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Parametrizing SLy(Z) and a question of Skolem
by

UMBERTO ZANNIER (Venezia)

Introduction. This paper is a sequel to [Z], where the determinantal
equation was considered

(1) X1 X5 — X3X, = 1.

We were primarily interested in a question raised by Skolem [S, p. 23],
namely: Can all the integral solutions of (1) be obtained from a fixed poly-
nomial solution by letting the variables run through 7.7

Skolem expressed his belief in favour of a negative answer. We showed in
[Z, Thm. 1] that indeed no suitable polynomial solution may exist depend-
ing on three variables at most; actually, we proved an analogous, slightly
stronger, result ([Z, Thm. 2]), valid for the integers in an arbitrary num-
ber field and for algebraic varieties more general than SLs. However, we
also pointed out that the truth of the Generalized Riemann Hypothesis im-
plies the existence of counterexamples to the analogue for Z[v/2] of Skolem’s
belief, with a polynomial depending on five variables.

Now, for a diophantine equation it has been proved natural to consider
not only the solutions in classical integers (of Z or a number field), but
those in S-integers, where S is a finite set of places; in other words, to
allow denominators constructed out only of primes from a given finite set.
In the present paper we show unconditionally that the above question has a
positive answer, contrary to Skolem’s expectation, if we replace Z with the
ring of S-integers in Q, for a suitable finite S. Actually, we shall obtain a
more explicit result, to be stated in a moment.

First, (as in [Z]) we consider the “general” continued fraction with five
partial quotients, namely the expression Yy + ﬁjﬁﬁyﬁ, for variables
Yo,..., Yy If p3s/q3 and ps/qq are the last two convergents we see that equa-
tion (1) is satisfied if we put X1 = Ps3, X2 = ({4, X3 = P4, X4 = (s,
so we obtain a polynomial solution in five variables, which we denote by
f = (p3,q4,p4,q3) € Z[Yo, ..., Ys)*; we shall show that it does the job. (As
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remarked in [Sz] however, no polynomial solution constructed in this way
with any number of partial quotients can give all solutions of (1) over Z by
specializing the Y; in Z.)

As usual, for a finite set S of prime numbers, we define the ring of
S-integers (in Q) by

OS:{er:HbeN,lebeZ}.
les
With this notation, we shall prove the following

THEOREM. Let S = {2,3,1}, for a prime l =1 (mod4). Then, given a
solution x = (1, T2,23,74) € O% of (1), there exists y = (yo,...,ys) € OF
such that f(y) = x.

The proofs in [Z] implicitly show that no polynomial solution in three
variables may be found with the same property, no matter the choice of the
finite set S. It would be interesting to know whether four variables suffice
for a similar example. We believe this is not the case, but have no proof.
However, it may be shown that the polynomial solution obtained with four
partial quotients indeed does not work.

Proofs. In what follows .S will denote a set of primes as in the Theorem.
We start by inverting the equation f(Y) = X, where Y = (Yp,...,Ys) (and
X satisfies (1)). Let p,/q, be the convergents to the continued fraction
[Yo,...,Ys], s0 £(Y) = (p3(Y),q4(Y),ps(Y),q3(Y)). From the well-known
formulas py = Yyps + p2, @4 = Yaqs + g2 we first find that po = X35 — Y3 X3
and g2 = Xo—Y, X,. We use these formulas in p3 = Y3po+p1, g3 = Y3q2+q1
to obtain pP1 = (1+}%Y4)X1 —Y3X3, q1 = (1+Y3Y4)X4—Y3X2. But q1 = Yl,
whence

(2) Y = (1 +Y3Y,) Xy — Y3Xo.
Also,
(3) YoYVi=pi -1, @=Yq +1=Y2Y; +1.

So, given a value x of X, we may choose Y5 = y3, Yy = y4 with the only re-
striction that the specialization y; of Y7, as defined by (2), becomes nonzero.
Then we may put, following (3) (1),

pr—1  (I4+ysya)rr —ysws — 1 @ —1  xo—1yuwy—1
yo = = y y2 = = .
Y1 Y Y1 U
These calculations may be reversed: if x satisfies (1) and y is given by the

above formulas, we shall find that f(y) = x. Suppose now that x € O%. In

(1) The formula for yg in [Z] is incorrect, but the error does not affect the arguments
therein.
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order that a vector y so obtained lies in O it will be sufficient that ys,ys €
Og and that the value for y; found from (2) lies in OF, the multiplicative
group of S-units in Q. In other words, to prove the Theorem it suffices to
verify the following

CLAIM. For all solutions x € O% of (1), there exist ys,ys € Og such
that (1 + ysya)xs — yszo € OF.

The strategy will be as follows. We need that x4 + y3(—x2 +yax4) € OF.
We then look for an S-integer @@ of the form —xs 4+ y4x4 such that the
reduction of O§ modulo @ contains x4. It seems that the simplest way to
ensure this is to find @ such that the above-mentioned reduction contains
every class coprime to Q.

A crucial point in this program will be the following lemma:

FUNDAMENTAL LEMMA. Let q,r € Z, r = 1 (mod4), q coprime to r
and to all the primes in S. There exist prime numbers pi,ps & S with the
following properties:

(i) pip2 = r (mod4g);
(ii) the reduction of O% modulo p1ps equals the whole (Z/(pip2))*.

Of course the real restriction is represented by (ii). For this we shall
mimic a method used first by Gupta and Ram Murty [G-RM] and later by
Heath-Brown [HB|, to deal with Artin’s conjecture for primitive roots.

To construct the primes pi,ps we shall appeal to a rather deep result
from sieve theory, appearing as Lemma 1 in [HB]. We state here just the
corollary we need:

LEMMA 2. Let u,v € Z, u = 3 (mod4), (u,v) = ((u—1)/2,v) = 1.
There exists a > 1/4 with the following property: Let P be the set of prime
numbers p such that p = u (modwv) and all prime factors of (p —1)/2 ex-
ceed p®. Then the number of primes in P up to X is > X/log2 X.

This result is the special case K = 2 of Lemma 1 in [HB], forgetting the
further conclusion given there, about the number of prime factors of p — 1.
(The condition “16|v” therein is immaterial here.)

We shall use this lemma similarly to the above-mentioned authors, to
show the existence of many primes with a primitive root in O%. The next
lemma is a first step in this direction; it shows that there are not many
primes p such that the reduction of O% modulo p is small.

LEMMA 3. Let X be a set of 3 distinct prime numbers and let 0 < 6 < 1.
Then the number of primes p < X such that the reduction of O3 modulo p
has less than p° elements is < X*9/3.
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Proof. Put ¥ = {ly,ls,l3}. For a positive integer L we consider the
rational number

or =[] (525 - ),

acBy,

where a = (a1, ag,a3) € Z3 and where By, denotes the cube [—L, L] de-
prived of the origin. Plainly, ¢y, is a nonzero rational number, whose denom-
inator divides (I;lal3)5)",

Let p < (L + 1)3/‘S be a prime as in the statement; then the order of
O% modulo p is < p? < (L + 1), Then the (L + 1)% numbers 1{*152153, for
0 < a; < L, cannot be pairwise incongruent modulo p. We deduce that p
divides the numerator of gr. If ¢(X) denotes the number of such primes up
to X we then find

20D < (11dals) P g |
On the other hand, we easily see that log |or| < L*, proving that
o((L+1)%°) « L.
The conclusion follows at once by choosing L as the largest integer < X9/3,

Proof of the Fundamental Lemma. Recall that (g,6r) = 1. There exists
a positive integer a such that a(a —1)(a — r) is coprime to ¢; in fact, by the
Chinese Theorem, it suffices to argue assuming that ¢ is a power of a prime
> 3, in which case the result is clear. Let then b be an integer = 3 (mod4)
and = a (mod q). In particular, (b,4¢) = 1, so we may pick an integer ¢ = 3
(mod 4) such that be = r (mod 4q).

We start by constructing p;. We pick a quadratic nonresidue o (mod 1)
and we consider the arithmetic progression modulo 4¢l defined by

(4) x =b (mod4q), x=o (modl).

(This set is indeed not empty, since ¢ is coprime to the elements of S
by assumption.) Write this progression as A + Z(4ql). Then the GCD’s
(A,4ql) = 1 and (A — 1,4ql) = 2, as follows by considering separately the
moduli 4q, [ (recall that (b(b— 1),4q) = 2 by construction).

We apply Lemma 2 with u = A, v = 4ql; we have just verified that our
construction satisfies the assumptions of the lemma. We find that the set
of prime numbers with those properties contains > X/ log2 X elements up
to X.

We further appeal to Lemma 3, with § =1 — « and X = S. We deduce
that the number of primes p < X, such that the reduction of O§ modulo p
has order < p'~?, is « X(1—)4/3

Therefore, since 1 — a < 3/4, throwing away these primes from the set
provided by Lemma 2, we are left with an infinite set. Let p; be a large prime
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in this set; thus we may assume that p; is not in S, has the properties of
Lemma 2 (with u = A, v = 4¢l) and the reduction of O% modulo p; contains
at least pi_a elements. On the other hand, this reduction has order dividing
p1—1, so it is of the form (p; —1)/t, where t is a divisor of p; — 1. Necessarily
we must have t = 1 or ¢t = 2, since p; = 3 (mod4) and since every prime
other than 2 dividing p; — 1 is > p{. But t = 2 is impossible, since O%
contains a quadratic nonresidue of p; (e.g. —1, or even [). Therefore the
reduction of O modulo p; equals F}, .

To construct p, we argue similarly; we now consider the progression
defined by

x =c (mod4q), x=-1(modl).

Writing this progression as B+ Z(4ql), we contend that we may apply Lem-
ma 2 with u = B, v = 4ql. In fact, (u,v) = 1 and also ((u —1)/2,v) = 1.
This is because u — 1 =c—1= (r — b)b~! (mod4q) and (r — b) is coprime
to ¢; also, u = ¢ = 3 (mod 4). Now, as before, with the aid of Lemma 3 we
may find a (large) prime ps in the progression such that the reduction of O
modulo py equals the whole F7 .

Further, by choosing py > pf, we may also assume that (p;—1, pa—1) = 2;
in fact, each factor of po — 1 larger than 2 is automatically > p;/ ‘s p1, by
Lemma 2.

Note that p1ps = be = r (mod4q), so (i) of the Fundamental Lemma is
verified.

As to (ii), it is “almost” verified, since the reduction of OF is as big as
possible modulo both p; and po. We show that it is in fact as big as possible
modulo pips.

Let G C (Z/(pip2))* be the reduction of O% modulo pips. There is a
homomorphism A : G — {+1}? given by g — ((g|p1), (g/p2)) (Legendre
symbols).

We have (p1]l) = (¢|l) = —1 by construction, whence by quadratic
reciprocity (recall [ = 1 (mod4)) we also have (I|p;) = —1. Similarly,
(llp2) = (p2]l) = (—=1]1) = 1, so A(I) = (=1,1). But p; = py = 3 (mod4),
so A(—1) = (—=1,—1). Therefore A is surjective, whence the order of G is
divisible by 4. But our construction proved that the reduction of G modulo
pi contains Fy for ¢ = 1,2, so the order of G is divisible by both p; — 1 and
p2 — 1. Since (p; — 1,p2 — 1) = 2, we deduce that the order of G is divisible
by (p1 — 1)(p2 — 1) = @(p1p2), concluding the proof of the Fundamental
Lemma.

Now we may easily prove the Claim (and hence the Theorem) as follows.
First, if o = 0, equation (1) implies that 4 € O§ and we may just
choose y, = 0. Similarly if x4 = 0; therefore, we suppose x2x4 # 0.



336 U. Zannier

Fori = 2,4, write x; = 2% (A;/A)z; where a; € Z, A;, A are odd integers
in O% NZ and where z; are positive integers coprime to every prime in S.
This is plainly possible. Moreover, by multiplying As, Ay and A by 3 if
necessary, we may assume that Aszo =3 (mod4).

Since Aj is divisible only by primes in S, it is coprime to z4. We also have
(22,24) = 1, because of equation (1) and the fact that no prime dividing zo
is in S. Hence we may apply the Fundamental Lemma with r = —Agzs,
q = z4, obtaining the existence of primes p1, ps satisfying (i) and (ii) of that
lemma. By (i) we may write, for some m € Z,

(5) p1p2 = —Agzs + 4mzy.

Now note that, again, A, is divisible only by primes in S, while py,ps & S.
Also, z4 cannot be divisible by py or ps, for otherwise, by (5), z4 would not
be coprime to Aszs.

Hence, since by (ii) the reduction of Of modulo pips contains every
invertible class, there exists u € O% such that u = 24 Az4 (mod p1p2) (the
congruence holding in Og). In other words, we may write

(6) u=2"Ayzy +tp1pa = 2"* Ayzy + t(— A2z + 4mzy),
where t € Og. Dividing (6) by A we obtain

u a m
(7) Z = x4 + t<—$22 244 a1 A, 1‘4).

Now put y3 =127 € Og, ys = 22+“2_“4Aﬂ4 € Og. Equation (7) reads

u
AT + y3(—72 + yawa) = (1 + y3ya) T4 — Y372

Since the left side is in OF%, we have the conclusion of the Claim.

REMARK. If one has an explicit version of Lemma 2 at one’s disposal, it
becomes possible to quantify the Theorem; namely, given a solution x € Oé
of (1), to estimate the height of a suitable vector y as in the conclusion.
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