.
h=0

If V,, =0, by (8), (9) we obtain

d
ord (Z AhSh) <(de+e+1)r" + (m+1)r" < (de+e+2+y)rca_1 M.
h=0

Letting cq = (de + e + 2 + ¥)rcq—1, we obtain (2).
THEOREM 3. In addition to the hypotheses of Section 1, assume (1).

Then () is transcendental.

Proof. We apply Theorem 1. Since

&, (a""
=

property (I) is satisfied. We prove property III) Suppose that deg, Pj(z, s)
< N and ord E(z,0(™) = I,,. Then

d
Ly =ord E(z",0™) = ord (Z Pi(z"",0™)® n(xr")j).
7=0
On the other hand,

d
D¢ ZP o™ => P2, 0™)DI(S - T,).

7=0
If Py(x, a(”)), ..., Py(z,0™) are not all zero, by Theorem 2 we get
ord E(z"",0™) < ¢q(Nr" + dLr™).

Therefore I,, < c4(N + dL), which proves (III). Property (II) results from
the following.
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LEMMA 2. For any 0 > 1, there exists a positive integer ng such that
HUz(n)H < 6" for anyn > ng and 1> 0.

Proof. Let 220:0 aprk <« EZO:O brz® mean |ag| < by, for all k. Let 6 > 1
and k£ be greater than some constant depending on # which will be deter-
mined below. We have

lawl <07, lbwll <07, 1<I<L.
Then
Ex(x) <<9rk(a:+:172+...—|—xL),
k k
<14+0" (z+...+2)+6% (z+...+ 282+ ...
) ( ) ( )
Since (z + ...+ 21! < LY(2! + 2! +..)), we get
E
(@) <O Lx+a+. )+ 0 L@+ 2%+ .. )+ ...
F(z)

<O La+.. +L0" +.. . +0 )2+
<O 4.+ O
So we obtain
P, (z) < ()" z+ ...+ ([log, 1] + )O3 ! + ...
<@ x4 (@)
if n is sufficiently large. Hence ]al(")] < (6%)" for any n > ng and 1 > 0. In
the same way, we have W < (93)”n for any n > ng and [ > 0.
Since Hleden(akl) < 0" and by € Ok, 1 <1 < L, we have
den(a™) < oo o < T O T ) < (g2)”
for any n > ng and [ > 0.

Lemma 2 is proved and the proof of Theorem 3 is complete. To end this
section, we prove Lemma 3, which will be used later.

LEMMA 3. Let
B, (z)

where A, (x), B, (x) € K[z]|, deg Ay, deg B, < L, A,,(0) = 1,B,(0) =0 and
the log|| || of the coefficients of A, (x), Bn(x) are o(r™). Let I be a positive
integer, and o € K with 0 < |a| < 1. Then there exist positive numbers
n <1 and ng such that

0< [fula”™)| <" o Sn
for every n > ng satisfying ord f,(z) < I.

+ P, (),
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Proof. Let 6 > 1 and B, (z)/A,(z) = > 2, Tl(")xl. As in Lemma 2, we
obtain HTl(n)H < (#%)'". We put

fn(z) = Z(_Tl(n) + Ul("))a;l =apgr? +agpe®T + 0. ag #0.
=1

Then 1 < H < I and by Lemma 2, ||a;|| < (8*)""". We have

ful@™) = agatl™” (1 g QHFL oy SHAD 2t )

ag am
Since
% < (QRUCQHT™ (gAY (HHDOr™ < (8[K:Ql+4)Hr™ gair™
we obtain
aéJJrl alr” S (08[K:Q}+4)1r"‘94a‘lr".
H

We can choose 6 > 1 such that
n= 0(8[K:Q]+4)[|04a| < 1.
Then

n

A1
+ alr

aH

and so if n is sufficiently large, then 0 < |f,, (™" )| < 2|0*a|f™" < pf™".

3. Proof of the Transcendence Criterion. We first prove a gener-
alization of [3, Theorem 9.7, p. 113]. Let K be any commutative field with

a nonarchimedean absolute value | |, thus satisfying
(11) lz] =0 & =0,

(12) |yl = [« [yl;

(13) | +y| < max{[z], |y[}.

We suppose moreover that there exists in K a subring A with the following
property:
(14) for any x € A\ {0}, |z|>1.

THEOREM 4. Let K be as above and o € K. Suppose there exist a,b, k,l

€ (0,00), h > 1, an increasing sequence {g(n)}n>o in (0,00), and a sequence
(Pns @n) tn>0 in A? such that

—
ot
~—

GnPn+1 — Gn+t1Pn 70 for every n > 0,
16) lgn| < kg(n)® for every n >0,
17) lgna — pn| < 1/g(n) for every n > 0,

{
(
(
(
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(18) lim g(n) = oo,
(19) g(n+1) <bg(n)"  for every n > 0.

Then for every (p,q) € A? with q # 0, we have
g = p| = ¢/lq"
with ¢ = (kb*™ D M”11 = ah?, and M = max{l, g(0)}.
Proof. Let (p,q) € A2, with ¢ # 0, fixed. Let
(20) M = max{l, g(0)}.

Let v be the least integer satisfying |¢|M /g(v) < 1. Such a v exists because
of (18). Moreover, as |g| > 1 because ¢ € A \ {0}, we have |¢|M/g(0) > 1,
therefore v > 1. Thus |¢|M /g(v — 1) > 1, which implies g(v — 1) < |¢|M.
By using (19), we obtain g(v) < b(|q|M)", and by using (19) again,

(21) g(v +1) <"+ (|g|a)"".
Now consider the determinant A, = qfil pfil . By (15), A, # 0, which

means that the vectors (q,,p,) and (g,11,p,+1) form a basis of K2. Hence

one of the two determinants qq" ]';f and qu+ ! p"; ! ‘ is distinct from 0. Set
m =v or m = v + 1, such that

22 5 = | I Pl £,

22) n=|tm P2

As 6, € A\ {0}, we have by (14) |pgm — qpm| > 1. This means that
|g(¢gma — pm) — @m(qae — p)| > 1. By using (13), we obtain

(23) max{[q(gma = pm)l; [gm (g = p)|} = 1.

But |¢(gma — pm)| < |q|l/g(m) by (17). As I < M and g is increasing, we
have |¢(gma — pm)| < |¢|M/g(v) < 1 by definition of v. Therefore in (23)
the greatest number on the left-hand side cannot be |¢(¢ma —pm)|, and (23)
becomes

(24) lgmllga —p| 21 < |ga—p| = 1/|gm|.
By (16) we can write |gm,| < kg(m)® < kg(v + 1)*. By using (21) we obtain
(25) [gm] < RO (jg M)

Therefore (24) becomes

1 1
— >
|qa p| - kba(h+1)Mah2 |q‘ah2’

which proves the theorem.

Now we specialize Theorem 4 to the following situation. Let K be any
commutative field, let K[[z]] be the ring of formal power series with coef-
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ficients in K, and let K((x)) be the field of fractions of K[[z]]. It is well
known that K ((x)) is also the field of Laurent series with coefficients in K,
which means that any f € K((z))* can be written, in a unique form, as

(26) f(z) = Z apz™  with a,, # 0.
n>m
The valuation of f € K((x))* is defined, as usual, by
(27) v(f) =m.
It has the following properties:
(28) v(fg) =v(f) +v(g),
(29) v(f 4 g) > min{v(f),v(g)}.
Now fix any 6 > 1. We define an absolute value on K ((x)) by putting
(30) [fl=0""Y) if f#£0, 0| =0.

It is easily checked (and well known) that | | satisfies (11)—(13).

THEOREM 5. Let K be a commutative field and A, B,C € R, 0 < A < B,
C > 1. Let r > 2 be an integer. Let {m(n)}n>0 be an increasing sequence
of nonnegative integers satisfying m(n + 1) — m(n) < C. Let f € K[[z]].
Suppose that there exists a sequence {(Pn,Qn)}n>0 in K[z])? satisfying

(31) PoQn+1 — Poy1Qn #0 for every n > 0,

(32) deg Q,,,deg P, < Ar™™  for every n > 0,

(33) V(Qnf — Pp) > Brm™™) for every n > 0.

Then, for every (P,Q) € K[z]? with Q # 0 and deg P,degQ < d, d > 1,
1

(34) v(Qf — P) < <Arm(0)+20 (1 + 5 A) + 1> d.

Proof. We apply Theorem 4 with K replaced by K((x)) and
A={fcK(x)]|f(x)= P ") for some P € K[z]}.
For every n € N, put
Qul@) =" @), Pula) =2l P, (@),
Then P,, Q. € A for every n € N and by (33),

(35) V(@nf = Po) > (B = A)r™t,

By using the absolute value (30), we deduce from (31), (32) and (35) that
(36) ﬁnénﬂ — f)n+1©n #0 for every n > 0,

(37) |Qnl < AT for every n > 0,

m(n)

(38) ’@nf — ﬁn’ < 1/9(37’4)7’ for every n > 0.
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Therefore we can apply Theorem 4 with g(n) = H(B_A)”Mn), k=1,a=
A/(B—A),l=1,b=1,h =1 M = g(0) = gB=Ar™” For every
(P,Q) € K[z)? with deg P,deg@ < d, Q # 0, put P(x) = x¢P(z) and

Q(z) = 2?Q(x). Then P,Q € A and by Theorem 4 we have
1

rm(0)+2C °

- 1
(39) |Qf - P| > gArm(°)+QC

QI
By taking logarithms, we get

A ~

rm(O)+2C,U(Q).

'U(@f - ﬁ) < Arm(O)JrQC’ o

But v(Q) > —d, therefore

v(Qf — P) < Apm(0+2€ (1 + 3 i A)’

and finally

d 1
_ < m(0)+2C < m(0)+2C
v(Qf—P) < Ar <1+ — A>+d < (Ar <1+ — A>+1> d,

because d > 1.

Now we are ready to prove the Transcendence Criterion. Let

.
iz Fe@™)

satisfy the assumptions in Section 1 and

- En k xrk
Polw) =) =t ( Tk).
It is clear that
Enfl(ﬂf)
4 D, (z") =Dy - .
(10) (@) = Puala) - F
An easy induction shows that
n—1 k
n Ek(xr )
41 D, (z" ) =Py(z) — —
(41) @) = %@ -3 7o

We want to construct a sequence { (P, Qn)}n>0 satisfying the hypotheses
of Theorem 5. Consider the (L, L) Padé approximants to @, (x), that is,
polynomials A,, and B,, satisfying deg A,,,deg B,, < L, and

(42) A ()P (2) — Ba(z) = O(z2E+1).
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By using the so-called Siegel lemma (cf. [12, Lemma 1.4.2]), we may assume
that the log || || of the coefficients of A,,(x) and B, (z) are o(r™). Define

An(z) B ()

Aria@) Avia(e) 0 + B ) |

LEMMA 4. Suppose that D, (x) # 0. Then
ord(Ay, (2)Pn(z) — Bp(z)) <r(2L+1).
Proof. Suppose that
(44) A (2)Pn () — Bn(z) = O(2?)
with ¢ > r(2L + 1). We also have, by (42),
Ap1(2)Prir () — Bpya(z) = Oz,
Replacing = by " and using (40), we obtain

(45)  Anir(a")Pn(z) - <A”+1w) i:ég

Multiply the first column of D,,(z) by @, (x) and subtract it from the second
one. By (44) and (45), we see that D,,(x) = O(z"?L*1). This means that

(43) D (x) =

+ Bn+1(a7r)> — O(.CCT<2L+1)).

B A, (z) By (z)
Fn(x)Dn(iﬁ) a ‘ An—f—l(l'T)Fn(x) An—l—l(xT)En(m) + Bn+1($T)Fn(x>
_ O($r(2L+1))-

But this determinant is a polynomial of degree at most L(r+2). As L(r+2) <
r(2L + 1), we have D,,(x) = 0. This contradiction proves Lemma 4.

Now we construct the sequence {(P,, Q,)}n>0- If we replace = by 2" in
(42) and use the functional equation (41) we obtain

@ (2)Po(x) — Py (x) = O(aHH0™),

where

Qs(x) = Au(e™) T Fele™).
k=0

n n-! Ek(xrk) n n-l1 k
mmz@mwij M+WﬂOHﬂW>
k=0 Fi(z) k=0
It is clear that
L L
deg Q< ———v",  deg P} < ——— "
r—1 1

AsrL/(r—1) < 2L for every r > 2, we see that the sequence {(P,, Qn)}n>0
= {(P,(n)> @ra(n)) In>0 satisfies hypotheses (32) and (33) of Theorem 5 for
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every increasing sequence {m(n)},>o. It remains to study condition (31) in
Theorem 5. We need the following lemma.

LEMMA 5. For every n > 0, put
Qn(z)  Pr(x)
Ap(z) =1 3™ e .
D=1 L@
Then A, (z) =0 if and only if D, (z) =0, that is,
En(w) _ Bn(w) Bn+1(xr)

F(z) B Ap(z)  Apqa(zm)

Proof. We have

An(z) =0
o = Bz .
Apir (™) An+1(:v’""+1)2 i:éz:k; + B (2"
k=0
An(xTn) Bn(fl/’:n)
< Apir (@) Apir (@) % 4 B (@™ T 0
Ap(x) EBn(x)
- Any1(a")  Anga(a”) Fzgg + Bny1(2") =0 Da(2)=0
B, (z)
N ! An(z) 0
1 En(z) n Bpii(2") ’
Fo(x)  Appa(zm)

which is the desired conclusion.

The following theorem is a precise version of the Transcendence Crite-
rion.
THEOREM 6. Under the hypotheses of Section 1, @y(«) is algebraic if
and only if A, (x) =0 for every n > N, that is,
En(x) _ Bn(z) Bnga(a")
= — or everyn > N.
Fo@)  An(n)  Awn(e) 7 VNE

Proof. Suppose that there exist infinitely many n satisfying A, (z) # 0.
Denote by {m(n)},>0 the sequence satisfying

Ay (@) £0, Agla) =0
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for every n > 0 and every k with m(n) < k < m(n+1). Then two cases can
occur.

(I) m(n+1) —m(n) < C for some constant C > 0. Then it is clear that
the determinant

Qnt1(z)  Poyi(z)

is not zero. Therefore condition (31) in Theorem 5 is fulfilled, and we can
apply Theorem 3. Hence ®¢(«) is transcendental.

" m(n—‘,—l)( ) m(n+1)(x)

(IT) limsup(m(n + 1) — m(n)) = co. In this case, by using Lemma 5 we
have
Ey(x) _ Br(x)  Bryi(a”)
Fe(z)  Ap(z)  Apga(a”)

for every k satisfying m(n) < k < m(n + 1), so that

m(n+1)—1 o ()41 .
> B(a) _ Bnmni@ ) Bmnen(z )
k=m(n)+1 Fk(;{ﬂ“") m(n)+1($rm(n)+ ) Am(n+1) (xrm(7L+1))
Thus we have
S pm(n)+1
( )Ek(xrk) + Bm(n)Jrl(x )

(46) 450(33): Z: Fk(ZErk) Am(n)+1(frrm(n)+l)

( ( rm(n—‘—l) (
m n4+1)\T rm(ntl)
A (nt1) (@)  Pmn @ -
m(n
Let
Bm(n—&-l)(x)
m(n = T X Qsm n .
Fmms1) () A (@) + Prny1)(T)

As Apy(ny1y(x) # 0, we have Dy, (n41)(7) # 0 by Lemma 5. Therefore by

Lemma 4,

ord fr(ng1) () < ord(Ap(n+1) (2)Prn(nt1)(T) = Bina1)(2)) < r(2L + 1).

Since ord @,,(z) > 1, we may assume that A,,(,41)(0) = 1 and By, (,,41)(0)
= 0. Applying Lemma 3, we see that, for every sufficiently large n,

(47) 0 < Ifmmsn(a
By (46) we have

,',_m(7L+l) (2L+1)T7n(n+l)

) <mn

m(n) k

m(n+1) Ek(aT ) Bm(n)+1(04
) = Po(a) — - FIEREE
Z Fk(ark) Am(n)Jrl(aT ( Hl)

m(n)+1
" )

fm(n+1) (Od
k=0
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If &g(«) is algebraic, then f, (1) (arm<n+1)) is also algebraic and we can see
easily
T"m(n#»l) ,r_m(n)

where C' > 1 is some constant. The inequalities (47), (48) contradict the
fundamental inequalities recalled in Section 1. Hence we proved that @g(«)
is transcendental in both cases. The converse is trivial.

4. Technical lemmas. In order to apply Theorem 6, we will need to
get some knowledge about polynomials A,, and B,, satisfying (4,,B,) =1
and

(49) En () _ B, () _ Bii1(z") _ B () Any1(2") — An(z)Bpya(2")
Fy(z) Ap(z)  Appa(z”) An(z)Api1(z7)

with deg E,,, deg F),,deg A,,,deg B,, < L, A,,(0) = 1, B,(0) = 0. We will also

assume that L > r—1, because we will see later (in Section 5.1) that the case

L < r—1is easy to handle. The main result in this section will be Lemma 10,

which asserts that, under some additional assumptions, A, (z)| A,+1(z").
LEMMA 6. If B,y1(x) # 0 and (49) holds, then
deg Ay 1(x) < 2L /7.

Proof. Suppose that deg A,,11(x) > 2L/r. Then deg A, +1(2") > 2L+ 1.
As deg F,, < L in (49), there exists ¢(x) € K|z] with degg(x) > L + 1 such
that

(50)  q(@)|Ansa(z")  and  g(z) | Bp(x)Ani1(2") — An(2)Bnia (27).

As B, 11(z") # 0 and (Ay+1, Brt1) = 1, from (50) we have ¢(z) | A, (), a
contradiction with deg A,, < L.

LEMMA 7. Suppose there exist infinitely many n such that E,(z) # 0. If
there exists n € N such that B, (x) = 0, then there exists (m,d) € N? such
that deg B, = dr and m > n.

Proof. Suppose that B, (x) = 0. If B, ;1(x) = 0, then by (49) we have
E, (z) = 0. Therefore there exists m > n such that B,,(x) = 0, By4+1(x)
# 0. Since B,,,+1(0) = 0 and B,,11(z) # 0, d = deg B,,,+1(z) > 1 and by
(49), we have
Em(r) _ Bini1(z")

Fo(z)  Apgpa(zn)’
which implies deg E,, (z) = dr.

LEMMA 8. If By,(z) # 0 and deg F,—1 > L — r, then deg A, (x) > 1.
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Proof. Assume that deg A,, = 0, that is, A, (z) = 1. Then from (49),
E,_1(x) _ B,_1(x) — Bp(z")Ap—1(x)
Fn,1($) An,1($) '
As the right-hand side is irreducible, we have A,,_1(x) = F,_1(z) and
E,_1(z) = Bp_1(x) — Bp(2")A,—1(x).

Hence deg B,,(z")Ap—1(z) > r+ (L —r) = L and deg E,,_1 > L, a contra-
diction.

LEMMA 9. Suppose that there exist infinitely many n such that E,(z)
# 0 and

(51) r>L/24+1,

(52) deg E,, is not a multiple of r for everyn > N,

(53) deg F,, > L —r for everyn > N.

Then for large n, By (x) # 0 and h = deg A,, is a constant satisfying

1<h<2L/r.
REMARK. We put deg(0 = —1.

Proof. Let n > N + 1. Then B,(x) # 0 by Lemma 7. Suppose that
deg Ap41 > deg A,,. Then (50) holds with deg q(x) > (deg A,, + 1)r — L. As
q(x) | An(z), we have

deg A, > degq > rdegA,, +r— L,

which implies (r — 1) deg A,, < L —r. As deg 4,, > 1 by (53) and Lemma 8,
we obtain 7 — 1 < L — r, that is, 7 < (L + 1)/2, a contradiction with (51).
Hence deg A,,+1 < deg A,,, and so h = deg A,, is a constant for large n. We
have 1 < deg A,, < 2L/r by Lemma 6.

LEMMA 10. Under the assumptions of Lemma 9, we have h = 1 or
Ap(x) | Apya1(a™) for every large n. Moreover, if deg A, = degAp41 = 1
and A, (z) does not divide A,11(x"), then deg F,, =1+ 1.

Proof. Assume that A, (x) does not divide A,,41(z") for some large n.
(50) holds with degg > hr — L. As before, we have ¢(z)|A,(z). Then
degq(z) < deg A, (z) = h. If deg q(x) = h, then A, (x)| An41(2"), a contra-
diction. So degq(x) < h and h > hr — L. Hence h < L/(r — 1) < 2 by (51).
Therefore h = 1.

If deg A,, = deg A, 41 = 1 and A, (x) does not divide A, 11(z"), then
Ay (x) and A, 4+1(z") are prime to each other, which implies deg F,, =7 + 1
by (49).

We end this section by two lemmas giving polynomials A,, satisfying
An ()| Aps1(x”) in the cases h =1 and h = 2.
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LEMMA 11. Assume that A, (z)|Ant1(2z"), and deg A, = 1 for every
n > N. Then, for everyn > N,

Ap(z)=1—a""z  for someac K.

Proof. Put Ap(z) =1 — gux. Then A,41(g,") = 0, which implies that
1—gnt1q," =0, that is, ¢,+1 = q;,. Therefore there exists a € K such that
dn = ar".

LEMMA 12. Assume that A,(z)|Ant1(z"), and deg A,, = 2 for every
n > N. Then only two cases can occur:

(i) There exist a,b € K such that for everyn > N,
(54) Ap(z)=(1—a" 2)(1=b"x).

(ii) There exist M > N, a € K and a sequence {wy}n>0 of rth roots of

unity such that for everyn > M,
(55) Ap(z)=(1—a" z)(1 —wpa" ).
Proof. Put A, (z) = (1 — gox)(1 — ¢g},x). Then
(1= qnz)(1 = qu2) [ (1 = gni12") (L = g 1 2").

Then, as in the proof of Lemma 11, we may assume g,+1 = ¢, and ¢, = a’”
for every n > N. We now have

r—1

1= g | (D)) (1= daa”).

k=0
Therefore we have ¢;, ., = (q},)" or ¢}, = wnq, with w], = 1. If there exists
M > N such that ¢j; = wapqn with wy, = 1, then ¢j,, = (¢j;)" =
(Wrvgnm)™ = iy = Q41 OF @y = WM1n+1 With warp1 = 1. In both
cases we see that ¢y, = wyr1qa41 with wh, = 1 and by induction (55)
holds. If ¢}, . ; = (g;,)" for every n > N, then (54) holds.

5. Examples

5.1. The case L <r —1

THEOREM 7. Let ®y(x) satisfy the assumptions of Section 1. If L < r—1
and E,(x) # 0 for infinitely many n, then ®o(x) ¢ K(x). Therefore, for
every algebraic o with 0 < |a| < 1 and Fk(o/”k) # 0 for every k, Po(a) is
transcendental.

Proof. Suppose that ®¢(z) = P(x)/Q(z), where P(z),Q(x) € Klz].
Then
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If E,(x) # 0, then &,(z"") # 0 and ord®,,(z"") > r™. On the other hand,
Q) (z" ) TTh =y Fi(z"") is a polynomial of degree less than

L
deg P(x) + deg Q(x) + — r’.

Therefore we have

L
r" < deg P(z) + deg Q(z) + —3 r",

which is a contradiction if n is large.
5.2. The case L=r —1. Let

r—1
Fy(2) :in, Ey(z) = r*zF](x —rksz
i=0
Then L
Ep(z) r*Q—a2)>i ia k( x ra’ )
= = = — )
Fi(x) (1_;3)21"3;,31‘ l—2z 1—2"
Hence

o) = = Ek(:ﬂk) _ =z
Po(z) ];)Fk(yk) T

Note that this formula can also be obtained from Corollary 4.1 in Duverney
and Shiokawa [7], by taking d =r, c =1, P(z) =1 -z, Q(z) = Z::_Ol x.
Moreover for any w € K, $g(wx) is also in K (z). The next theorem asserts
that when L = r — 1, only such functions are rational functions.

THEOREM 8. Let ®g(x) satisfy the assumptions of Section 1. Suppose
that L =r — 1, E,(z) # 0 for infinitely many n and ®o(z) € K(x). Then
there exist a constant c, a root of unity w and a positive integer N such that

E,(z™") " (wx)" T(wx)MH
———< =cr -
E,(z™) 1—(wz)™  1— (wz)"™

Proof. Since ®y(z) € K(z), Po(a) is algebraic, and from Theorem 6,
we have (49) for every n > N. Since L = r — 1, Lemma 9 applies and
h = deg A,, = 1 for every large n. By Lemmas 10 and 11, A,(z) =1 —a" z.
Therefore (49) can be written as
(56) En(l‘) — ) Zki T ‘f - Bn+1($r) .

F,(x) 1—(a" x)T
Assume deg By, 41 > 2. As deg(By,(z) > _ Oa Py < L+r—1=2r-2,
the degree of the numerator is at least 2r. Therefore

deg F (@) (Bu Za’”" b~ Bun(a") = 2,

n

> for everyn > N.
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which is a contradiction because deg E,(z)(1 — (" z)") < L +r = 2r — 1.
Hence deg B, 11 < 1. As B,,(0) = 0, we have B,,(z) = b,x for every large n,
and (56) becomes

E.(x) b N Y g Oa’"”x — bprx”
Fo(r) 1—(a™"z)"

As deg I, < L =7 —1, at least one linear divisor of 1 — (a""2)" must divide
both the numerator and the denominator; it is 1 —a”" x = A,,(z). Hence the
. n n—+1
numerator must vanish for x = a™" , whence b,ra™" — b,r1a7" =0,
that is, by,41 = ra™=br"p, . Therefore b,, = cr”a”, and a must be a root
of unity because of Kronecker’s theorem and the growth condition on the

coefficients of F,, and Fj,.

(57)

77“”‘

EXAMPLE 1. Let r =2 and L = 1. Let K be an algebraic number field

and
oo 2k

x
Bo(z) =S —
o() kzol—i—bkak

where by, € K is an integer for every k and log ||by || = o(2¥). By Theorem 8,
Do(x) ¢ K(z). Hence ®g(a) is transcendental for any o € K, 0 < |a < 1.
By taking by, € Z and a = 1/a, a € Z, |a] > 1, we obtain the special case
dealt with in [5].

5.3. The case L = r. The case L = r is much more complicated. First,
the rational sums in Theorem 8 can be used to obtain many new series. For
r = L = 2 for example, we have

o0

so that for every a3, as € K and roots of unity w1, ws,

> 2" ( wlx > 2 ( ng
alzl-i- (wiz Zl+ (wox)?
_ Z 222" (a1w?” + aswd + (wiw2)?" (o + a)z?")
(1+ w?22")(1 + w3"z2")

is a rational function. Another type of weird series is the following. Let {a,}
and {b,} be any sequences in K. Put

Es, () = apa”, Fon(x) =14 bya”,
Espii1(x) = —anx, Fopyi(x) =1+ by

Then obviously Y°°  E,(2"")/Fn(z™") = 0.
In order to avoid these cases, we will assume that 1 < deg E,, < 7.



Transcendence of series 325

THEOREM 9. Let @g(z) satisfy the assumptions of Section 1. Suppose
that L = r, degE, < r, degF,, = r for every large n, E,(x) # 0 for
infinitely many n, and @o(x) € K(x). Then only three cases can occur:

(i) There exist a root of unity w and a constant ¢ such that for every
large n,

(58) En(z) = cz_:(anx)k, Foz)=1— (" )"
k=1

(ii) » = 2 and there exist two roots of unity wy,ws and a constant ¢
such that for every large n,

(59)  Bn(w) =e2"(w]" —wi)r,  Fu(e) =1+ 0f 2)(1+w) o).

(iii) » = 2 and there exist a root of unity w and a constant ¢ such that
for every large n,

(60) En(z) =cA"w? z, Fu(z)=(1+w?"2)%

REMARK. It should be observed that (59) and (60) come from the case
L =1,r = 2 obtained in Theorem 8 ((59) by subtraction, as indicated at the
beginning of Section 5.3, (60) by term-by-term differentiation). By contrast,
(58) cannot be obtained from the case L = r — 1. For L = r = 2, it gives
the famous series of Lucas
&0 gn

o
1—z2"" 1—2a

n=0

The general case

(1—2)y(1—z™™) 1-=z

i ZIS‘Tn(l _ x(T*l)rn) T

n=0

first appeared in Bruckman and Good [2]. Note that (58) can be obtained

from Corollary 4.1 in [7] by takingc=d =r, P(z) = 1—z, Q(z) = Z};;é z*.

Proof of Theorem 9. Assume that @¢(x) € K(x). Then Theorem 6

applies and (49) holds. By Lemma 9, B,(z) # 0; by Lemma 10,
An ()| Aps1(2”); and by Lemma 9, 1 < deg A,, < 2 for every large n.

First assume that deg A, = 1. By Lemma 11, A,,(z) = 1—a"" z. Inserting
this in (49) we obtain, as in (56),

E,(x) _ B, (z) Z;é a2k — B, 1 (z")
F,(x) 1—(a™"2)"
As in the proof of Theorem 8, we see that deg B,+1 > 2 is impossible,
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therefore B,,(z) = b,x for every large n and

En(z)  bpxd,— Oa "k — b2t
Fo(z) 1—(ax)" '

By comparing the degrees of the denominators we get

r—1
E,(z)= banakrnxk —bpp1z”, F,(z)=1- (arnx)r.
k=0

As deg E,, < r, we have b,41 = am=D"pand there exists a constant ¢
such that b,, = ca™". Hence

r—1 ’
E,(x)=c Z akr"
k=1

and (58) holds (a must be a root of unity because of the growth conditions).
Assume now that deg A,, = 2. This will be more difficult. Put A,,+1(z")
= A, (2)Q,(z) with deg Q,, = 2r — 2. Then (49) becomes

En(z) _ Bn(2)Qn(x) — Bpii(2")

Fr(z) Apya(z7) 7
where we assume (E,, F,) = 1 (divide E,,, F}, by their greatest common
divisor). Then deg E,, < r and deg F;,, < r. This implies that A,,+1(z") =
F,(z)R,(z) with deg R,, > r and

Bn(2)Qn(2) = Bni1(2") = En(z) Ry ().

Moreover (R,,Q,) = 1, otherwise Bj,;+1(z") and A,41(z") would have a
common factor. Therefore R, (z)|A,(z) and r = 2. Since F,(0) = 1 and
An11(0) = 1, we have R,(0) = 1 and so R, (z) = A,(x), F,(x) = Qn(x),
and
(61) E,(2)An(z) = Bn(z)Qn(z) — Bn+1($2)-
As deg E,, () < r, we have E,(z) = e,x. By putting B, (z) = xB}(x), we
obtain
(62) endn(z) = By (2)Qu(x) — 2By 11 (a?),

with deg B} = degB,, — 1 < L — 1 = 1. Therefore we can put B} (z) =
b,z + ¢,. We now distinguish 3 cases according to Lemma 12.

FIRST CASE: A,(2) = (1 —a® z)(1 — b*"2) for every large n. We can
suppose that a?” # +b%" for every large n, otherwise (55) holds. We also
have Q(z) = (1 + a®"2)(1 + b*"2) = F,(z). Since the roots of F,(z)
must satisfy the same growth condition as the coefficients of F,(x) (see
[12, Lemma 1.5.4]), a and b are roots of unity. As the terms of degree 3
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must vanish on the right-hand side of (62), we have b, 1 = (ab)?"b,,, which
implies
(63) bn = c(ab)?".
By taking z = ¢=2" and z = b=2" in (
(64) 0= (bpa~ 2" +¢)20 +0*"a”
(65) 0= (bpb2" +¢,)2(14+a* b
Using (63) yields
0= (cb* +¢n)2(a®" +0*") — (cban + Cent1),
0= (ca®" +cp)2(a®" +b*") — (ca?nJr1 + Cna1)-

By subtracting these two equalities, we get ¢ = 0 and therefore b,, = 0 for
every large n. By (64) we now have ¢, 1 = 2(a®" + b*")c,. Therefore there
exists ¢ such that ¢, = ¢2"(a®" — b*"). By taking 2 = 0 in (62), we see that
en = ¢, and (59) holds.

According to Lemma 12, we can now assume that (55) is satisfied, that

is, Ap(z)=1-— a? " 22 or An(z) = (1 —a® z)2

62), we get

727L+1

(bps1a + Cnt1)s

2'n) _ a72n
n _on _on+1
)= b2 (b b 4 cngr)

SECOND CASE: There exists n such that An(z) = 1 — a2"" 22. Then
Aps1(z) = (1 — a2n+1x)2 is impossible, because in this case @, (z) = (1 —
a?""" 22) would not be prime to R,(z) = A, (z). Therefore A, (z) = 1 —
a?"" 22 for every large n, and Q,(xz) =1+ a2"" 22, As the terms of degree

3 must vanish on the right-hand side of (62), we have b, 11 = a2"+1bn, which

implies b, = ca?"" . By taking 2 = a=2" and z = —a~2" in (62), we get
(66) 0= (bna_zn +cp)2 — a?" (bn+1a_2n+1 + Cnt1)s
(67) 0= (=bpa™?" +¢n)2+ a_2n(—bn+1a_2n+l + Cnt1)-

By adding these two equalities, we get 2¢, = a=2" bn+1af2n+1, that is, ¢, =
ca2"/2. If we subtract them, we obtain c¢,+1 = 2b, = 2ca?""" . Hence ¢ = 0,
a contradiction because E,, (x) # 0 for infinitely many n.

THIRD CASE: For every large n, A,(z) = (1 — a®"x)2. Then Q,(z) =
F,(z)=(1+ a2nx)2. As before, we have b, = a2n+1bn, because the right-
hand side of (62) must have degree 2. Therefore b,, = ca®". Replacing x
by a~2" in (62), we obtain
(68) B yi(a
Now differentiating (62), we get

—2e,a?" (1 —a® ) = by (1 + a®" 2)% + 2a*" B¥(2)(1 4+ a* )

— B 1 (%) = 2b 127

_2n+1

) =4a?" B! (a™%").
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If we replace = by a=2" and use (68), we obtain b, = 2a2n+1bn, whence

ca?" =2ca?""” and ¢ = 0, b, = 0. From (68) we get c,41 = 44" ¢,,, that
is, ¢, = c4"a®". For x = 0 in (62), we see that e,, = ¢, and this is (60). The

proof of Theorem 9 is complete.
5.4. Ezxamples involving Fibonacci and Lucas numbers. Let a =

(1—+/5)/2 and 8 = (1+v/5)/2. Then the nth Fibonacci number F,, and
nth Lucas number L,, are written as

Fn _ an _ ﬁn _ an _ (_1)nafn’
a—p a—p3
L,=a"+p"=a"+(-1)"a™".

Let {ar}r>0 and {by}r>0 be sequences in K and Ok respectively. Then

> a > a Oé2k
k k

69 _* _ _—(B-a ,
( ) ; For + by ( >k:1 1+ (ﬁ — Ck)bkCVQk — (an)Q

[e'e] [e'e] ok

ay apo

70 _— = .
(70) kZ::l Lo + by, ; 14 bra?™ + (a?")?

Mignotte [11] proved that Y ;- 1/(k!Fy) is transcendental by using
Schmidt’s theorem on approximations of an algebraic number by algebraic
numbers. Later Mahler [10] proved it without using Schmidt’s theorem and
Loxton and van der Poorten [8] generalized Mahler’s method. Becker and
Tépfer [1] and Nishioka [13] studied the arithmetical nature of the series
(69) and (70) when by = 0 for every k, {ax} is a periodic sequence and
a linear recurrence sequence of algebraic numbers respectively. Duverney,
Kanoko and Tanaka [6] studied the case by = b for every k and {ay} is a
linear recurrence sequence of algebraic numbers.

We have the following:

THEOREM 10. Assume that all ar and by belong to a fized algebraic
number field K, that log ||ak||,log ||bx|| = 0(2%) and that ay, # 0 for infinitely
many k. Let

@0(,’1]) = 2k 2k+1 *°
=1+ (B — a)bpz® —x

If &o(x) is a rational function, then there exist N € N and a € K such that
b, =0 and ar, = a for every k > N.

In particular, Y, ar/(For + by) is algebraic if and only if a = a and
br =0 for every k > N.

Proof. Assume that ®y(z) € K(z). We have Fi(z) = 14 (8 —a)bpz — 2.
Therefore Fy, is not a square and (60) is impossible. Moreover, if (59) holds,

then (wiw2)?" = —1 for every k, which is impossible. Therefore (58) holds
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with r = 2, w? = 1, by = 0 for every large k, Ex(x) = cx and Theorem 10
is proved.

THEOREM 11. Assume that all ap and by belong to a fixed algebraic
number field K, that log ||ax||, log ||bx|| = 0(2%) and that aj, # 0 for infinitely
many k. Let

@0(1}) _ Z apx

ok ok+1
= 14+ bz + 2

If @o(x) is a rational function, then one of the following two conditions is
satisfied.

(i) There exist N € N and a € K such that by = 2 and ar = a4k for
every k > N.
(ii) There exist a constant a, p,q € N, ¢ # 0, and N € N such that

b, = 2cos (2% - %W), ar, = a2 sin (2% - %ﬂ') for every k > N.

In particular, Y po, ax/(Lox + by) is algebraic if and only if (1) or (ii)
holds.

Proof. Assume that ®y(z) € K(z). Here we have Fj(z) = 1 + byx + 2.

Therefore (58) is impossible. If (60) holds, we have w?" =1 for every large
k, and by = 2. Therefore Ej(x) = c4*z, and (i) holds. If (59) holds, we
have w%kw%k = 1 for every k > N. Put w%N = exp(2imp/qp), then w%N =

exp(—2imp/qo) and for k > N,

9 , ,
w%k = exp ( mﬁ 2k> = exp (@ 2’“), wgk = exp (—@ 2k>.
902 q q

Therefore

by, = w%k —|—w§k = 2cos (2’“ . 1377),
q
ap = ch(w%k - w%k) = a2 sin (2’g L 7r).
q

This completes the proof.

COROLLARY. Assume that there exist infinitely many k such that ay, # 0,
andlog |la||,1og ||bk|| = o(2F). If S22, ar/(Lax + by) is algebraic, then {by}
is eventually periodic, |bx| < 2 and ap+1 = 2aiby for every large k.

EXAMPLE 2. Under the assumptions of Theorem 11, Y72, aj/Lox
is transcendental. Moreover if |by| > 2 for infinitely many k, then
> peq ak/(Lax + by) is transcendental.
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