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Parametrizing SL2(Z) and a question of Skolem
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Introduction. This paper is a sequel to [Z], where the determinantal
equation was considered

(1) X1X2 −X3X4 = 1.

We were primarily interested in a question raised by Skolem [S, p. 23],
namely: Can all the integral solutions of (1) be obtained from a fixed poly-
nomial solution by letting the variables run through Z?

Skolem expressed his belief in favour of a negative answer. We showed in
[Z, Thm. 1] that indeed no suitable polynomial solution may exist depend-
ing on three variables at most; actually, we proved an analogous, slightly
stronger, result ([Z, Thm. 2]), valid for the integers in an arbitrary num-
ber field and for algebraic varieties more general than SL2. However, we
also pointed out that the truth of the Generalized Riemann Hypothesis im-
plies the existence of counterexamples to the analogue for Z[

√
2] of Skolem’s

belief, with a polynomial depending on five variables.
Now, for a diophantine equation it has been proved natural to consider

not only the solutions in classical integers (of Z or a number field), but
those in S-integers, where S is a finite set of places; in other words, to
allow denominators constructed out only of primes from a given finite set.
In the present paper we show unconditionally that the above question has a
positive answer, contrary to Skolem’s expectation, if we replace Z with the
ring of S-integers in Q, for a suitable finite S. Actually, we shall obtain a
more explicit result, to be stated in a moment.

First, (as in [Z]) we consider the “general” continued fraction with five
partial quotients, namely the expression Y0 + 1

Y1+
1

Y2+
1

Y3+
1
Y4

, for variables
Y0, . . . , Y4. If p3/q3 and p4/q4 are the last two convergents we see that equa-
tion (1) is satisfied if we put X1 = p3, X2 = q4, X3 = p4, X4 = q3,
so we obtain a polynomial solution in five variables, which we denote by
f = (p3, q4, p4, q3) ∈ Z[Y0, . . . , Y4]4; we shall show that it does the job. (As
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remarked in [Sz] however, no polynomial solution constructed in this way
with any number of partial quotients can give all solutions of (1) over Z by
specializing the Yi in Z.)

As usual, for a finite set S of prime numbers, we define the ring of
S-integers (in Q) by

OS =
{
x ∈ Q : ∃b ∈ N, x

∏

l∈S
lb ∈ Z

}
.

With this notation, we shall prove the following

Theorem. Let S = {2, 3, l}, for a prime l ≡ 1 (mod 4). Then, given a
solution x = (x1, x2, x3, x4) ∈ O4

S of (1), there exists y = (y0, . . . , y4) ∈ O5
S

such that f(y) = x.

The proofs in [Z] implicitly show that no polynomial solution in three
variables may be found with the same property, no matter the choice of the
finite set S. It would be interesting to know whether four variables suffice
for a similar example. We believe this is not the case, but have no proof.
However, it may be shown that the polynomial solution obtained with four
partial quotients indeed does not work.

Proofs. In what follows S will denote a set of primes as in the Theorem.
We start by inverting the equation f(Y) = X, where Y = (Y0, . . . , Y4) (and
X satisfies (1)). Let pn/qn be the convergents to the continued fraction
[Y0, . . . , Y4], so f(Y) = (p3(Y), q4(Y), p4(Y), q3(Y)). From the well-known
formulas p4 = Y4p3 + p2, q4 = Y4q3 + q2 we first find that p2 = X3 − Y4X1

and q2 = X2−Y4X4. We use these formulas in p3 = Y3p2 +p1, q3 = Y3q2 +q1

to obtain p1 = (1+Y3Y4)X1−Y3X3, q1 = (1+Y3Y4)X4−Y3X2. But q1 = Y1,
whence

(2) Y1 = (1 + Y3Y4)X4 − Y3X2.

Also,

(3) Y0Y1 = p1 − 1, q2 = Y2q1 + 1 = Y2Y1 + 1.

So, given a value x of X, we may choose Y3 = y3, Y4 = y4 with the only re-
striction that the specialization y1 of Y1, as defined by (2), becomes nonzero.
Then we may put, following (3) (1),

y0 =
p1 − 1
y1

=
(1 + y3y4)x1 − y3x3 − 1

y1
, y2 =

q2 − 1
y1

=
x2 − y4x4 − 1

y1
.

These calculations may be reversed: if x satisfies (1) and y is given by the
above formulas, we shall find that f(y) = x. Suppose now that x ∈ O4

S . In

(1) The formula for y0 in [Z] is incorrect, but the error does not affect the arguments
therein.
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order that a vector y so obtained lies in O5
S it will be sufficient that y3, y4 ∈

OS and that the value for y1 found from (2) lies in O∗S , the multiplicative
group of S-units in Q. In other words, to prove the Theorem it suffices to
verify the following

Claim. For all solutions x ∈ O4
S of (1), there exist y3, y4 ∈ OS such

that (1 + y3y4)x4 − y3x2 ∈ O∗S.

The strategy will be as follows. We need that x4 +y3(−x2 +y4x4) ∈ O∗S .
We then look for an S-integer Q of the form −x2 + y4x4 such that the
reduction of O∗S modulo Q contains x4. It seems that the simplest way to
ensure this is to find Q such that the above-mentioned reduction contains
every class coprime to Q.

A crucial point in this program will be the following lemma:

Fundamental Lemma. Let q, r ∈ Z, r ≡ 1 (mod 4), q coprime to r
and to all the primes in S. There exist prime numbers p1, p2 6∈ S with the
following properties:

(i) p1p2 ≡ r (mod 4q);
(ii) the reduction of O∗S modulo p1p2 equals the whole (Z/(p1p2))∗.

Of course the real restriction is represented by (ii). For this we shall
mimic a method used first by Gupta and Ram Murty [G-RM] and later by
Heath-Brown [HB], to deal with Artin’s conjecture for primitive roots.

To construct the primes p1, p2 we shall appeal to a rather deep result
from sieve theory, appearing as Lemma 1 in [HB]. We state here just the
corollary we need:

Lemma 2. Let u, v ∈ Z, u ≡ 3 (mod 4), (u, v) = ((u− 1)/2, v) = 1.
There exists α > 1/4 with the following property : Let P be the set of prime
numbers p such that p ≡ u (mod v) and all prime factors of (p− 1)/2 ex-
ceed pα. Then the number of primes in P up to X is � X/log2 X.

This result is the special case K = 2 of Lemma 1 in [HB], forgetting the
further conclusion given there, about the number of prime factors of p− 1.
(The condition “16 | v” therein is immaterial here.)

We shall use this lemma similarly to the above-mentioned authors, to
show the existence of many primes with a primitive root in O∗S . The next
lemma is a first step in this direction; it shows that there are not many
primes p such that the reduction of O∗S modulo p is small.

Lemma 3. Let Σ be a set of 3 distinct prime numbers and let 0 < δ < 1.
Then the number of primes p ≤ X such that the reduction of O∗Σ modulo p
has less than pδ elements is � X4δ/3.
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Proof. Put Σ = {l1, l2, l3}. For a positive integer L we consider the
rational number

%L :=
∏

a∈BL
(la1

1 la2
2 la3

3 − 1),

where a = (a1, a2, a3) ∈ Z3 and where BL denotes the cube [−L,L]3 de-
prived of the origin. Plainly, %L is a nonzero rational number, whose denom-
inator divides (l1l2l3)(2L)4

.
Let p ≤ (L + 1)3/δ be a prime as in the statement; then the order of

O∗Σ modulo p is < pδ ≤ (L+ 1)3. Then the (L+ 1)3 numbers la1
1 la2

2 la3
3 , for

0 ≤ ai ≤ L, cannot be pairwise incongruent modulo p. We deduce that p
divides the numerator of %L. If ϕ(X) denotes the number of such primes up
to X we then find

2ϕ((L+1)3/δ) ≤ (l1l2l3)(2L)4 |%L|.
On the other hand, we easily see that log |%L| � L4, proving that

ϕ((L+ 1)3/δ)� L4.

The conclusion follows at once by choosing L as the largest integer ≤ Xδ/3.

Proof of the Fundamental Lemma. Recall that (q, 6r) = 1. There exists
a positive integer a such that a(a− 1)(a− r) is coprime to q; in fact, by the
Chinese Theorem, it suffices to argue assuming that q is a power of a prime
> 3, in which case the result is clear. Let then b be an integer ≡ 3 (mod 4)
and ≡ a (mod q). In particular, (b, 4q) = 1, so we may pick an integer c ≡ 3
(mod 4) such that bc ≡ r (mod 4q).

We start by constructing p1. We pick a quadratic nonresidue σ (mod l)
and we consider the arithmetic progression modulo 4ql defined by

(4) x ≡ b (mod 4q), x ≡ σ (mod l).

(This set is indeed not empty, since q is coprime to the elements of S
by assumption.) Write this progression as A + Z(4ql). Then the GCD’s
(A, 4ql) = 1 and (A − 1, 4ql) = 2, as follows by considering separately the
moduli 4q, l (recall that (b(b− 1), 4q) = 2 by construction).

We apply Lemma 2 with u = A, v = 4ql; we have just verified that our
construction satisfies the assumptions of the lemma. We find that the set
of prime numbers with those properties contains � X/log2 X elements up
to X.

We further appeal to Lemma 3, with δ = 1− α and Σ = S. We deduce
that the number of primes p ≤ X, such that the reduction of O∗S modulo p
has order < p1−α, is � X(1−α)4/3.

Therefore, since 1 − α < 3/4, throwing away these primes from the set
provided by Lemma 2, we are left with an infinite set. Let p1 be a large prime
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in this set; thus we may assume that p1 is not in S, has the properties of
Lemma 2 (with u = A, v = 4ql) and the reduction of O∗S modulo p1 contains
at least p1−α

1 elements. On the other hand, this reduction has order dividing
p1−1, so it is of the form (p1−1)/t, where t is a divisor of p1−1. Necessarily
we must have t = 1 or t = 2, since p1 ≡ 3 (mod 4) and since every prime
other than 2 dividing p1 − 1 is ≥ pα1 . But t = 2 is impossible, since O∗S
contains a quadratic nonresidue of p1 (e.g. −1, or even l). Therefore the
reduction of O∗S modulo p1 equals F∗p1

.
To construct p2 we argue similarly; we now consider the progression

defined by
x ≡ c (mod 4q), x ≡ −1 (mod l).

Writing this progression as B+Z(4ql), we contend that we may apply Lem-
ma 2 with u = B, v = 4ql. In fact, (u, v) = 1 and also ((u− 1)/2, v) = 1.
This is because u− 1 ≡ c− 1 ≡ (r − b)b−1 (mod 4q) and (r − b) is coprime
to q; also, u ≡ c ≡ 3 (mod 4). Now, as before, with the aid of Lemma 3 we
may find a (large) prime p2 in the progression such that the reduction of O∗S
modulo p2 equals the whole F∗p2

.
Further, by choosing p2 > p4

1, we may also assume that (p1−1, p2−1) = 2;
in fact, each factor of p2 − 1 larger than 2 is automatically > p

1/4
2 > p1, by

Lemma 2.
Note that p1p2 ≡ bc ≡ r (mod 4q), so (i) of the Fundamental Lemma is

verified.
As to (ii), it is “almost” verified, since the reduction of O∗S is as big as

possible modulo both p1 and p2. We show that it is in fact as big as possible
modulo p1p2.

Let G ⊂ (Z/(p1p2))∗ be the reduction of O∗S modulo p1p2. There is a
homomorphism λ : G → {±1}2 given by g 7→ ((g|p1), (g|p2)) (Legendre
symbols).

We have (p1|l) = (σ|l) = −1 by construction, whence by quadratic
reciprocity (recall l ≡ 1 (mod 4)) we also have (l|p1) = −1. Similarly,
(l|p2) = (p2|l) = (−1|l) = 1, so λ(l) = (−1, 1). But p1 ≡ p2 ≡ 3 (mod 4),
so λ(−1) = (−1,−1). Therefore λ is surjective, whence the order of G is
divisible by 4. But our construction proved that the reduction of G modulo
pi contains F∗pi for i = 1, 2, so the order of G is divisible by both p1 − 1 and
p2 − 1. Since (p1 − 1, p2 − 1) = 2, we deduce that the order of G is divisible
by (p1 − 1)(p2 − 1) = ϕ(p1p2), concluding the proof of the Fundamental
Lemma.

Now we may easily prove the Claim (and hence the Theorem) as follows.
First, if x2 = 0, equation (1) implies that x4 ∈ O∗S and we may just

choose y4 = 0. Similarly if x4 = 0; therefore, we suppose x2x4 6= 0.
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For i = 2, 4, write xi = 2ai(∆i/∆)zi where ai ∈ Z, ∆i,∆ are odd integers
in O∗S ∩ Z and where zi are positive integers coprime to every prime in S.
This is plainly possible. Moreover, by multiplying ∆2,∆4 and ∆ by 3 if
necessary, we may assume that ∆2z2 ≡ 3 (mod 4).

Since ∆2 is divisible only by primes in S, it is coprime to z4. We also have
(z2, z4) = 1, because of equation (1) and the fact that no prime dividing z2

is in S. Hence we may apply the Fundamental Lemma with r = −∆2z2,
q = z4, obtaining the existence of primes p1, p2 satisfying (i) and (ii) of that
lemma. By (i) we may write, for some m ∈ Z,

(5) p1p2 = −∆2z2 + 4mz4.

Now note that, again, ∆4 is divisible only by primes in S, while p1, p2 6∈ S.
Also, z4 cannot be divisible by p1 or p2, for otherwise, by (5), z4 would not
be coprime to ∆2z2.

Hence, since by (ii) the reduction of O∗S modulo p1p2 contains every
invertible class, there exists u ∈ O∗S such that u ≡ 2a4∆4z4 (mod p1p2) (the
congruence holding in OS). In other words, we may write

(6) u = 2a4∆4z4 + tp1p2 = 2a4∆4z4 + t(−∆2z2 + 4mz4),

where t ∈ OS . Dividing (6) by ∆ we obtain

(7)
u

∆
= x4 + t

(
−x22−a2 + 4

m

2a4∆4
x4

)
.

Now put y3 = t2−a2 ∈ OS , y4 = 22+a2−a4 m
∆4
∈ OS . Equation (7) reads

u

∆
= x4 + y3(−x2 + y4x4) = (1 + y3y4)x4 − y3x2.

Since the left side is in O∗S , we have the conclusion of the Claim.

Remark. If one has an explicit version of Lemma 2 at one’s disposal, it
becomes possible to quantify the Theorem; namely, given a solution x ∈ O4

S

of (1), to estimate the height of a suitable vector y as in the conclusion.
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