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1. Introduction. Given n ≥ 2 let a denote an increasing n-tuple of
non-negative integers ai (0 ≤ i ≤ n−1) and let x denote an n-tuple of inde-
terminates xi (0 ≤ i ≤ n−1). Denote by Va(x) the generalized Vandermonde
determinant , the polynomial obtained by computing the determinant of the
matrix with (i, j) entry equal to xaji .

Let s be the standard n-tuple of consecutive integers from the interval
[0, n− 1] and given c ≥ 1 assume that x is an n-tuple of distinct 2-integral
odd rational numbers xi such that xi ≡ xj (mod 2c+1).

Several years ago one of the authors, investigating some properties of
Kubota–Leopoldt 2-adic L-functions, asked whether for any n-tuples a and
x with c = 1 the identity

ord2 Va(x) = ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s)(1.1)

holds. Note that if n = 2 and c = 1 the above identity is a simple consequence
of the well known identity

ord2(xa − 1) = ord2 a+ ord2(x− 1).

In this paper we prove that for any fixed c the identity holds for any a
and x if the blocks of identical digits of n − 1 in base 2 are not too large
(Theorem 1 and Corollary). Consequently, for any fixed c the identity holds
for infinitely many n (Theorem 2). Moreover we prove that for any n iden-
tity (1.1) holds for any a and x with sufficiently large c (Theorem 4). This
means that for sufficiently large c the exponent ord2(Va(x)/Vs(x)) equals
ord2(Vs(a)/Vs(s)). We also find infinitely many n, a and x with c = 1 such
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that (1.1) does not hold. More precisely, we prove that for infinitely many
n the left hand side of (1.1) is less (resp. greater) than the right hand side
of (1.1) for some a and x (Theorem 3).

A special case of the identity for x= (1,−7, 9, . . . , 2(−1)n−1(2n−1)−1)
or (−3, 5,−11, . . . , 2(−1)n(2n − 1) − 1), called Wójcik’s Conjecture, was
proved in [4] (cf. [5] and [6]). In this case (1.1) has the form

ord2 Va(x) = 3
(
n

2

)
+ ord2 Vs(a).

In the proof the authors made use of some results of the present paper.
Applying the above identity they found the so-called full linear congruence
for special values of Kubota–Leopoldt 2-adic L-functions L2(k, χ⊗ ω1−k)
attached to quadratic characters χ with k running over any finite subset of
Z not necessarily consisting of consecutive integers.

1.1. Generalized Vandermonde determinants. The classical Vander-
monde determinant Vs(x) is the polynomial

∏

0≤i<j≤n−1

(xj − xi).(1.2)

It is well known that the polynomial Va(x) is divisible by Vs(x) in the
polynomial ring Z[x] and the quotient Pa(x) := Va(x)/Vs(x) is a homo-
geneous polynomial. The polynomial Pa(x) has exactly Vs(a)/Vs(s) non-
negative “terms”, i.e., the sum of the coefficients of Pa(x), which all are
non-negative, is equal to Vs(a)/Vs(s) (see [1] or [2]). Note that in Vs(s) we
set 00 = 1.

If c ∈ N we define
(
x
c

)
∈ Q[x] by c!

(
x
c

)
= x(x − 1) . . . (x − c + 1). By

definition,
(
x
0

)
= 1;

(
x
c

)
is a polynomial of degree c, equal to 0 at integers

from the interval [0, c) and equal to 1 at x = c.
For n-tuples a and x we denote by Ca(x) the polynomial obtained by

computing the determinant of the matrix with (i, j) entry equal to
(
xi
aj

)
. The

polynomial Cs(x) is called the Cauchy determinant. We have

Cs(x)
n−1∏

i=0

i! = Vs(x).

Moreover it is well known that the polynomial Ca(x)
∏n−1
i=0 ai! is divisible

by Cs(x)
∏n−1
i=0 i! in the polynomial ring Z[x]. Denote by Qa(x) the quotient

of these polynomials.
For s, r ∈ N ∪ {0} and an s-tuple of indeterminates x denote by τr(x)

the elementary symmetric polynomial of degree r. By definition τ0(x) = 1
and τr(x) = 0 if s < r. For r, s ∈ N, r ≤ s, we have
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τr(x) = τr(x1, . . . , xs−1) + τr−1(x1, . . . , xs−1)xs(1.3)

and these formulas define the elementary symmetric polynomials.
For t ∈ N, t ≤ s and any tuples x1 = (xi1 , . . . , xit), x2 = (xit+1 , . . . , xis)

we call the tuples x1 and x2 complementary with respect to x if

{i1, . . . , it} ∪ {it+1, . . . , is} = {1, . . . , s}.

By definition,

τr(−x) = (−1)rτr(x)

and for t ≤ s if x1 and x2 are complementary with respect to x then

τr(x) =
r∑

i=0

τi(x1)τr−i(x2).

Lemma 1 (see [3, Chapter XI, p. 334]). Let a (resp. c) be an n-tuple
(resp. ν-tuple) of non-negative integers ai (resp. ci) and let x be an n-tuple
of indeterminates xi. Assume that a and c are increasing complementary
tuples with respect to the standard (n+ ν)-tuple such that an−1 = n+ ν − 1.
Then

Va(x) = ±Vs(x) · det(τn−ci+j(x)),

where the row and column indices i and j in the determinant run from 0 to
ν − 1.

2. The main theorems. We can now formulate our main results. They
will be proved in subsequent sections. The five theorems presented yield in-
formation about identity (1.1). Theorems 2 and 4 follow from the Corollary
to Theorem 1. Theorem 3 is a consequence of Lemma 1 and gives infinitely
many counter-examples to (1.1). Theorem 5 allows one to make use of com-
puters to verify (1.1) for some fixed n and n-tuples a in the cases when we
cannot apply Theorem 1.

Let us consider the expansion of n − 1 in base 2. A subsequence of this
expansion consisting of consecutive 0’s or consecutive 1’s which is neither
preceded nor succeeded by the same symbol is called a block . The number
of digits in the block D is said to be its length. The length of D will be
denoted by l(D). Set

n− 1 = D2%+1D2% . . .D1D0, Dj—blocks, D2%+1 = 11 . . . 1, D0 = 00 . . . 0

and l(Dj) = lj (0 ≤ j ≤ 2% + 1). Write pr =
∑r

s=0 ls (0 ≤ r ≤ 2% + 1).
Assume that the blocks Dj with 1 ≤ j ≤ 2% + 1 are not empty and in the
case when n−1 is odd we have l0 = 0 (the block D0 is empty). For 1 ≤ k ≤ %
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we define

Hk = c
( k∑

j=1

(2p2j − 2p2j−1) + 2p0

)
−

k∑

j=0

l2j+1, H0 = c2l0 − l1,

H ′k = c
( k−1∑

j=0

(2p2j+1 − 2p2j ) + 1
)
−

k∑

j=0

l2j , H ′0 = c− l0.

Theorem 1. In the above notation, given n, c ∈ N (n ≥ 2) let a be
an arbitrary increasing n-tuple of non-negative integers ai and let x be an
n-tuple of distinct 2-integral rational numbers xi with xi ≡ xj (mod 2c+1).
Assume that

min(H0,H1, . . . ,H%) ≥ 0

and
min(c,H0,H1, . . . ,H%) + min(H ′0,H

′
1, . . . ,H

′
%) + 1 ≥ 0.

Then
ord2 Va(x) = ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s).

Corollary. In the notation of Theorem 1, assume that

l0 ≤ c+ 1, l1 ≤ c2l0 , lj ≤ c2pj−2(2lj−1 − 1) for 2 ≤ j ≤ 2%+ 1.

Then
ord2 Va(x) = ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s)

for all a and x.

Theorem 2. For any fixed c ∈ N there are infinitely many n such that

ord2 Va(x) = ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s)

for all a and x as in Theorem 1.

Theorem 3. For any fixed c ∈ N there are infinitely many n such that

ord2 Va(x) > ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s)

(resp.
ord2 Va(x) < ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s))

for some a and x as in Theorem 1.

Theorem 4. For any n ∈ N, n ≥ 2, we can find c0 such that for all
natural numbers c ≥ c0 the identity

ord2 Va(x) = ord2 Vs(x) + ord2 Vs(a)− ord2 Vs(s)

holds for all a and x as in Theorem 1.

In what follows, k denotes the number of digits in the base 2 expansion
of n−1. For an increasing n-tuple a of non-negative integers ai denote by C∗
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the subset of the set [1, an−1]n−1 consisting of all increasing (n − 1)-tuples
not equal to (1, . . . , n− 1). Write

γ = n− 1 +
1
c

(
(k − 3)

(
k − 3

2c
+

√(
k − 3

2c

)2

+
2
c

)
+ 3
)

and for b ∈ C∗ set

s := s(b) = card{i ∈ [1, n− 1] : bi ≥ n}.
For 2 ≤ r ≤ n− 2 let

Γr = {b = (b1, . . . , bn−1) : bi = i if i ≤ r − 1 and r ≤ br < . . . < bn−1 ≤ γ}.
In what follows, s2(t) (t ∈ N) denotes the sum of the digits in the base 2
expansion of t.

Theorem 5. Given n, c ∈ N (n ≥ 2) let a and x be as in Theorem 1.
In the above notation, identity (1.1) holds for x and a if

c
( n−1∑

i=1

bi −
n−1∑

i=1

i
)

+
n−1∑

i=1

s2(bi)−
n−1∑

i=1

s2(i) > 0(2.1)

for all b ∈ Γr ∩ C∗ with

s(b) ≤ k − 3
2c

+

√(
k − 3

2c

)2

+
2
c
,

where r is the smallest integer such that

r ≥ n− k + 1
2c
−
(
k − 3

2c

)2

− 1
4
.

3. Two auxiliary lemmas. We first prove the main lemma of the
paper (Lemma 2). Its proof is rather technical, but it allows one to deduce
all the results of the paper. It implies Lemma 3, which provides a very useful
method for verifying identity (1.1).

Given an n-tuple x of indeterminates xi let x′ denote the (n− 1)-tuple
such that x is a concatenation of x0 and x′. Let x̃ = x − x0 · 1, where
1 = (1, . . . , 1). For n-tuples x and a we shall consider the polynomial Va′(x′).
Again this polynomial is divisible by Vs′(x′) in Z[x′]. Denote their quotient
by P ′a′(x

′). Similarly we denote by C ′a′(x
′) the polynomial obtained by com-

puting the determinant of the matrix with (i, j) entry equal to
(
xi
aj

)
. We have

C ′s′(x
′)
∏n−1
i=1 i! = Vs′(x′). Again the polynomial C ′a′(x

′)
∏n−1
i=1 ai! is divisible

in Z[x′] by C ′s′(x
′)
∏n−1
i=1 i! and we denote their quotient by Q′a′(x

′).

Lemma 2. Given n ∈ N (n ≥ 2) let a be an increasing n-tuple of non-
negative integers ai with a0 = 0 and let x be an n-tuple of distinct 2-integral
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rational numbers xi with x0 = 1 and xi ≡ 1 (mod 4). If

ord2




P ′b(x̃′)
n−1∏
i=1

i!

n−1∏
i=1

bi!


 ≥ 1 for every b ∈ C∗,(3.1)

then (1.1) holds for x and a.

Proof. Observe that (3.1) implies

ord2




Q′b(a′)P ′b(x̃′)
n−1∏
i=1

i!

n−1∏
i=1

bi!


 ≥ 1,

since Q′b(a′) ∈ Z[a′]. Thus it suffices to prove the lemma under the above
assumption.

We first prove that

Va(x) =
∑

b∈C∗∪{s′}
G(b),(3.2)

where

G(b) =
Vs(a)Vs(x)
Vs(s)

·
Q′b(a′)P ′b(x̃′)

n−1∏
i=1

i!

n−1∏
i=1

bi!
.

Subtract in Va(x) the first row from each of the others and expand along
the first column. It follows that

Va(x) = det(xaji − 1),

where i and j run from 1 to n− 1. Therefore by definition we obtain

Va(x) =
∑

σ∈S
sgn(σ)

n−1∏

i=1

(xaiσ(i) − 1),

where S denotes the set of all permutations of {1, . . . , n − 1}. Hence we
deduce that

Va(x) =
∑

σ

sgn(σ)
n−1∏

i=1

( ai∑

k=1

(
ai
k

)
(xσ(i) − 1)k

)
.
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Write A = [1, a1]× . . .× [1, an−1]. The above equation implies

Va(x) =
∑

c∈A

( n−1∏

i=1

(
ai
ci

))
·
(∑

σ

sgn(σ)
n−1∏

i=1

(xσ(i) − 1)ci
)

=
∑

c∈A

n−1∏

i=1

(
ai
ci

)
· det((xµ − 1)cν ),

where c is an (n−1)-tuple of non-negative integers ci and the row and column
indices ν and µ in the determinant run from 1 to n− 1. Consequently, since(
ai
ci

)
= 0 if ci > ai, we obtain

Va(x) =
∑

c∈C
F (c),(3.3)

where C is the subset of [1, an−1]n−1 consisting of all (n−1)-tuples of distinct
integers ci and

F (c) =
n−1∏

i=1

(
ai
ci

)
· det((xµ − 1)cν ).

For σ ∈ S and c ∈ C denote by cσ the n-tuple of cσ(i) and let C(c)
denote the set consisting of d ∈ C such that there exists σ ∈ S satisfying
d = cσ. Set

G′(b) =
∑

c∈C(b)

F (c).

By (3.3), we obtain

Va(x) =
∑

b∈C∗∪{s′}
G′(b).(3.4)

Furthermore we have

G′(b) =
∑

σ∈S
sgn(σ)

n−1∏

i=1

(
ai
bσ(i)

)
· det((xµ − 1)bν ),

and so
G′(b) = det

((
aµ
bν

))
· det((xµ − 1)bν ),

where the row and column indices ν and µ in both the determinants run
from 1 to n− 1.

In other words, we obtain

G′(b) = Cb(a′)Vb(x̃′),

and so
G′(b) = G(b)

because Vs′(x̃′) = Vs(x) and Vs′(a′) = Vs(a). Hence, by (3.4), equation (3.2)
follows.
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Now Lemma 2 follows easily from (3.2). It suffices to observe that

G(s′) =
Vs(a)Vs(x)
Vs(s)

,

which is clear from Q′s′(a
′) = 1 and P ′s′(x̃

′) = 1.

Lemma 3. Given n, c ∈ N (n ≥ 2) let a be an increasing n-tuple of
non-negative integers ai with a0 = 0 and let x be an n-tuple of distinct
2-integral rational numbers xi with x0 = 1 and xi ≡ 1 (mod 2c+1).

(i) If for b ∈ C∗ inequality (2.1) holds then inequality (3.1) also holds.
(ii) Inequality (2.1) holds for every b ∈ C∗ if and only if

c(b− i) + s2(b)− s2(i) > 0(3.5)

for every n ≤ b ≤ an−1 and 1 ≤ i ≤ n− 1.

Remark. Observe that, for i ≤ n − 1 and b ≥ n, (3.5) holds if either
b ≥ (n− 1) + k/c or i ≤ n− k/c.

Proof. (ii) is obvious, so we turn to (i). We first notice that P ′b(x̃′) ∈ Z[x′]
is a homogeneous polynomial of degree

∑n−1
i=1 bi −

∑n−1
i=1 i. Consequently,

since xi ≡ 1 (mod 2c+1), we obtain

ord2(P ′b(x̃′)) ≥ (c+ 1)
( n−1∑

i=1

bi −
n−1∑

i=1

i
)
,

which implies (3.1). It remains to make use of the formula ord2(t!) = t−s2(t)
(t ∈ N) and Lemma 3 follows at once.

Remark. Note that in Theorems 1, 2, 4 and 5 we may assume without
loss of generality that x0 = 1 (i.e. xi ≡ 1 (mod 2c+1)) and a0 = 0. Indeed, it
is easily seen that

Va(x) = x
(a0+a1+...+an−1)
0 Va(xx−1

0 ).

Consequently, we have

Va(x) = x
(a0+a1+...+an−1)
0

( n−1∏

i=1

xix
−1
0

)a0
Vã(xx−1

0 ),

where ã = a− a0 ·1. On the other hand we have Vs(x) = x
(n2)
0 Vs(xx−1

0 ) and
Vs(ã) = Vs(a). Thus it is sufficient to note that the n-tuples xx−1

0 and ã
satisfy the restricted assumptions. Consequently, in the proofs of Theorems
1, 2, 4 and 5 we may use Lemmas 2 and 3 which were proved under these
assumptions.
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4. Proof of Theorem 5. Write

B(b) = c
( n−1∑

i=1

bi −
n−1∑

i=1

i
)

+
n−1∑

i=1

s2(bi)−
n−1∑

i=1

s2(i).

For 1 ≤ r ≤ n− 1 and b ∈ C∗ let

Cr = {b ∈ C∗ : bi = i if i ≤ r − 1, br > r}.
Assume that b ∈ Cr and recall that s = s(b) denotes the number of i ∈
[1, n− 1] such that bi ≥ n. Since

n−1∑

i=n−s
bi ≥

s−1∑

i=0

(n+ i),

we have
n−1∑

i=r

bi −
n−1∑

i=r

i ≥
s−1∑

i=0

(n+ i)−
s−1∑

i=1

(n− i)− r = 2
s−1∑

i=1

i+ n− r.

Consequently, we obtain

n−1∑

i=1

bi −
n−1∑

i=1

i ≥ s(s− 1) + n− r.

Moreover the left hand side above equals s(s− 1) + n− r only if

b = (1, 2, . . . , r − 1, r + 1, . . . , n− s, n, n+ 1, . . . , n+ s− 1).

Furthermore let us observe that
n−1∑

i=n−s
bi ≥

s−u−1∑

i=0

(n+ i) +
u−1∑

i=0

(n+ s+ i),

where u denotes the number of terms of b exceeding n+ s− 1. Therefore

n−1∑

i=n−s
bi ≥

s−u−1∑

i=0

(n+ i) +
s−1∑

i=s−u
(n+ i+ u),

and in consequence

n−1∑

i=n−s
bi ≥

s−1∑

i=0

(n+ i) +
s−1∑

i=s−u
u =

s−1∑

i=0

(n+ i) + u2.

Thus we obtain
n−1∑

i=1

bi −
n−1∑

i=1

i ≥ s(s− 1) + n− r + u2.(4.1)
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Denote by k the number of digits in the base 2 expansion of n − 1. If
bn−1 < 2k+1 we have s2(bi) ≥ 2 for all bi ≥ n except at most one, and so

n−1∑

i=1

s2(bi)−
n−1∑

i=1

s2(i) ≥ 2(s− 1) + 1− (k + (k − 1)(s− 1))(4.2)

= −2− s(k − 3)

because s2(i) ≤ k and s2(i) = k for at most one i.
Denote by v the number of terms of b greater than 2k+1 − 1. We see at

once that n+ s− 1 ≤ 2(n− 1) ≤ 2k+1− 1, and so v ≤ u. Then, by (4.2), we
have

n−1∑

i=1

s2(bi)−
n−1∑

i=1

s2(i) ≥ 2(s− 1) + 1− v(k + (k − 1)(s− 1))

= −2− s(k − 3)− v.
Consequently, by (4.1) and c ≥ 1, we obtain

B(b) ≥ c(s(s− 1) + n− r)− 2− s(k − 3),

and hence

B(b) ≥ c
(
s2 − s

(
1 +

k − 3
c

)
+ n− r − 2

c

)
.(4.3)

The above yields (2.1) (B(b) > 0) in the case when b ∈ Cr with

r < n− 2
c
−
(
k − 3 + c

2c

)2

= n− k + 1
2c
−
(
k − 3

2c

)2

− 1
4
.

In this case the discriminant

D =
(

1 +
k − 3
c

)2

− 4
(
n− r − 2

c

)

of the quadratic polynomial

s2 −
(

1 +
k − 3
c

)
s+ (n− r)− 2

c

is negative.
By the definition of s, it follows that s ≤ n − r if b ∈ Cr. Therefore, in

view of (4.3), we have

B(b) ≥ c
(
s2 − s k − 3

c
− 2
c

)
.(4.4)

Hence we see that B(b) > 0 if

s >
k − 3

2c
+

√(
k − 3

2c

)2

+
2
c
.(4.5)
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For b ∈ Cr let b′ = (b′1, . . . , b
′
n−1) denote the sequence with b′i = i if

i ≤ r and b′i = bi−1 if r + 1 ≤ i ≤ n− 1. Since

card{i : 1 ≤ i ≤ n− 1, b′i ≥ n} = s− 1,

by (4.4) we obtain

B(b′) ≥ c(s− 1)2 − (s− 1)(k − 3)− 2.

On the other hand, we have

B(b)−B(b′) = c(bn−1 − r) + s2(bn−1)− s2(r)

≥ c(bn−1 − (n− s)) + 1− (k − 1).

Consequently, if s ≥ 2 we obtain

B(b) ≥ c((s− 1)2 + bn−1 − (n− s))− s(k − 3)− 3.

The above inequality also holds for s = 1 because in this case we have

B(b) = c(bn−1 − r) + s2(bn−1)− s2(r) ≥ c(bn−1 − (n− 1)) + 1− k.
Hence, as s ≥ 1, we deduce that

B(b) ≥ c(bn−1 − (n− 1))− (k − 3)s− 3.

Combining the above with the reverse inequality to (4.5) gives

B(b) ≥ c(bn−1 − (n− 1))− (k − 3)
(
k − 3

2c
+

√(
k − 3

2c

)2

+
2
c

)
− 3.

Thus B(b) > 0 if

bn−1 > n− 1 +
1
c

(
(k − 3)

(
k − 3

2c
+

√(
k − 3

2c

)2

+
2
c

)
+ 3
)
,

which completes the proof of Theorem 5.

5. Proof of Theorem 1. The proof of Theorem 1 is a consequence of
the following two lemmas.

Lemma 4. In the notation before the statement of Theorem 1 we have

min
b>n−1

(c(b− n+ 1) + s2(b)− s2(n− 1)) = min(c,H0,H1, . . . ,H%) + 1.

Proof. Observe that

n− 1 =
%∑

j=0

(2p2j+1 − 2p2j ).

For 1 ≤ k ≤ % define

a′k =
%∑

j=k

(2p2j+1 − 2p2j ), ak = a′k + 2p2k−1 .
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Write
a0 = n, a%+1 = 2p2%+1 , a%+2 =∞.

For 0 ≤ k ≤ %+ 1 and ak < b < ak+1 we have

c(b− ak) + s2(b)− s2(ak) > 0

because c(b− ak) > 0 and

s2(b)− s2(ak) = s2(b− a′k)− s2(ak − a′k) = s2(b− a′k)− 1 ≥ 0.

Therefore for 1 ≤ k ≤ %+ 1 we have

min
ak≤b<ak+1

(c(b− n+ 1) + s2(b)− s2(n− 1))

= c(ak − n+ 1) + s2(ak)− s2(n− 1) = Hk−1 + 1.

If l0 > 0 we have

min
a0≤b<a1

(c(b− n+ 1) + s2(b)− s2(n− 1))

= c(a0 − n+ 1) + s2(a0)− s2(n− 1) = c+ 1.

Observe also that if l0 = 0 then a0 = a1 and H0 ≤ c+1. The lemma follows,
since a0 ≤ a1 < . . . < at+1 < at+2 =∞.

Lemma 5. In the notation before the statement of Theorem 1 we have

min
0≤b<n−1

(c(n− 1− b) + s2(n− 1)− s2(b)) = min(H ′0,H
′
1, . . . ,H

′
%) + 1.

Proof. This follows from Lemma 4 by symmetry (i.e. by interchanging
digits 0 and 1 and switching inequalities).

Proof of Theorem 1. By Lemmas 4 and 5, the inequality

c(b− i) + s2(b)− s2(i) > 0

holds for all b > n − 1 and i ≤ n − 1 if and only if both assumptions of
Theorem 1 are satisfied. Consequently, Theorem 1 follows by Lemma 3(ii).

Proof of the Corollary to Theorem 1. The inequalities with j odd, in the
hypothesis of the Corollary, imply that Hk ≥ 0 for all 0 ≤ k ≤ %. Similarly,
the inequalities with j even give H ′k ≥ −1 for all 0 ≤ k ≤ %. Consequently,
the assumptions of Theorem 1 are satisfied and the Corollary follows.

6. Proofs of Theorems 2, 3 and 4

Proof of Theorem 2. We shall define a sequence (nν)ν≥1 of distinct nat-
ural numbers by induction on ν such that the expansion of nν − 1 in base 2
has 2ν blocks D2ν−1 . . .D1D0 and the lengths of these blocks l0, l1, . . . , l2ν−1
satisfy the assumptions of the Corollary to Theorem 1 for the fixed c. Write,
by definition, n1 = 2. The expansion of n1 − 1 in base 2 is D1D0, where
D1 = 1 and D0 is empty, so the assumptions of the Corollary to Theo-
rem 1 are satisfied. Assume that we have defined nν such that the expansion
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D2ν−1 . . .D1D0 of nν−1 in base 2 satisfies the assumptions of the Corollary.
Then we define

nν+1 = D2ν+1D2ν . . .D1D0 + 1,

where the lengths l2ν−1 and l2ν satisfy

l2ν−1 ≤ c2p2ν−3(2l2ν−2 − 1), l2ν ≤ c2p2ν−2(2l2ν−1 − 1).

It is easily seen that the numbers l0, l1, . . . , l2ν+1 satisfy the assumptions of
the Corollary, which gives the assertion.

Proof of Theorem 3. Let t ≥ 1. Set

a = (0, 1, . . . , n− t− 1, n− t+ 1, n− t+ 2, . . . , n).

Then by Lemma 1 we obtain Pa(x) = ±τt(x). On the other hand, in this
case we have

Vs(a)
Vs(s)

=
(
n

t

)
.

Therefore the left hand side of identity (1.1) minus ord2 Vs(x) becomes
ord2(τt(x)) and the right hand side of this identity minus ord2 Vs(x) equals
ord2

(
n
t

)
. In particular, if t = 1 we have

a = (0, 1, . . . , n− 2, n)

and the left hand side of (1.1) minus ord2 Vs(x), becomes ord2(τ1(x)), while
the right hand side of the equation minus ord2 Vs(x) is equal to ord2 n, where
τ1(x) =

∑n−1
i=0 xi.

Set τ = card{i ∈ [0, n − 1] : xi ≡ 1 + 2c+1 (mod 2c+2)}. It suffices to
consider n and x satisfying 2c+1 |n and τ odd. Indeed, we have

τ1(x) ≡ n+ τ2c+1 (mod 2c+2).

Thus if 2c+1 ‖n we have

ord2(τ1(x)) ≥ c+ 2,

and hence the former inequality of Theorem 3 holds. If 2c+2 |n we have

ord2(τ1(x)) = c+ 1,

and then the latter inequality of Theorem 3 holds.

Proof of Theorem 4. Given n it is sufficient to set

c0 = max
(
l0 − 1,

l1
2l0
, max

2≤j≤l−1

(
lj

2pj−2(2lj−1 − 1)

))
.

Then the assumptions of the Corollary to Theorem 1 are satisfied and iden-
tity (1.1) holds for any a and x with xi ≡ xj (mod 2c+1).

7. Examples, counter-examples and computations. This section
explains how one can compute examples and counter-examples to (1.1) for
quite large n.
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7.1. Good numbers. In order to simplify the rest of the discussion let
us make the following definitions. Let n, c ∈ N (n ≥ 2). Recall that k
denotes the number of digits in the base 2 expansion of n−1 and for a given
(n − 1)-tuple b, s = s(b) denotes the number of i ∈ [1, n − 1] such that
bi ≥ n.

Definition 1. Fix n, c ∈ N (n ≥ 2). An increasing (n− 1)-tuple b not
satisfying inequality (2.1) will be called n-suspicious.

Remark. Note that from the proof of Theorem 5 it follows that all
n-suspicious sequences b satisfy

s(b) ≤ k − 3
2c

+

√(
k − 3

2c

)2

+
2
c

and belong to Γr, where r is the smallest integer such that

r ≥ n− k + 1
2c
−
(
k − 3

2c

)2

− 1
4
.

Observe that for fixed n, c ∈ N the number of such sequences is finite.

Definition 2. Fix n, c ∈ N (n ≥ 2). We say that n is good if it satisfies
the assumptions of Theorem 1.

Remark. Note that n is good if and only if n satisfies inequality (3.5)
for all b and i such that

n ≤ b < (n− 1) +
k

c
and n− k

c
< i ≤ n− 1.

Moreover, note that by Theorem 1 identity (1.1) holds for all good n. A nat-
ural number n not being good is said to be non-good .

By Theorem 5 the only possible counter-examples to (1.1) occur when
there are suspicious sequences in C∗. Thus in order to find counter-examples
we start with a search for suspicious sequences. We wrote a C program to
check each n to first determine whether n is good. If n is non-good we check
inequality (2.1) for sequences b ∈ Γr, where s(b) and r are the same as
in the remark after Definition 1. In order to speed up this program it is
very useful to precompute the s2 function for arguments a little beyond the
biggest n you will be considering.

1. For c = 2 this program finds all suspicious sequences up to n = 104 in
about 36 hours. All 4 < n < 104 that are not good are determined by nine
arithmetical progressions:

n ≡ 0 (mod 23), n ≡ ±1 (mod 26), n ≡ ±2 (mod 28),

n ≡ ±3 (mod 211), n ≡ ±4 (mod 212).
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2. For c = 1 the program is much slower. The program could only get up
to n = 28 after 4 days. All non-good 2 < n ≤ 28 are determined by seven
arithmetical progressions:

n ≡ 0 (mod 22), n ≡ ±1 (mod 24),

n ≡ ±2 (mod 25), n ≡ ±3 (mod 27).

The number of n-suspicious sequences for c = 1 and n ≤ 28 is several times
greater than the number of n-suspicious sequences for c = 2 and n < 104.

7.2. Modified Wójcik’s sequences. Many counter-examples we know are
related to the so-called Wójcik sequences defined in Theorem 6 below, and
the main motivation for this paper was a conjecture made by A. Wójcik
(private communication) several years ago.

Theorem 6 (Wójcik’s Conjecture, see [4, Proposition 4]). For

w = (w0, w1, . . . , wn−1), v = (v0, v1, . . . , vn−1),

where

wi = 2(−1)i(2i+ 1)− 1, vi = −2(−1)i(2i+ 1)− 1 (0 ≤ i ≤ n− 1)

and every a we have

ord2 Va(w) = ord2 Va(v) = 3
(
n

2

)
+ ord2 Vs(a).

We shall make use of some modifications of the sequences w and v. For
an n-tuple u = (u0, u1, . . . , un−1) define

u(s) = (u0, u1, . . . , ûs, . . . , un−1),

where the hat denotes omission.
For every n, a and 0 ≤ s, t ≤ n−1 identity (1.1) for the modified Wójcik

sequences w(s) and v(s) takes the form

(7.1) ord2(Va(t)(w(s))) = ord2(Va(t)(v(s)))

= 3
(
n− 1

2

)
+ ord2

((
n− 1[
n+s

2

]
))

+ ord2

( ∏

0≤j<i≤n−1
i,j 6=t

(ai − aj)
)
.

As was already mentioned, Wójcik’s Conjecture was proved in [4]. We
shall show that the above identity is false for some n, a, s and t, which gives
many counter-examples to identity (1.1).

7.3. Computations with Wójcik’s sequences. Knowing non-good n does
not give counter-examples, it only shows where to look for them. We still
need to find a and x and compare the two sides of (1.1). We therefore need
to be able to compute terms of (1.1) for large values of n. This is made
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possible by Lemma 1 provided that we can compute τr(x) quickly even for
large n. This in turn is possible if x has a simple structure.

If the terms of x are given in a polynomial form, for instance if xi =
4i + 1, we can use the following technique to compute formulas for τr(x)
for moderately sized r (say r ≤ 20) and any n. We use Mathematica. Its
Sum function can do symbolic summation, and as τ1(x) is just a sum of
polynomial terms Mathematica can compute the formula for τ1(x) as a
polynomial in n.

Now we use the recursive relation (1.3) for τr(x), in the form

τr(x) =
n−1∑

i=0

xn−1−iτr−1(x0, x1, . . . , xn−2−i).

If τr−1(x) is known as a polynomial in n, this sum is a sum of polynomials
and again Mathematica can compute the sum symbolically (it knows the
power summation formulas for consecutive integers). As an example, the
Mathematica code below will compute the formulas for τr(x) in the case
where xi = 1 + 4i for all r ≤ 10.

taurx[r_/; r < 0,n_] := 0;
taurx[0,n_] := 1;

x[i_] := 1+4*i;

taurx[r_,n_] := taurx[r,n_] = Simplify[
Sum[x[n-1-i]*taurx[r-1,n-1-i],{i,0,n-1}]]

Do[taurx[r,n];Print[taurx[r,n]],{r,1,10}]

This will work for x being any polynomial in i.
We would like to do the above in the case x = w. Now the terms of w

are not polynomials, but note that w2i and w2i+1 are polynomials in i. This
allows us, for each r, to compute τr(w), for w of length 2i, as a polynomial
in i by a simple modification of the method outlined above; and similarly
for τr(w) with w of length 2i+ 1.

7.4. Counter-examples. We consider the case when c = 2. The other
cases can be considered in the same way, but for c = 1 the program is much
slower. We shall look for counter-examples to (1.1) for n-tuples a and x with
xi ≡ xj (mod 2c+1) of the following form. Given ν ∈ N let c be a ν-tuple
complementary to a with respect to the standard (n + ν)-tuple. Similarly,
given µ ∈ N let w denote Wójcik’s (n + µ)-tuple. Let j be a µ-tuple which
is a subsequence of the standard (n+ µ)-tuple. Set

i = n · 1− j and d = n · 1− c.
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Let x be a complementary n-tuple to the tuple x̄ = (wjµ−1 , . . . , wj1 , wj0)
with respect to the tuple w.

We will look for counter-examples to (1.1) with a and x of the above
form where ν and µ are small. Above we have already seen how to evaluate
τr(w). We then use this, combined with the following recursive formula, to
efficiently evaluate τr(x) for x of the above form. We have

τr(x) = τr(w)−
µ∑

i=1

τi(x̄)τr−i(x).

This can be quickly evaluated if µ is small.
To evaluate ord2(Vs(a)/Vs(s)), we use the formula

Vs(a)
Vs(s)

=

n+ν−1∏
i=n

i!
∏

0≤k<m≤ν−1
(cm − ck)

ν−1∏
k=0

ck!
ν−1∏
k=0

(n+ ν − 1− ck)!
,

which follows from (1.2). This can be quickly evaluated if ν is small.
For each non-good n we looked for examples of tuples a and x such

that (1.1) does not hold. It turned out that we could find such counter-
examples for all non-good n < 104. It even happened that the form of the
first counter-example we found for a given n turned out to also work for other
n’s satisfying the same congruence condition. We can therefore present our
counter-examples very compactly in Table 1. In this table we list, for each
congruence giving n, d and i which give a and x respectively such that (1.1)
does not hold.

Table 1. Counter-examples to (1.1) given by (d, i) for all non-good n ∈ (4, 104)
with c = 2

n ≡ 0 (mod 23) ±1 (mod 26) ±2 (mod 28) ±3 (mod 211) ±4 (mod 212)

d 1 2, 0 3, 1,−1 4, 2, 0,−2 5, 3, 1,−1,−3
i 2 1, 2 0, 1, 4 −1, 0, 3, 4 −2,−1, 2, 3, 6

Note that the first column of Table 1 gives counter-examples to equation
(7.1). We looked for and found more counter-examples to this identity. Of
course the identity is true for all good n and any a. For the non-good n < 104

we checked the equation for all n−60 ≤ s < n and all c such that ν < 7 and d
is a subsequence of (1, 2, . . . , 10). The counter-examples we found suggested
certain patterns. That these patterns do give counter-examples for all s
was then checked by applying Mathematica to simplify the corresponding
expressions. All known counter-examples to equation (7.1) are presented in
Table 2. For each of a number of congruences that n should satisfy, we list
d and n − s, which define a and s. The counter-example is then given by
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Table 2. Counter-examples to equation (7.1)

n ≡ d n− s
0 (mod 23) 1 even and ord2(n− s) ≤ ord2(n)− 2

odd and ord2(n− s− 1) ≤ ord2(n)− 2
27 + 1 (mod 28) 2, 0 6≡ 0, 1, 2, 3 (mod 23)
28 + 1 (mod 29) 2, 0 6≡ 0, 1, 2, 3 (mod 24)
29 + 1 (mod 210) 2, 0 6≡ 0, 1, 2, 3 (mod 25)
29 + 2 (mod 210) 3, 1,−1 ≡ 6, 7 (mod 23)
210 + 1 (mod 211) 2, 0 6≡ 0, 1, 2, 3 (mod 26)
210 + 2 (mod 211) 3, 1,−1 ≡ 6, 7, 10, 11, 14, 15 (mod 24)
211 + 1 (mod 212) 2, 0 6≡ 0, 1, 2, 3 (mod 27)
211 + 2 (mod 212) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 16, 17, 20, 21 (mod 25)
212 + 1 (mod 213) 2, 0 6≡ 0, 1, 2, 3 (mod 28)
212 + 2 (mod 213) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 32, 33, 36, 37 (mod 26)
213 + 1 (mod 214) 2, 0 6≡ 0, 1, 2, 3 (mod 29)
213 + 2 (mod 214) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 64, 65, 68, 69 (mod 27)

a and w(s). All known s are listed but there are other c’s that would also
give counter-examples for a given s.

7.5. Concluding remarks. Let c = 2. We shall now describe a method
for producing large sets of counter-examples to identity (1.1). In this case
Theorem 1 describes all n < 104 for which this identity holds for any a and
x with xi ≡ xj (mod 2c+1). For every non-good n we used the method to
produce a set Φ of a tuples and a set Ψ of x tuples such that equation (1.1)
does not hold for any a ∈ Φ and any x ∈ Ψ .

We make use of equation (3.2). As in the proof of Theorem 5, let

B(b) = c
( n−1∑

i=1

bi −
n−1∑

i=1

i
)

+
n−1∑

i=1

s2(bi)−
n−1∑

i=1

s2(i).

That is, for a suspicious b we have B(b) < 0. Let us define a partial
order on vectors, by saying a < b if and only if ai < bi for every i.
For every non-good n < 104 there is an n-suspicious tuple b that is <-
smaller than all other suspicious sequences. Denote this minimal b by bn.
For a given non-good n let Ω be the set of b such that B(b) ≤ B(bn).
Let

qn(b,x) =
P ′b(x̃′)

n−1∏
i=1

i!

n−1∏
i=1

bi!
.

Note that we proved that ord2(qn(b,x)) ≥ B(b) for all x and b ∈ Ω. It turns
out that we could always find many x such that ord2(qn(bn,x)) = B(bn)
and ord2(qn(b,x)) > B(bn). Let the set of such x be denoted by Ψ . If we can
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find a such that ord2(Q′bn(a′)) = 0, then it follows from equation (3.2) that
(1.1) does not hold for this a and any x ∈ Ψ . We do not want to evaluate
Q′bn(a′) by evaluating the determinant itself. We overcome this problem by
noting that for a fixed x ∈ Ψ we shall have ord2(Q′bn(a′)) = 0 if and only if

ord2 Va(x)− ord2 Vs(x)− ord2 Vs(a) + ord2 Vs(s) = B(bn).

We have already shown how to evaluate the left hand side of this equation
quickly. Using this we found many a satisfying this equation (for some x ∈ Ψ ,
and therefore all x ∈ Ψ). This gives the set Φ. This method was used to find
Ψ with 10 elements and Φ with 10 elements for each non-good n < 104, that
is, 100 counter-examples to (1.1) for each such n.
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