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On the diophantine equation
x(x− 1). . . (x− (m− 1)) = λy(y − 1). . . (y − (n− 1)) + l
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Csaba Rakaczki (Debrecen)

Dedicated to the memory of Professor Péter Kiss

1. Introduction. Many diophantine problems lead to equations of the
form

f(x) = g(y),(1)

where f and g are given polynomials with rational coefficients and x and
y are unknown integers. In the special case f(x) = yn with integer n ≥ 2,
effective results were proved by several authors (see e.g. [3], [32], [37], [11],
[17] and the references given there). Their proofs are based upon Baker’s
method. Extending some earlier works of Davenport, Lewis and Schinzel
[13], Schinzel [30] and Fried [15], [16], Bilu and Tichy [7] gave an explicit
finiteness criterion for (1). For certain applications of these results we refer
to [5], [6], [10].

The title equation with l = 0 as well as equation (2) below were studied
by several authors, including Saradha and Shorey [23]–[25] and Saradha,
Shorey and Tijdeman [26]–[29]. For a survey of recent results we refer to [31].
Using an algebraic-geometrical approach, Beukers, Shorey and Tijdeman [4]
proved the following

Theorem A. Let m and n be integers with 1 < m ≤ n. Let d1 and d2
be positive rational numbers, with d1 6= d2 if m = n. The equation

x(x+ d1) . . . (x+ (m− 1)d1) = y(y + d2) . . . (y + (n− 1)d2)(2)
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admits only finitely many integral solutions x, y except for the infinite class
of solutions x = y2 + 3d2y, −2d2

2 − 3d2y − y2 when m = 2, n = 4 and
d1 = 2d2

2. Moreover , the equation admits infinitely many rational solutions
x, y when (m,n) = (2, 2), (2, 3), (2, 4), (3, 3) and m = 2, n = 6, d1 = 15d3

2/4.
In all other cases there are only finitely many rational solutions.

In [4], the authors also established the following

Theorem B. Let

f(x) = x(x− 1) . . . (x− (m− 1)), g(y) = λy(y − 1) . . . (y − (n− 1)),

where m,n ∈ N with m ≤ n and λ ∈ Q with λ 6= 0. Then equation (1) has
only finitely many integer solutions apart from the following cases:

• m = n, λ = 1 or m = n is odd , λ = −1;
• (m,n) = (2, 2); (2, 4) and λ = 1/4.

Moreover , equation (1) has only finitely many rational solutions except the
above cases and the following ones:

• m = n = 4, λ = − 9
16 ,−16

9 ;
• (m,n) = (2, 3); (3, 3); (2, 4) and λ 6= 1

4 ,−4
9 ; (2, 6) and λ = 16

225 .

In the proofs of Theorems A and B the main part was the characteri-
zation of the corresponding polynomials f(x) − g(y) which are irreducible
over C and for which the curves f(x) − g(y) = 0 have genus zero or one,
respectively. Then the theorems of Siegel [33] and Faltings [14] implied the
finiteness of the number of integer and rational solutions, respectively.

The purpose of this paper is to extend Theorems A and B to the inho-
mogeneous case, i.e. to the equation

x(x+ d1) . . . (x+ (m− 1)d1) = λy(y + d2) . . . (y + (n− 1)d2) + l(3)

in integers x, y and, more generally, in rationals x, y, where d1, d2 are positive
rational numbers or d1 = d2 = −1, and λ, l ∈ Q with λ 6= 0 (cf. Theorems 2
and 3).

An important special case of (3) is the combinatorial diophantine equa-
tion

a

(
x

m

)
= b

(
y

n

)
+ k in integers x ≥ m, y ≥ n,(4)

where a, b are non-zero integers, and k,m, n are integers with 1 < m ≤ n.
For k = 0 and l = 0, d1 = d2 = −1, and for various special values of the
parameters m,n, a, b and m,n, λ, respectively, all the integer solutions of (4)
and (3) were given e.g. in [1], [8], [12], [18], [20], [21], [22], [35], [36], [38],
[39]. In the trivial case m = n, a = b and k = 0, equation (4) has obviously
infinitely many solutions. In 1988, Kiss [19] showed that if p is a given odd
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prime, then the equation (
x

p

)
=
(
y

2

)

has only finitely many integer solutions x ≥ p, y ≥ 2 which can be effectively
determined. In 1991, this was generalized by Brindza [9] to the case when
p ≥ 3 is an arbitrary but fixed integer.

As an application of our Theorems 2, 3, we give a general finiteness result
(cf. Theorem 1) for equation (4), which includes, in an ineffective form, the
above-quoted results of [19] and [9] as a special case.

Our main results (cf. Theorems 1 to 3) on rational and integer solutions
are formulated in Section 2. In Section 3, we characterize those polynomials
F (x, y) = x(x − 1) . . . (x − (m − 1)) − λy(y − 1) . . . (y − (n − 1)) − l which
are reducible in C[x, y] (cf. Theorem 4). Further, when F is reducible, we
describe those cases when F (x, y) = 0 has infinitely many rational or integer
solutions (cf. Propositions 1 to 5). Section 4 is devoted to the study of curves
C : x(x− 1) . . . (x− (m− 1)) = λy(y − 1) . . . (y − (n− 1)) + l having genus
0 or 1 (cf. Theorems 5, 6). The proofs can be found in Sections 5 to 7. To
prove Theorems 4, 5 and 6, we generalize the method of proof of [4] from
l = 0 to arbitrary l ∈ Q. Finally, as in [4], we also combine our Theorems 4
to 6 with results of Siegel and Faltings to establish our Theorems 2, 3 and 1.

2. The main results. Our Theorem 1 provides a characterization of
those pairs (m,n) and parameters a, b, k for which equation (4) may have
infinitely many solutions.

Theorem 1. Let a, b, k, m, n be integers with a 6= 0, b 6= 0 and 1 <
m ≤ n. Apart from the cases:

1) m = n, a = b, k = 0;
2) (m,n) = (2, 2);
3) (m,n) = (2, 4) and (24k + 3a)/b = 1 or − 9

16 ;
4) (m,n) = (4, 4) and (24k + a)/b = 1

(4) has only finitely many integer solutions. Further , for each pair (m,n)
listed in 2) to 4), the parameters a, b and k can be chosen so that (4) has
infinitely many integer solutions.

Our Theorem 1 includes as special cases the finiteness results on equation
(4) mentioned in the Introduction.

Theorem 1 is a simple consequence of

Theorem 2. Let

f(x) = x(x− 1) . . . (x− (m− 1)), g(y) = λy(y − 1) . . . (y − (n− 1)) + l,
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where m,n ∈ N with m ≤ n and λ, l ∈ Q with λ 6= 0. Then equation (1) has
only finitely many integer solutions apart from the following cases:

1) m = n and λ = 1, l = 0 or m = n is odd , λ = −1, l = 0;
2) (m,n) = (2, 2);
3) (m,n) = (2, 4), 4λ− 4l = 1 or 9λ+ 16l = −4;
4) (m,n) = (4, 4), λ− l = 1.

Moreover , equation (1) has only finitely many rational solutions except for
cases 1) to 4) and the following ones:

5) (m,n) = (2, 3);
6) (m,n) = (2, 4), 9λ+ 16l 6= −4;
7) (m,n) = (2, 6), −225

64 λ+ l = −1
4 ;

8) (m,n) = (3, 3);
9) m = n = 4, −λ+ l = 9

16 and l 6= − 7
16 , or 9

16λ+ l = −1 and l 6= − 7
16 .

Further , for each pair (m,n) listed above, the parameters λ, l can be given
in infinitely many ways such that equation (1) has infinitely many solutions
x, y.

It is easy to check that for l = 0, Theorem 2 yields Theorem B.

The following result is an inhomogeneous generalization of Theorem A.

Theorem 3. Let d1 and d2 be positive rational numbers, λ̃ ∈ Q \ {0},
l̃ ∈ Q. Then the equation

x(x+ d1) . . . (x+ (m− 1)d1) = λ̃y(y + d2) . . . (y + (n− 1)d2) + l̃,(5)

where m,n ∈ N with m ≤ n, has only finitely many integer and rational
solutions, respectively , apart from the exceptional cases listed in Theorem 2
with

λ = (−1)m+nλ̃
dn2
dm1

, l = (−1)m
l̃

dm1
.

3. Study of irreducibility. The next results will be very important
in our proofs. The first one describes those cases in which the polynomial
x(x − 1) . . . (x − (m − 1)) − λy(y − 1) . . . (y − (n − 1)) − l is reducible in
C[x, y]. In Theorem 4 we deal with the more general situation when λ, l are
not necessarily rational.

Theorem 4. Let m and n be positive integers with m ≤ n and let l ∈ C,
λ ∈ C\{0}. If F (x, y) = x(x−1) . . . (x−(m−1))−λy(y−1) . . . (y−(n−1))−l
is reducible in C[x, y], then one of the following conditions holds:

1) m = n, λ = 1, l = 0, in which case x− y is a factor of F (x, y);
2) m = n is odd , λ = −1, l = 0, in which case x+ y −m+ 1 is a factor

of F (x, y);
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3) (m,n) = (2, 2), λ− 4l = 1, in which case

F (x, y) = 1
4(2x− 2Ay + A− 1)(2x+ 2Ay − A− 1) where A =

√
4l + 1;

4) (m,n) = (2, 4), 4λ− 4l = 1, in which case

F (x, y) = 1
4(2x+ 2Ay2 − 6Ay + 2A− 1)(2x− 2Ay2 + 6Ay − 2A− 1)

where A =
√
l + 1/4;

5) (m,n) = (4, 4), λ− l = 1, in which case

F (x, y) = (x2 − 3x+ Ay2 − 3Ay + A+ 1)(x2 − 3x− Ay2 + 3Ay − A+ 1)

where A =
√
l + 1;

6) (m,n) = (4, 4), λ = −1, l = − 7
16 in which case

F (x, y) =
(
x2 −

√
2xy −

(
3− 3

2

√
2
)
x+ y2 −

(
3− 3

2

√
2
)
y + 13

4 − 9
4

√
2
)

×
(
x2 +

√
2xy −

(
3 + 3

2

√
2
)
x+ y2 −

(
3 + 3

2

√
2
)
y + 13

4 + 9
4

√
2
)
;

7) (m,n) = (6, 6), λ = −1, l = − 320
27 in which case

F (x, y) =
(
y2 − 5y + x2 − 5x+ 20

3

)(
y4 − 10y3 − x2y2 + 5xy2 + 85

3 y
2

+ 5x2y − 25xy − 50
3 y + x4 − 10x3 + 85

3 x
2 − 50

3 x+ 16
9

)
.

In [4, Theorem 2.1], Beukers, Shorey and Tijdeman characterized the
polynomials

x(x+ 1) . . . (x+m− 1)− λy(y + 1) . . . (y + n− 1)

with λ ∈ C\{0} which are reducible in C[x, y]. For λ ∈ C\{0}, our Theorem 4
is an extension of Theorem 2.1 of [4] to the inhomogeneous case.

In the next propositions we consider those cases 3)–7) of Theorem 4
when λ, l ∈ C with λ 6= 0 and the polynomial F (x, y) is reducible in C[x, y].
In these cases we give necessary and sufficient conditions for F (x, y) = 0 to
have infinitely many rational or integer points, respectively.

Proposition 1. The equation
1
4(2x− 2Ay + A− 1)(2x+ 2Ay − A− 1) = 0,

where A =
√

4l + 1, l ∈ C, has infinitely many rational solutions x, y if and
only if A ∈ Q. Further , there are infinitely many integer solutions x, y if
and only if A =

√
4l + 1 = c/d with relatively prime, odd integers c, d.

Proposition 2. The equation
1
4(2x+ 2Ay2 − 6Ay + 2A− 1)(2x− 2Ay2 + 6Ay − 2A− 1) = 0,

where A =
√
l + 1/4, l ∈ C, has infinitely many rational solutions x, y if

and only if A ∈ Q. Moreover , there are infinitely many integer solutions if
and only if A = c/d with coprime integers c, d such that d is even and the
congruence 2u2 − 6u+ 2 ≡ 0 mod d is solvable.
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Proposition 3. The equation

(x2 − 3x+Ay2 − 3Ay + A+ 1)(x2 − 3x− Ay2 + 3Ay − A+ 1) = 0,

where A =
√
l + 1, l ∈ C, has infinitely many rational solutions x, y if and

only if A ∈ Q and one of the Hilbert symbols
(

c
5c+5d ,

d
5c+5d

)
,
( −c

5c+5d ,
d

5c+5d

)

equals 1, where A = c/d with coprime integers c, d. There are infinitely many
integer solutions if and only if c, d are odd , and the equation

d(2x− 3)2 − c(2y − 3)2 = 5(d− c),(6)

has infinitely many integer solutions.

We note that there are integers c, d, such that equation (6) has infinitely
many integer solutions x, y. For example, put c = 1 and d = 5. Then x =
(bn + 3)/2, y = (an + 3)/2 are solutions of (6), where an and bn are defined
by (a0, b0) = (5, 3), (an+1, bn+1) = (9an + 20bn, 4an + 9bn).

Proposition 4. The equation
(
x2 −

√
2xy −

(
3− 3

2

√
2
)
x+ y2 −

(
3− 3

2

√
2
)
y + 13

4 − 9
4

√
2
)

×
(
x2 +

√
2xy −

(
3 + 3

2

√
2
)
x+ y2 −

(
3 + 3

2

√
2
)
y + 13

4 + 9
4

√
2
)

= 0

has no rational solution x, y.

Proposition 5. The equation
(
y2 − 5y + 20

3 − 5x+ x2
)(
y4 − 10y3 − x2y2 + 5xy2 + 85

3 y
2 + 5x2y

− 25xy − 50
3 y + x4 − 10x3 + 85

3 x
2 − 50

3 x+ 16
9

)
= 0

has no rational solution x, y.

4. Study of the genus. Consider the curves

C : x(x− 1) . . . (x− (m− 1)) = λy(y − 1) . . . (y − (n− 1)) + l,

where n ≥ m > 1, and λ, l are not necessarily rational, but λ ∈ C \ {0}
and l ∈ C. In the following two theorems we list those curves C which have
genus zero and one, respectively.

Theorem 5. Suppose C is irreducible. Then its genus is zero in the
following cases:

1) (m,n) = (2, 2), λ− 4l 6= 1;
2) (m,n) = (2, 3), tλ+ l = − 1

4 , t2 = 4
27 ;

3) (m,n) = (2, 4), 9
16λ+ l = −1

4 ;
4) (m,n) = (2, 6), tλ+ l = − 1

4 , 27t2 + 320t− 2304 = 0;
5) (m,n) = (3, 3), l 6= 0 and t(λ± 1) = −l, t2 = 4

27 ;
6) (m,n) = (3, 4), λ = 64

225t, l = 14
225t, t

2 = 3;
7) (m,n) = (3, 6), λ = 3

392t and l = 20
441t, t

2 = 21.
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Theorem 6. Assume that C is irreducible. Its genus is one in the fol-
lowing cases:

1) (m,n) = (2, 3), 2
9tλ+ l 6= −1

4 , t2 = 3;
2) (m,n) = (2, 4), 9

16λ+ l 6= −1
4 ;

3) (m,n) = (2, 5), tλ+ l = − 1
4 , 3125t4 − 47500t2 + 82944 = 0;

4) (m,n) = (2, 6), −225
64 λ+ l = −1

4 ;
5) (m,n) = (2, 8), tλ+ l = − 1

4 , t3 + 576t2 − 54432t− 4665600 = 0;
6) (m,n) = (3, 3), l = 0 or l 6= 0 and t(λ± 1) 6= −l, t2 = 4

27 ;
7) (m,n) = (3, 4), −λ+ l = t and (λ, l) 6=

(
−32

25t,− 7
25t
)
, t2 = 4

27 ;
8) (m,n) = (3, 6),

λ = − 256s
2025 + 576t

, l =
2s
9
− 100s

225 + 64t
,

where s2 = 3 and 27t2 + 320t− 2304 = 0;
9) m = n = 4, −λ+ l = 9

16 and l 6= − 7
16 , or 9

16λ+ l = −1 and l 6= − 7
16 .

For l = 0, Theorems 5 and 6 give as a special case Theorem 2.2 of [4]. We
recall that in [4] the curve x(x+1) . . . (x+(m−1)) = λy(y+1) . . . (y+(n−1))
is considered.

We remark that recently Avanzi and Zannier [2] classified the genus 1
curves of the form f(x) = g(y), where the polynomials f and g have coprime
degrees. From this result of [2] one can deduce the cases (m,n) = (2, 3), (2, 5)
and (3, 4) of our Theorem 6.

5. Proofs of Theorem 4 and Propositions 1 to 5. We introduce
some further notation. Put

f(x) = x(x− 1) . . . (x− (m− 1)), g(y) = λy(y − 1) . . . (y − (n− 1)) + l,

where 1 < m ≤ n ∈ N and λ ∈ C\{0}, l ∈ C. To examine the irreducibility of
the polynomial f(x)−g(y), we apply a method and some results of Beukers,
Shorey and Tijdeman [4].

Let f̃ , g̃ ∈ C[x] and let S
f̃

and Sg̃ be the sets of stationary points of

f̃ and g̃, respectively, which we assume to be simple. Let m = deg(f̃) and
n = deg(g̃). For any a ∈ C, put

ma = #{α ∈ S
f̃
| f̃(α) = a}, na = #{β ∈ Sg̃ | g̃(β) = a}.

Suppose that the polynomial f̃(x)− g̃(y) is reducible over C, i.e.

f̃(x)− g̃(y) = G1(x, y)G2(x, y)

with G1, G2 ∈ C[x, y]. Denote by δ the weighted degree defined by δ(xayb) =
na+mb. We use the following lemmas from [4].
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Lemma 1. Let m1, m2 be the weighted degrees of G1, G2, respectively.
Then

m1m2 ≤ mn
∑

a∈C
mana.

Moreover , m1 + m2 = mn and m1 and m2 are multiples of mn/d, where
d = gcd(m,n).

Lemma 2. Suppose that na ≤ 1 for all a ∈ C. Then n = gcd(m,n) and
f̃(x)− g̃(y) has a factor of degree 1 in y.

Lemma 3. Let f̃(x) = fm(x). Then ma ≤ 2 for all a ∈ C. Moreover , if
m is odd , then ma ≤ 1 for all a ∈ C.

Lemma 4. Let d be an even positive integer. Put

f(x) = (x− 12)(x− 32) . . . (x− (d− 1)2), ma = #{α ∈ Sf | f(α) = a}.
Then ma ≤ 1 for every a ∈ C.

Proof of Theorem 4. Consider the polynomial F (x, y) = f(x) − g(y),
where f(x) = x(x−1) . . . (x−(m−1)) and g(y) = λy(y−1) . . . (y−(n−1))+l.
Suppose that F (x, y) is reducible in C[x, y]. Assuming that n is odd, from
Lemma 2 we deduce that n = d and f(x) − g(y) has a linear factor in y.
Thus from m ≤ n it follows that m = n, whence this factor is also linear
in x. Hence we can write

f(x)− g(y) = (ax+ y + c)T (x, y),(7)

where a, c ∈ C, a 6= 0, T ∈ C[x, y]. Put Q(x) = −ax− c. From (7) it follows
that

f(x) = g(Q(x)).

Since f(x) = x(x− 1) . . . (x− (m− 1)), therefore Q(0), Q(1), . . . , Q(m− 1)
are roots of the polynomial g, but then g

(
Q
(
m−1

2

))
is zero. On the other

hand, as
g(y) = λy(y − 1) . . . (y − (n− 1)) + l

and also
g(y) = λ(y + c)(y + a+ c) . . . (y + (m− 1)a+ c),

we have

λ(c+ a+ c+ 2a+ c+ . . .+ (m− 1)a+ c) = −λ(1 + 2 + . . .+ (m− 1)).

Thus c = (1−m)(1 + a)/2, and we obtain

Q(x) = −ax+
m− 1

2
a+

m− 1
2

,

and so

Q

(
m− 1

2

)
=
m− 1

2
.
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Now

g

(
Q

(
m− 1

2

))
= 0

implies

λ
m− 1

2

(
m− 1

2
− 1
)
. . .

(
m− 1

2
− (m− 1)

)
+ l = 0,

whence l = 0. This case is already described by Beukers, Shorey and Tijde-
man [4].

Now suppose that n is even and l 6= 0. Since g(y) = g(n− 1− y), we get

g

(
n− 1− y

2

)
= λ2−n(y2 − 12)(y2 − 32) . . . (y2 − (n− 1)2) + l.

Let
h(v) = λ2−n(v − 12)(v − 32) . . . (v − (n− 1)2) + l.

Then from Lemma 4, it follows that #{α ∈ Sh | h(α) = a} ≤ 1 for every
a ∈ C.

Suppose that f(x)−g(y) has an irreducible factorK(x, y) of degree< n/2
in y. Then either K(x, y) or K(x, n−1−y)K(x, y) is symmetric with respect
to the transformation y 7→ n−1−y and is a non-trivial factor of f(x)−g(y).
Hence f(x) − h(v) has a factor of degree one in v and n/2 = gcd(m,n/2).
So either m = n or n = 2m.

Suppose m = n. We know that f(x)− h(v) has a factor which is linear
in v and quadratic in x. Thus we have

f(x)− h(v) = (ax2 + bx+ c+ v)T (x, v),

where a, b, c ∈ C, a 6= 0, T ∈ C[x, v]. LetQ(x) = −ax2−bx−c. ThenQ ∈ C[x]
is a quadratic polynomial such that f(x) = h(Q(x)). As deg(h) = m/2,
and Q is quadratic, among the complex numbers Q(0), Q(1), . . . , Q(m− 1)
there are exactly m/2 different ones. Hence there exists an integer j ∈
{1, . . . ,m − 1} such that Q(0) = Q(j). So we have −c = −aj2 − bj − c,
whence j = −b/a. Let u ∈ {1, . . . ,m− 1} \ {j}. Then there exists an integer
v ∈ {1, . . . ,m− 1} \ {j, u} such that Q(u) = Q(v). We get

u+ v = −b/a, −b/a = m− 1.

These yield

Q(0) = Q(m− 1),

Q(1) = Q(m− 2),
...

Q

(
m− 2

2

)
= Q

(
m

2

)
.



348 C. Rakaczki

So we can write the polynomial h(v) in the form

h(v) = λ2−m(v −Q(0))(v −Q(1)) . . .
(
v −Q

(
m− 2

2

))
.

On the other hand, by the definition of h(v) and m = n we also have

h(v) = λ2−m(v − 12)(v − 32) . . . (v − (m− 1)2) + l.

Assume that m ≥ 8. Comparing the coefficients of vm/2−1, vm/2−2 and
vm/2−3 in the two formulas for h(v), we get the following system of equations:

k−1∑

i=0

(2i+ 1)2 =
k−1∑

i=0

Q(i),

k−1∑

i=0

i−1∑

j=0

(2i+ 1)2(2j + 1)2 =
k−1∑

i=0

i−1∑

j=0

Q(i)Q(j),

k−1∑

i=0

i−1∑

j=0

j−1∑

t=0

(2i+ 1)2(2j + 1)2(2t+ 1)2 =
k−1∑

i=0

i−1∑

j=0

j−1∑

t=0

Q(i)Q(j)Q(t),

where k = m/2. However, a simple calculation shows that this system has
no solutions, that is, f(x)− g(y) has no irreducible factor of degree < n/2
in y. In the remaining cases (m,n) = (2, 2), (4, 4), (6, 6), a straightforward
computation gives that f(x)− g(y) has such a factor if and only if (m,n) =
(6, 6) when

f(x)− g(y) =
(
y2 − 5y + x2 − 5x+ 20

3

)
×

(
y4−10y3−x2y2+5xy2+85

3 y
2+5x2y−25xy− 50

3 y+x4−10x3+85
3 x

2−50
3 x+16

9

)
.

Suppose that n = 2m. We know that f(x) − h(v) has a factor which is
linear both in x and in v, that is, we may write

f(x)− h(v) = (ax+ b+ v)T (x, v)(8)

with a ∈ C \ {0}, b ∈ C, T ∈ C[x, v]. Put L(x) = −ax − b. Then L ∈
C[x] is a linear polynomial such that f(x) = h(L(x)). This implies that
L(0), L(1), . . . , L(m− 1) are different roots of the polynomial h. Thus

h(v) = λ2−n(v − L(0))(v − L(1)) . . . (v − L(m− 1)).

Using the definition of h(v), as n = 2m we get

h(v) = λ2−2m(v − 12)(v − 32) . . . (v − (2m− 1)2) + l.

Suppose that m ≥ 4. If we compare again the coefficients of vm−1, vm−2

and vm−3 in the two formulas for h(v), we are led to the following system
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of equations:
m−1∑

i=0

(2i+ 1)2 =
m−1∑

i=0

L(i),

m−1∑

i=0

i−1∑

j=0

(2i+ 1)2(2j + 1)2 =
m−1∑

i=0

i−1∑

j=0

L(i)L(j),

m−1∑

i=0

i−1∑

j=0

j−1∑

t=0

(2i+ 1)2(2j + 1)2(2t+ 1)2 =
m−1∑

i=0

i−1∑

j=0

j−1∑

t=0

L(i)L(j)L(t).

A simple computation shows that this system is unsolvable.
In the remaining cases (m,n) = (2, 4), (3, 6), f(x) − g(y) has no irre-

ducible factor of degree < n/2 in y.
We are left with the case when f(x) − g(y) has only factors of degree

n/2 in y. Then we can apply Lemma 1 with m1 = m2 = mn/2. Hence by
na ≤ 2, (

mn

2

)2

≤ mn
∑

a

mana ≤ 2mn(m− 1).

This yields

n ≤ 8
(

1− 1
m

)
< 8,

whence n = 2, 4, 6. Since mn/2 is a multiple of mn/d, we can see that d is
even, thus m = 2, 4, 6. We consider the remaining cases separately.

First let (m,n) = (2, 2). If f(x)− g(y) is reducible, then since
(
mn

2

)2

≤ mn
∑

a

mana,

we get
4 ≤ 4

∑

a

mana.

As

ma =
{

1 if a = −1
4 ,

0 otherwise,
if n−1/4 = 0 then f(x)− g(y) is irreducible. However, n−1/4 = 0 if and only
if λ
(
−1

4

)
+ l 6= −1

4 , that is, λ− 4l 6= 1.
On the other hand, if λ− 4l = 1 then f(x)− g(y) is reducible, and

f(x)− g(y) = 1
4(2x− 2Ay + A− 1)(2x+ 2Ay − A− 1),

where A =
√
l + 1.

Now let (m,n) = (2, 4). As above, if f(x)− g(y) is reducible, then 16 ≤
8n−1/4. Hence if −λ+ l 6= −1

4 , then f(x)− g(y) is irreducible.



350 C. Rakaczki

If −λ+ l = −1
4 then

f(x)− g(y) = 1
4(2x+ 2Ay2 − 6Ay + 2A− 1)(2x− 2Ay2 + 6Ay − 2A− 1),

where A =
√
l + 1/4.

Put (m,n) = (4, 4). We have

64 ≤ 16m−1n−1 + 16m9/16n9/16 = 32n−1 + 16n9/16,

whence m−1 = 2, m9/16 = 1. Thus f(x) − g(y) can be reducible only if
n−1 = 1 and n9/16 = 2, or n−1 = 2.

In the former case, we get λ = −1, l = − 7
16 , and

f(x)− g(y) = (x2− 3x+Ay2− 3Ay+A+ 1)(x2− 3x−Ay2 + 3Ay−A+ 1),

where A =
√
l + 1.

In the latter case, we obtain −λ+ l = 1, and

f(x)− g(y) =
(13

4 − 9
4

√
2−

(
3− 3

2

√
2
)
y −

(
3− 3

2

√
2
)
x+ x2 + y2 −

√
2xy

)

×
(13

4 + 9
4

√
2−

(
3 + 3

2

√
2
)
y −

(
3 + 3

2

√
2
)
x+ x2 + y2 +

√
2xy

)
.

For (m,n) = (2, 6), (4, 6) one can repeat the above method to conclude
that f(x)−g(y) does not have a factor of degree n/2 in y. Hence the theorem
follows.

In what follows we study the exceptional cases in Theorem 4. In fact,
these cases include the reducible curves.

Proof of Proposition 1. Our equation is

(2x− 2Ay + A− 1)(2x+ 2Ay − A− 1) = 0,

where A =
√

4l + 1, l ∈ Q. Obviously, there exist infinitely many rational
solutions x, y if and only if

√
4l + 1 is rational.

Suppose that A =
√

4l + 1 = c/d, where c, d are integers with gcd(c, d)
= 1. There are infinitely many integer solutions x, y only if infinitely many
integers x, y satisfy

2x− 2Ay + A− 1 = 0 or 2x+ 2Ay − A− 1 = 0,

that is,

2x− 2
c

d
y +

c− d
d

= 0 or 2x+ 2
c

d
y − c+ d

d
= 0.

It is easy to check that each of these equations has infinitely many integer
solutions if and only if c and d are odd.

Proof of Proposition 2. Let

(2x+ 2Ay2 − 6Ay + 2A− 1)(2x− 2Ay2 + 6Ay − 2A− 1) = 0,

where A =
√
l + 1/4, l ∈ Q. It is clear that there exist infinitely many

rational solutions x, y if and only if A is rational.
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Suppose that A = c/d, where c, d ∈ Z with gcd(c, d) = 1. If x, y is an
integer solution, then

x+
c

d
y2 − 3

c

d
y +

c

d
− 1

2
= 0(9)

or

x− c

d
y2 + 3

c

d
y − c

d
− 1

2
= 0.(10)

Equation (9) gives 2dx+2cy2−6cy+2c−d = 0. This implies that d is even,
and 2y2− 6y+ 2 ≡ 0 mod d. Further, y2− 3y+ 1 is always odd, hence 2 ‖ d.

It is easy to see that for each solution y of the congruence 2u2−6u+2 ≡ 0
mod d, where d is even,

x =
d− 2c(y2 − 3y + 1)

2d
, y

is an integer solution of (9).
Concerning (10), we can use a similar argument. So we find that for

m = 2, n = 4 and 4λ − 4l = 1 there are infinitely many integer solutions
if and only if A =

√
l + 1/4 is rational. Further, if we write A = c/d, with

gcd(c, d) = 1, then dmust be even and the congruence 2u2−6u+2 ≡ 0 mod d
must be solvable.

Proof of Proposition 3. Consider the equation

(x2 − 3x+Ay2 − 3Ay + A+ 1)(x2 − 3x− Ay2 + 3Ay − A+ 1) = 0,

where A =
√
l + 1. This equation has infinitely many rational solutions x, y

if and only if A is rational and one of the Hilbert symbols
(

c

5c+ 5d
,

d

5c+ 5d

)
,

( −c
5c+ 5d

,
d

5c+ 5d

)

equals 1, where A = c/d with gcd(c, d) = 1.
Moreover, if x, y is an integer solution then we have

x2 − 3x+
c

d
y2 − 3

c

d
y +

c

d
+ 1 = 0(11)

or

x2 − 3x− c

d
y2 + 3

c

d
y − c

d
+ 1 = 0.(12)

In the case (11) we get d | y2−3y+1, whence d is odd. Further, c |x2−3x+1,
thus c is also odd. So we obtain

(
x− 3

2

)2

− 5
4

+
c

d

((
y2 − 3

2

)2

− 5
4

)
= 0,

which yields d(2x− 3)2 + c(2y − 3)2 = 5(c+ d). It follows that in this case
there are only finitely many integer solutions.
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In the case (12) we have
(
x− 3

2

)2

− 5
4
− c

d

((
y2 − 3

2

)2

− 5
4

)
= 0,

and so d(2x− 3)2 − c(2y − 3)2 = 5(d− c).
Summarising, we have infinitely many integer solutions if and only if

there are infinitely many integer solutions of the equation

d(2u− 3)2 − c(2v − 3)2 = 5(d− c),
where d and c are odd.

Proof of Proposition 4. Suppose that
(13

4 − 9
4

√
2−

(
3− 3

2

√
2
)
y −

(
3− 3

2

√
2
)
x+ x2 + y2 −

√
2xy

)

×
(13

4 + 9
4

√
2−

(
3 + 3

2

√
2
)
y −

(
3 + 3

2

√
2
)
x+ x2 + y2 +

√
2xy

)
= 0.

If (x, y) ∈ Q2 is a solution, then either
13
4 − 9

4

√
2−

(
3− 3

2

√
2
)
y −

(
3− 3

2

√
2
)
x+ x2 + y2 −

√
2xy = 0(13)

or
13
4 + 9

4

√
2−

(
3 + 3

2

√
2
)
y −

(
3 + 3

2

√
2
)
x+ x2 + y2 +

√
2xy = 0.(14)

We deduce from (13) that
13
4 − 3y − 3x+ x2 + y2 +

√
2
(3

2y + 3
2x− xy − 9

4

)
= 0,

thus
13
4 − 3y − 3x+ x2 + y2 = 0 and 3

2y + 3
2x− xy − 9

4 = 0.

These yield (x− y)2 = 5
4 , which is a contradiction.

We get a similar contradiction in the case (14).

Proof of Proposition 5. Suppose that (x, y) ∈ Q2 is a solution of the
equation

y2 − 5y + 20
3 − 5x+ x2 = 0.

This yields
u2 + v2 = 35

6 ,

where u = a/b, v = c/d with a, b ∈ Z, gcd(a, b) = gcd(c, d) = 1. Hence we
obtain

(6ad)2 + (6bc)2 = 2 · 3 · 5 · 7 · b2d2,

which is impossible.
Suppose that the rational numbers x = a/b and y = c/d with a, b ∈ Z,

(a, b) = (c, d) = 1 satisfy

(15) y4 − 10y3 − x2y2 + 5xy2 + 85
3 y

2 + 5x2y − 25xy − 50
3 y + x4 − 10x3

+ 85
3 x

2 − 50
3 x+ 16

9 = 0.
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From (15) we get

(16) 3b4c4 − 30b4c3d− 3a2b2c2d2 + 15ab3c2d2 + 85b4c2d2 + 15a2b2cd3

− 75ab3cd3− 50b4cd3 + 16
3 b

4d4 + 85a2b2d4− 50ab3d4 + 3a4d4− 30a3bd4 = 0.

We obtain 3 | b4d4. Since (15) is symmetric in x, y, we may assume that 3 | b
and so 3 - a. Now let b = 3ke, d = 3tf where gcd(3, e) = gcd(3, f) = 1 and
k ≥ 1, t ≥ 0. Then in (16) each term is divisible by 3min{4k+1,4t+1}.

Suppose that t < k. Then every term in (16) is divisible by 34t+2, except
3a4d4, which is a contradiction.

So let t ≥ k. Since k ≥ 1, we have t ≥ 1, and hence 3 | d. Moreover, k = t.
It follows that

35k+1 | 3b4c4 − 3a2b2c2d2 + 3a4d4 = 34k+1(e4c4 − a2e2c2f2 + a4f4).

Since 3 | acef , the last relation gives a contradiction.

6. Proofs of Theorems 5 and 6. We now prove Theorems 5 and 6.
For this purpose we need the following result from Beukers, Shorey and
Tijdeman [4].

Lemma 5. Let f, g ∈ C[X] be polynomials of degrees m and n respec-
tively , and suppose that f(X) − g(Y ) is irreducible. Assume that the sta-
tionary points of f and g are simple. For α ∈ Sf put rα = #{y ∈ Sg |
f(α) = g(y)}. Let gC be the genus of the curve C : f(X) = g(Y ). Then

2gC =
∑

α∈Sf
(n− 2rα)−m+ 2− gcd(m,n).

Proof of Theorems 5 and 6. Let

f(x) = x(x−1) . . . (x− (m−1)) and g(y) = λy(y−1) . . . (y− (n−1))+ l,

where we assume that 1 < m ≤ n, λ, l ∈ C with λ 6= 0.
From Lemma 3 we get rα ≤ 2 in all cases and rα ≤ 1 if n is odd. Let

δ(n) = 2 if n is odd, and 4 if n is even. Since |Sf | = m− 1, we obtain

2gC =
∑

α∈Sf
(n− 2rα)−m+ 2− gcd(m,n)

≥ (n− δ(n))(m− 1)− 2(m− 1) +m− gcd(m,n)

= (n− δ(n)− 2)(m− 1) +m− gcd(m,n).

Suppose n ≥ 9 or n = 7. Then n− δ(n)− 2 ≥ 3 and we get 2gC ≥ 3(m− 1),
hence gC > 1. If n = 8, then n − δ(n) − 2 = 2 and 2gC ≥ 2(m − 1) + m −
gcd(m, 8) ≥ 2(m− 1). Hence gC > 1 for m ≥ 3. This leaves us with the case
m = 2, n = 8. If n = 5, then 2gC ≥ m−1+m−gcd(m, 5). So for m = 3, 4, 5
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we have gC > 1. There remains m = 2, n = 5. Thus we must consider the
following cases only: m = 2, n = 2, 3, 4, 5, 6, 8; m = 3, n = 3, 4, 6; m = 4,
n = 4, 6; m = 5, n = 6; m = 6, n = 6.

We work out only (m,n) = (2, 2), (2, 3) and (2, 4) in detail. One can
apply the same argument to check the other cases.

First let (m,n) = (2, 2). Then Sf = Sg =
{1

2

}
and

2gC = 2− 2r1/2 − 2 + 2− 2 = −2r1/2.

If −1
4λ+ l 6= −1

4 , then gC = 0. Otherwise, the curve is reducible.

For (m,n) = (2, 3) we have Sf =
{1

2

}
, Sg =

{
1 +

√
3

3 , 1 −
√

3
3

}
. In this

case 2gC = 2 − 2r1/2. So, if r1/2 = 0 then gC = 1, and if r1/2 = 1 then

gC = 0. However, r1/2 = 1 if and only if ±2
√

3
9 λ+ l = −1

4 .

In case of (m,n) = (2, 4), Sf =
{1

2

}
, Sg =

{3
2 ,

3
2 +

√
5

2 ,
3
2 −

√
5

2

}
. Now

2gC = 2− 2r1/2. Thus, if r1/2 = 0 then gC = 1, and if r1/2 = 1 then gC = 0.
If r1/2 = 2, then −λ + l = −1

4 , and the curve is reducible. On the other
hand, r1/2 = 1 if and only if 9

16λ+ l = −1
4 .

7. Proofs of Theorems 2, 3 and 1. We are ready to prove the main
result of this paper. The proof of Theorem 2 is based upon the following
two well-known ineffective theorems.

Theorem C (Siegel [33]). The number of integral points on an irre-
ducible algebraic curve of genus > 0 is finite.

Theorem D (Faltings [14]). The number of rational points on an irre-
ducible algebraic curve of genus > 1 is finite.

Proof of Theorem 2. Consider the algebraic curve

x(x− 1) . . . (x− (m− 1)) = λy(y − 1) . . . (y − (n− 1)) + l,(17)

where m,n ∈ N with m ≤ n and λ, l ∈ Q with λ 6= 0. Combining Theorems
4 to 6, C and D shows easily that apart from the enumerated exceptional
cases, equation (17) has only finitely many rational and integer solutions
respectively.

In what follows in each excluded case we show that the parameters λ, l
can be given on infinitely many values such that equation (17) has infinitely
many solutions x, y.

In case of 1) our curve is reducible with a simple factor (see Theorem
4), and we are done. When (m,n) = (2, 2), we can reduce our equation
to a Pellian equation. For example, one can easily see that if λ = 2 and
l = k(k− 1), where k is odd, then equation (17) has infinitely many integer
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solutions. For (m,n) = (2, 4) and 4λ−4l = 1 our curve is also reducible and
we considered this case in Proposition 2. We deal with the case (m,n) =
(4, 4), λ− l = 1 in Proposition 3. In the remaining cases 5), 7), 8) and 9) our
curve has genus one and for an appropriate choice of λ, l, we can transform
it to an elliptic curve by a birational transformation. We can make this
transformation in such a way that we can easily find a rational point on the
original curve, which will be a non-torsion rational point on the transformed
elliptic curve. We give the details only in the case 5).

Study the curve

x(x− 1)− λy(y − 1)(y − 2)− l = 0,(18)

where λ, l ∈ Z and λ 6= 0. If we solve the equation x(x− 1)− l = 0 for x we
get

x1,2 =
1±
√

1 + 4l
2

.

Let l = (k2 − 1)/4 with k ∈ Z, k is odd and gcd(λ, k) = 1. Then (18) leads
to

x(x− 1)− λy(y − 1)(y − 2)− 1
4k

2 + 1
4 = 0.(19)

It is plain that the point P = ((1−k)/2, 2) belongs to this curve. Trans-
form the curve (19) to the elliptic curve

V 2 = U3 − 256λ2U + 1024λ2k2(20)

by the birational transformation

x =
32λ− V

64λ
, y =

U + 16λ
16λ

.

The discriminant of U3 − 256λ2U + 1024λ2k2 is

∆ = −67108864λ6 + 2811552λ4k4.

The image of P is W = (16λ, 32λk), which is a rational point. It is
obvious that 32λk divides the discriminant ∆ if and only if k divides 221λ5.
Since gcd(λ, k) = 1 and k is odd, the well-known theorem of Nagell–Lutz [34]
implies that W is not a torsion point on curve (20). As the transformation
is birational and W is not a torsion point, we infer that there are infinitely
many rational points on the curve (18).

In each of the remaining cases, we give infinitely many curves having
infinitely many rational points. By a similar computation to case 5) one
can check that the equations below have infinitely many rational solutions
indeed.
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6) (m,n) = (2, 4), 9λ+ 16l 6= −4, and

x(x− 1)− 3ty(y − 1)(y − 2)(y − 3)− 1
4k

2 + 1
4 = 0,

where k, t ∈ N and gcd(t, k) = 1, gcd(k, 208) = 1.

7) (m,n) = (2, 6), −1
4 = −225

64 λ+ l, and

x(x− 1)− 16
225k

2y(y − 1)(y − 2)(y − 3)(y − 4)(y − 5)− 1
4k

2 + 1
4 = 0,

where k ∈ N.
8) (m,n) = (3, 3), and

x(x− 1)(x− 2)− y(y − 1)(y − 2)− 3k2 + 9k − 6 = 0,

where k ∈ N with (2k − 3) - 293513.
9) (m,n) = (4, 4), −λ+ l = 9

16 , l 6= − 7
16 , and

x(x− 1)(x− 2)(x− 3)−
(
k(k − 1)(k − 2)(k − 3)− 9

16

)

× y(y − 1)(y − 2)(y − 3)− k(k − 1)(k − 2)(k − 3) = 0,

where k > 4.

Further, (m,n) = (4, 4), 9
16λ+ l = −1, l 6= − 7

16 , and

x(x− 1)(x− 2)(x− 3)−
(
−16

9 k(k − 1)(k − 2)(k − 3)− 16
9

)

× y(y − 1)(y − 2)(y − 3)− k(k − 1)(k − 2)(k − 3) = 0,

where k - 313516.

Proof of Theorem 3. Our equation is

x(x+ d1) . . . (x+ (m− 1)d1) = λ̃y(y + d2) . . . (y + (n− 1)d2) + l̃,

where m ≤ n and m,n ∈ N. From this equation we obtain

X(X − 1) . . . (X − (m− 1)) = λY (Y − 1) . . . (Y − (n− 1)) + l,

where

X = − x

d1
, Y = − y

d2
, λ = (−1)m+nλ̃

dn2
dm1

, l = (−1)m
l̃

dm1
.

Application of Theorem 2 yields the statement.

Proof of Theorem 1. Suppose that a, b, k are integers with a 6= 0, b 6= 0,
and m, n are positive integers with m ≤ n. Equation (4) can be written as

x(x− 1) . . . (x− (m− 1)) = λy(y − 1) . . . (y − (n− 1)) + l,(21)

where

λ =
bm!
an!

and l =
km!
a
.

We can now apply Theorem 2 to (21). It is easy to see that apart from
the case m = n, a = b and k = 0, equation (21) may have infinitely many
solutions only if (m,n) ∈ {(2, 2), (2, 4), (4, 4)}.
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When (m,n) = (2, 2), (21) leads to the equation

a(2x− 1)2 − b(2y − 1)2 = 8k + a− b,(22)

which, for an appropriate choice of a, b and k, has infinitely many solutions
in x, y. For example, let a = 1, b = 6, k = 1. It is easy to check (e.g. mod 4)
that any solutions u, v of u2 − 6v2 = 3 are odd and (u, v) = (27, 11) is an
integer solution. Hence (22) has infinitely many solutions indeed.

In the case (m,n) = (2, 4), the equation (21) takes the form

x(x− 1) = λy(y − 1)(y − 2)(y − 3) + l,(23)

where λ = b/(12a), l = 2k/a. From Theorems 4, 5 we know that if

4λ− 4l 6= 1 and 9λ+ 16l 6= −4,

that is, when
24k + 3a

b
6= 1 and

24k + 3a
b

6= − 9
16
,

then (23) has only finitely many solutions in integers x, y. Moreover, for
(24k+ 3a)/b = 1 our curve is reducible. Proposition 2 shows that our equa-
tion has infinitely many integer solutions x, y if and only if we can write

b

3a
=
(
c

d

)2

,

where c, d ∈ Z, (c, d) = 1 and the congruence u2 − 3u + 1 ≡ 0 mod d is
solvable.

If a = 25, b = 147, k = 3 then (24k + 3a)/b = 1, and

x = (1 + 7(5t2 + 5t+ 1))/2, y = 4 + 5t

for any t ≥ 0 gives infinitely many solutions to (4) with x ≥ 2, y ≥ 4.
In the case when (24k + 3a)/b = −9/16, our equation leads to

(2x− 1)2 =
b

48a
(4y2 − 12y − 1)(2y − 3)2.(24)

There are infinitely many integers a, b, k such that (24), and so our original
equation, has infinitely many integer solutions. For example, if a = 1, b =
720, k = −17, then (24k + 3a)/b = −9/16. Now, (4) has infinitely many
solutions x ≥ 2, y ≥ 4, namely

x = (15an+1bn+1 + 1)/2, y = (an+1 + 3)/2,

where an and bn are defined by

(a0, b0) = (5, 1), (an+1, bn+1) = (4an + 15bn, an + 4bn).

For (m,n) = (4, 4), (23) can have infinitely many solutions only if λ− l
= 1, i.e. if (24k + a)/b = 1. Then equation (23) is of the form
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z2 =
16b
a

(y2 − 3y + 1)2,(25)

where z = (2x−3)2−5. In this case one can also give integers a, b, k for which
(25), and hence our original equation, has infinitely many integer solutions.
Let, for instance a = 25, b = 1, k = −1, whence (24k + a)/b = 1. Then (4)
has again infinitely many integer solutions x ≥ 2, y ≥ 4, given by

x = (an+1 + 3)/2, y = (5bn+1 + 3)/2,

where an and bn are defined by

(a0, b0) = (3, 1), (an+1, bn+1) = (9an + 20bn, 4an + 9bn).
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