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1. Introduction. For an irreducible form F ∈ Z[X,Y ] of degree at
least 3 and a nonzero integer m, the Diophantine equation

F (X,Y ) = m

is called a Thue equation in honour of A. Thue, who proved in 1909 [19]
that the number of its solutions in integers is finite. Thue’s result is not
effective, but in 1968, A. Baker [1] gave an upper bound for the solutions
using his lower bounds for linear forms in logarithms of algebraic numbers.
Since then, algorithms for the solution of single Thue equations have been
developed (see Pethő and Schulenberg [14], Tzanakis and de Weger [20], and
Bilu and Hanrot [4]).

In 1990, E. Thomas [17] considered for the first time a parametrized
family of cubic Thue equations of positive discriminant. In the last decade,
several such families of degrees 3 to 6 have been investigated (see [8] for
further references). In all these families, there were only two types of solu-
tions: Firstly, there are polynomial solutions X(a), Y (a) ∈ Z[a] which satisfy
F (X,Y ) = ±1 in Z[a], and secondly, there may be some further solutions
for special (small) values of the parameter.

The family of Thue equations

aXn − bY n = ±1

has been considered by several authors. Bennett [3] recently showed that for
ab 6= 0 and n ≥ 3 this equation has at most one solution in positive integers
(x, y).

A further step is the investigation of classes of parametrized families of
arbitrary degree such as
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(1) Fa(X,Y ) :=
n∏

i=1

(X − pi(a)Y )− Y n = ±1, a ∈ N,

where p1, . . . , pn ∈ Z[a] are polynomials, which have been called split fami-
lies by E. Thomas [18]. For i = 1, . . . , n it can be easily seen that (X,Y ) ∈
{±(pi, 1), (±1, 0)} are polynomial solutions. Thomas conjectured that if

p1 = 0, 0 < deg p2 < . . . < deg pn

and the polynomials are monic, there are no further solutions for sufficiently
large values of the parameter a. In [18] he proved this conjecture for n = 3
under some technical hypothesis.

Halter-Koch, Lettl, Pethő and Tichy [6] considered (1) for p1 = 0, p2 =
d2, . . . , pn−1 = dn−1 and pn = a, where d2, . . . , dn−1 are distinct fixed inte-
gers. They found all solutions for sufficiently large values of a assuming a
conjecture of Lang and Waldschmidt [10]—which is a very sharp bound for
linear forms in logarithms of algebraic numbers—provided that the corre-
sponding number field is primitive (i.e. Q is the only proper subfield), which
is the case for almost all choices (in the sense of thin sets) of the parameters.

The first unconditional result on split families of arbitrary degree has
been given in [7], where (1) has been considered for p1 = −a, p2 = d2, . . .
. . . , pn−1 = dn−1 and pn = a, where d2, . . . , dn−1 are distinct fixed integers.
If
∑

i di 6= 0 or
∏
i di 6= 0, then the only solutions are polynomial solutions

with |Y | ≤ 1.
In [9], Heuberger and Tichy considered a multivariate version of (1): Let

pi ∈ Z[a1, . . . , ar] for some r ∈ N. Assume

deg p1 < . . . < deg pn−2 < deg pn−1 = deg pn,

LH(pn) = LH(pn−1), but pn 6= pn−1,

where LH(p) denotes the homogeneous part of maximal degree of a poly-
nomial p, and suppose that the polynomials pi satisfy suitable growth con-
ditions. Then there is a constant t0 such that for all a1, . . . , ar satisfying
t0 ≤ mink ak and maxk ak ≤ (mink ak)τ the Diophantine equation (1) has
only polynomial solutions with |Y | ≤ 1, where τ > 1 is an explicitly given
constant (depending on the degrees of the polynomials only).

These two results depend heavily on the symmetric nature of the poly-
nomials pi. In this paper, we shall prove Thomas’ conjecture for a very large
class of polynomials pi, subject only to certain technical conditions on the
degrees of the pi.

After the presentation of the results in this section we shall, in Section 2,
give some comments on the technical hypothesis occurring in our Theorems 1
and 2 and we will discuss its relation to Thomas’ technical hypothesis in the
case n = 3. In Sections 3 and 4 we collect and adapt standard material for
the solution of parametrized Thue equations. In Section 5 we will present
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the main idea to exclude “small” solutions, which will be carried out in
detail in Sections 6 and 7. In Section 8 we will exclude “large” solutions
using Baker’s method via application of a result of Bugeaud and Győry [5].
Finally we will prove a weaker formulation of the technical hypothesis in
Section 9.

The main result of the present paper is

Theorem 1. Let n ∈ N, n ≥ 4 and pi ∈ Z[a] be monic polynomials for
i = 1, . . . , n. Write di := deg pi,

(2) ei := (i− 1)di +
n∑

l=i+1

dl

and allow p1 = 0 (set d1 = −1 in this case). Moreover , define recursively

(3) ψi :=
(e2 + d2)(di+1 − d3)

ei+1 + di+1
+

i−1∑

h=3

di+1 − dh+1

ei+1 + di+1
ψh, 3 ≤ i ≤ n− 1.

If ψi ∈ N for all 3 ≤ i ≤ n− 1, for (j, j′) ∈ {(1, 2), (2, 1)} define

Q+
j := (p3 − pj)e1+d3

n∏

k=4

(pk − p3)ψk−1 ,

Q−j := (p2 − p1)e1+2d3−d2(p3 − pj′)2(d3−d2)
n∏

k=4

(pk − pj′)ψk−1+d3−d2 .

Assume
(4) d1 < d2 < . . . < dn−1 < dn.

If there is a 3 ≤ k ≤ n− 1 such that ψk 6∈ N or if

(5) deg(Q+
j −Q−j ) > degQ−j − e1 − d2

for (j, j′) = (1, 2) and for (j, j′) = (2, 1), then there is a (computable)
constant a0 = a0(p1, . . . , pn) depending on the coefficients of the polynomials
pi such that for all integers a ≥ a0 the Diophantine equation

(6) Fa(X,Y ) :=
n∏

i=1

(X − pi(a)Y )− Y n = ±1

has only the solutions
(7) (±1, 0) and ±(pi(a), 1), 1 ≤ i ≤ n.

The case n = 3 has been excluded in the formulation of Theorem 1
in order to avoid any ambiguities; it is stated explicitly in the following
theorem:

Theorem 2. Let p1, p2, p3 ∈ Z[a] be monic polynomials. Write di :=
deg pi,

ei := (i− 1)di +
3∑

l=i+1

dl
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and allow p1 = 0 (set d1 = −1 in this case). For (j, j′) ∈ {(1, 2), (2, 1)}
define

Q+
j := (p3 − pj)e1+d3 , Q−j := (p2 − p1)e1+2d3−d2(p3 − pj′)2(d3−d2).

Assume
(8) d1 < d2 < d3 and d2 ≥ 1.

If
(9) deg(Q+

j −Q−j ) > degQ−j − e1 − d2

for (j, j′) = (1, 2) and for (j, j′) = (2, 1), then there is a (computable)
constant a0 = a0(p1, p2, p3) depending on the coefficients of the polynomials
pi such that for all integers a ≥ a0 the Diophantine equation

(10) Fa(X,Y ) :=
3∏

i=1

(X − pi(a)Y )− Y n = ±1

has only the solutions

(±1, 0) and ±(pi(a), 1), 1 ≤ i ≤ 3.

We remark that if d2 = 0, i.e. p1 = 0, p2 = 1 and deg p3 ≥ 1, the
assertion of the theorem is false since Fa(p3 − 3, p3 − 2) = −1. See however
Lee [11], Mignotte and Tzanakis [13], and Mignotte [12], where all solutions
of this family are determined.

We also give a weaker formulation of the technical hypothesis:

Corollary 3. Let n ∈ N, n ≥ 3 and pi ∈ Z[a] be monic polynomials
for i = 1, . . . , n. Write

pi(a) = adi + cia
di−1 + terms of lower degree, i = 2, . . . , n,

allow p1 = 0 and assume (4). If n = 3, assume (8). Let

δi :=
{

1 if di − di−1 = 1,
0 otherwise

and
e :=

n∑

i=2

di.

If δ4 = 1 or

(11) (e− d2 + 2d3)(c2 − δ2) + (−e− 2d2 + d3)c3 + (d3 − d2)
n∑

i=4

ci

6∈ {2δ3,−(e+ d3)δ3},
then there is a (computable) constant a0 = a0(p1, . . . , pn) depending on
the coefficients of the polynomials pi such that for all integers a ≥ a0 the
Diophantine equation (6) has only the solutions (7).

If the technical hypothesis in Theorem 1 is checked for small degrees, the
following corollary is obtained.
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Corollary 4. Let n ∈ N, n ∈ {4, 5} and pi ∈ Z[a] be monic polynomi-
als for i = 1, . . . , n, where we allow p1 = 0. If

(12)
max(deg p1, 0) < deg p2 < deg p3 < . . . < deg pn,

max(deg p1, 0) + deg p2 + . . .+ deg pn < 15,

then there is a (computable) constant a0 = a0(p1, . . . , pn) depending on
the coefficients of the polynomials pi such that for all integers a ≥ a0 the
Diophantine equation

Fa(X,Y ) =
n∏

i=1

(X − pi(a)Y )− Y n = ±1

has only the solutions (7).

Note that for n ≥ 6 condition (12) cannot hold since
∑

deg pi ≥ 0+1+. . .
. . .+ (n− 1).

2. About the technical hypothesis. Obviously, it is easy to check the
technical hypothesis in Theorems 1 and 2 for a given set of polynomials pi.
Therefore we shall discuss the problem with given degrees d1, . . . , dn and
unknown coefficients of the polynomials pi. By the definition of ψi in (3) we
see that it is rather unlikely that all ψi are integers, especially if n is large.

If the ψi are indeed all integers, (5) implies that the max(0, d1)+
∑n

i=2 di
unknown coefficients satisfy a system of e1 + d2− 1 algebraic equations. We
may further assume that the coefficient of adn−1 in pn(a) vanishes, since we
can replace the problem involving pi(a) by that involving pi(a− 1).

Hence we have e1 + d2 − 1 equations in e1 + max(0, d1) − 1 unknowns;
if we exclude (d1, d2) = (−∞, 0)—which has also been excluded by Thomas
in the statement of his conjecture—we have an overdetermined system of
algebraic equations. Of course, this system is expected not to have even
complex solutions and integer solutions seem to be rather unlikely.

The result of such studies for small degrees is given in Corollary 4, where
we excluded again the case (d1, d2) = (−∞, 0).

Proof of Corollary 4. In order to prove Corollary 4 we only have to check
the assumptions of Theorem 1. For n = 5, there are no degrees deg pi such
that (12), ψ3 ∈ N and ψ4 ∈ N hold.

For n = 4, there are only 13 sets {d1, . . . , d4} which satisfy both (12) and
ψ3 ∈ N. For those degrees we calculate the systems of algebraic equations
corresponding to (5) modulo 5 and 7 (using Pari [2]) and calculate a reduced
Gröbner basis over Zm (m ∈ {5, 7}) with respect to the total degree ordering
of the power products (using the program Gröbner [21]). In all cases, the
Gröbner basis consists for at least one of the moduli 5 and 7 of the poly-
nomial 1 only. Therefore the systems of algebraic equations have no integer
solutions, which proves (5); thus the assertion follows from Theorem 1.
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In order to compare the technical hypothesis in Theorem 2 with Thomas’
technical hypothesis [18], we note that in the case considered in [18], we have
p1 = 0 and deg p2 > 0. Obviously, (9) is equivalent to

log
Q−j
Q+
j

= log
(

1 +
Q−j −Q+

j

Q+
j

)
= Ω

(
1

ae1+d2−1

)
.

We calculate

log
(
Q−1
Q+

1

)
= 3 log

pd3
2

pd2
3

+ 2(d3 − d2) log
(

1− p2

p3

)

= 3W (a)− 2(d3 − d2)a−(d3−d2)(1 +O(a−1)),

and

log
(
Q−2
Q+

2

)
= 3 log

pd3
2

pd2
3

− (d2 + 2d3) log
(

1− p2

p3

)

= 3W (a) + (d2 + 2d3)a−(d3−d2)(1 +O(a−1)),

where

1 + Pi(a) = pi/a
di , i = 2, 3,

W (a) =
∞∑

k=1

(−1)k+1

k
(d3P

k
2 − d2P

k
3 ) =

∞∑

k=1

wk
ak

is as in [18, (1.9)–(1.11)]. It is easily seen that Thomas’ definition of a regular
family [18, (1.12)] is equivalent to

log
(
Q−j
Q+
j

)
= Ω

(
1

ad3−d2

)
.

Since d3 − d2 < e1 + d2 − 1 = 2d2 + d3 − 1, this implies (9), therefore
Theorem 2 improves Thomas’ Theorem 2.

3. Preliminaries. We first consider solutions (x, y) with |y| ≤ 1.

Lemma 5. The solutions (x, y) ∈ Z2 of (6) with |y| ≤ 1 are precisely
those listed in (7), if a is large enough.

Proof. The pairs (x, y) listed in (7) are clearly solutions of (6).
Conversely, y = 0 implies x = ±1. If |y| = 1, we have

∏
(x− pi(a)y) = 0,

which yields the solutions listed in (7), or

(13)
n∏

i=1

(x− pi(a)y) = 2u, u = ±1.

By (4) the factors of this product are pairwise distinct for sufficiently large
a, and consequently for n ≥ 4, (13) is impossible.

Assume n = 3. Then we may have x − p1(a)y = k1, x − p2(a)y = k2,
x − p3(a)y = k3 for {k1, k2, k3} = {−1, 1,−2u}. This implies that
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(p3(a)− p2(a))y− (k2−k3) = 0, which has only a finite number of solutions
a by (4), thus (13) has no solutions for large a.

Consider the polynomial fa(X) := Fa(X, 1). We will need asymptotic
estimates for its roots α(1), . . . , α(n). Throughout this paper, we will use O-,
Ω- and Θ-notation for a → ∞: Let f, g : R → R. If there are constants
C and a0 such that |f(a)| ≤ g(a) (resp. |f(a)| ≥ g(a)) for all a ≥ a0, we
write f(a) = O(g(a)) (resp. f(a) = Ω(g(a))). If both f(a) = O(g(a)) and
f(a) = Ω(g(a)) hold, then we write f(a) = Θ(g(a)). For brevity, we will
write pi instead of pi(a) in many situations.

We get a statement which is similar to that of Lemma 5 of [9]:

Lemma 6. All roots of fa(X) are real and can be estimated as

α(i) = pi +
(−1)n−i

aei
+O

(
1

aei+1

)
, 1 ≤ i ≤ n.

Proof. We fix some 1 ≤ i ≤ n and set

αi,M := pi +
(−1)n−i

aei

(
1 +

M

a

)
,

where M is a constant which will be chosen later.
Equality (2) and inequality (4) imply

(14) ei = (i− 1)di +
n∑

j=i+1

dj =
∑

j 6=i
deg(pi − pj)

and ei ≥ 3 for n ≥ 3.
This yields for j 6= i,

(15) αi,M − pj = adeg(pi−pj)(−1)σij
(

1 +
cij
a

+O

(
1
a2

))
,

where cij ∈ Z depends on the coefficients of pi and pj and

σij =
{

0 if i > j,
1 if i < j.

We calculate an asymptotic expansion for f(αi,M ) using (14) and (15):

f(αi,M ) =
(−1)n−i

aei

(
1 +

M

a

)∏

j 6=i
(αi,M − pj)− 1

=
(

1 +
M

a

)∏

j 6=i

(
1 +

cij
a

+O

(
1
a2

))
− 1

=
1
a

(
M +

∑

j 6=i
cij

)
+O

(
1
a2

)
.
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We can choose constants M1 and M2 in such a way that M1 +
∑

j 6=i cij > 0
and M2 +

∑
j 6=i cij < 0, which implies that f(αi,M1)f(αi,M2) < 0 for suf-

ficiently large a. As a result we have found a zero of f between αi,M1 and
αi,M2 if a is large enough.

4. Associated number field. Since fa is an irreducible polynomial for
sufficiently large a by [7, Proposition 3] and (4), the number field K := Q(α)
generated by one of the roots α of fa has degree n over Q.

If (x, y) ∈ Z2 is a solution of (6), then

(16) NK/Q(x− αy) = F (x, y) = ±1,

hence x−αy is a unit in O := Z[α]. Therefore, we will describe the structure
of the unit group O×.

We define
ηi := α− pi.

Since fa(α) = 0 we have
∏
i ηi = 1, which implies that ηi is a unit in O.

We will show that ηi, i = 1, . . . , n− 1, are “sufficiently close” to funda-
mental units of O×. In order to estimate the index of the group generated by
these units, we will need a lower bound for the regulator of the unit group.
Since logarithmic terms do not matter for our purposes, we can take any
regulator estimate, for instance that of Remak [16].

Lemma 7 (Remak). Let K be a totally real number field. Then the reg-
ulator RK satisfies

RK > 0.001.

We give an asymptotic description of the η(k)
i . To simplify notation, we

define the abbreviation l(k)
i := log |η(k)

i |.
Lemma 8. Let 1 ≤ i, k ≤ n, m := min(i, k) and M := max(i, k). Then

l
(k)
i = log(pM − pm) +O

(
1

aem+dM

)
, i 6= k.

Moreover , there are rM,m,l ∈ Q for l = 0, . . . , e1 + dM − 1 depending only
on the coefficients of ps, s = 1, . . . , n, such that

l
(k)
i = rM,m,0 log a+

e1+dM−1∑

l=1

rM,m,l

al
+O

(
1

ae1+dM

)
.

In particular ,

l
(k)
i =

{
dM log a+O(1/a) if i 6= k,
−ei log a+O(1/a) if i = k.
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Proof. Assume i 6= k. By Lemma 6 we obtain

l
(k)
i = log |α(k) − pi| = log |pk − pi +O(a−ek)| = log(pM − pm +O(a−em))

= log[(pM − pm)(1 +O(a−em−dM ))] = log(pM − pm) +O(a−em−dM ).

The power series expansion of log(1 + z) yields the assertions.

Let now i = k. By definition of α(i) we have l(i)i = −∑j 6=i l
(i)
j , and the

lemma is proved.

Lemma 9. Let {i1, . . . , in−1} be a subset of {1, . . . , n} of cardinality
n− 1 and

G := 〈−1, ηi1 , . . . , ηin−1〉 ⊆ O×.

Then the regulator RG can be estimated by

(17) RG = Θ(logn−1 a)

and the index [O× : G] is bounded by

(18) [O× : G] = O(logn−1 a).

Proof. Assume first i1 = 1, . . . , in−1 = n − 1. Then (17) follows from
Lemma 8 and [9, Lemma 7]. For arbitrary i1, . . . , in−1, the result follows
from l

(i)
n = −∑n−1

k=1 l
(i)
k .

Equality (18) is a consequence of Pohst and Zassenhaus [15, p. 361],
Lemma 7, and (17):

I = [O× : G] =
RG
RO
≤ RG
ROK

≤ RG
0.001

= O(logn−1 a).

5. Approximation properties of solutions. Let (x, y) ∈ Z2 be a
solution of (6) and β := x − αy. We define the type j of a solution (x, y)
such that

|β(j)| = min
i=1,...,n

|β(i)|.

By [9, Proof of Lemma 12] we obtain
∣∣∣∣
β(j)

y

∣∣∣∣ = O

(
1
aej

)
,

hence for i 6= j,
∣∣∣∣
β(i)

y

∣∣∣∣ =
∣∣∣∣
x

y
− α(j) + α(j) − pj + pj − α(i)

∣∣∣∣ = |η(i)
j |
(

1 +O

(
1

aej+d2

))
,

and therefore

(19) log |β(i)| = log |y|+ l
(i)
j +O

(
1

aej+d2

)
, i 6= j.
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The crucial part of the proof of Theorems 1 and 2 will be the following
proposition, which shows that only solutions with |y| ≤ 1 or very large
|y| can exist. The latter can be excluded easily by standard methods (see
Section 8).

Proposition 10. Let (x, y) ∈ Z2 be a solution of (6) with |y| ≥ 2. Then

(20) log |y| = Ω

(
a

logn−3 a

)
.

This proposition will be proved as follows: First we give the parts of the
proof which are independent of the type j of the solution, whereas the esti-
mates which depend on the type will be provided in the following sections.

Since β is a unit by (16), Lemma 9 yields

βI = ±ηui1i1
. . . η

uin−1
in−1

,

where {i1, . . . , in−1} is a subset of {1, . . . , n} of cardinality n− 1, which will
be chosen depending on the type j of the solution, ui1 , . . . , uin−1 are integers
and I = O(logn−1 a).

Taking logarithms of the conjugates h ∈ {1, . . . , n} \ {j}, we obtain a
system of linear equations for the uik/I:

log |β(h)| = ui1
I
l
(h)
i1

+ . . .+
uin−1

I
l
(h)
in−1

, h 6= j.

Cramer’s rule yields

R
uik
I

=

∣∣∣∣∣∣∣

l
(1)
i1

. . . l
(1)
ik−1

log |β(1)| l
(1)
ik+1

. . . l
(1)
in−1

...
. . .

...
...

...
. . .

...
l
(n)
i1

. . . l
(n)
ik−1

log |β(n)| l
(n)
ik+1

. . . l
(n)
in−1

∣∣∣∣∣∣∣
,

where the jth row is omitted and R denotes the determinant of the system
matrix, which is (up to sign) the regulator RG estimated in Lemma 9.

Applying (19) we obtain

(21) R
uik
I

= Mj,ik log |y|+∆j,kR+O

(
logn−2 a

aej+d2

)
,

where ∆j,k = ±1 if j 6∈ {i1, . . . , ik−1, ik+1, . . . , in−1} and 0 otherwise, and

Mj,ik =

∣∣∣∣∣∣∣

l
(1)
i1

. . . l
(1)
ik−1

1 l
(1)
ik+1

. . . l
(1)
in−1

...
. . .

...
...

...
. . .

...
l
(n)
i1

. . . l
(n)
ik−1

1 l
(n)
ik+1

. . . l
(n)
in−1

∣∣∣∣∣∣∣
,

where the jth row is omitted.
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By Lemma 8 we see that

Mj,ik = Gj,ik logn−2 a+O

(
logn−3 a

a

)

for some integers Gj,ik .
We will choose a suitable Z-linear combination vj of uik , k = 1, . . . , n−1,

and I depending on the type j of the solution such that (21) yields

(22) R
vj
I

= Mj log |y|+O

(
logn−2 a

aej+d2

)

with

(23) Mj = O

(
logn−3 a

a

)
.

In the next sections we will prove that our choice of the linear combina-
tion vj implies

(24) Mj = Ω

(
1

aej+d2−1

)
.

If (24) holds, it is clear from (22) that for sufficiently large values of a, vj
does not vanish, since we assume |y| ≥ 2. If Rvj/I > 0, then Rvj/I ≥ |R|/I
because vj is an integer. Then by (22), (17), and (18) we obtain

Mj log |y| ≥ |R|
I
−O

(
logn−2 a

aej+d2

)
= Ω(1),

which implies log |y| = Ω(a/logn−3 a) by (23). If Rvj/I < 0, an analogous
argument holds. Therefore, in order to prove Proposition 10 it suffices to
show (23) and (24) for a suitable vj .

6. Cases 3 ≤ j ≤ n. We choose (i1, . . . , in−1) = (1, 3, . . . , n) and
vj := u1. Our task is to prove (23) and (24) for

Mj =

∣∣∣∣∣∣∣

1 l
(1)
3 . . . l

(1)
n

...
...

. . .
...

1 l
(n)
3 . . . l

(n)
n

∣∣∣∣∣∣∣
,

where the jth row is omitted. We note that we will not use the technical
hypothesis (5) in this section.

We subtract the second row from the first and obtain

(25) Mj =

∣∣∣∣∣∣∣∣∣

0 l
(1)
3 − l(2)

3 . . . l
(1)
n − l(2)

n

1 l
(2)
3 . . . l

(2)
n

...
...

. . .
...

1 l
(n)
3 . . . l

(n)
n

∣∣∣∣∣∣∣∣∣
,
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where the jth row is omitted. For 3 ≤ k ≤ n, we have

l
(1)
k − l

(2)
k = log

∣∣∣∣1−
(

1− α(1) − pk
α(2) − pk

)∣∣∣∣ = log
(

1 +
α(2) − α(1)

pk − α(2)

)
(26)

=
1

adk−d2

(
1 +O

(
1
a

))
,

hence l(1)
k − l

(2)
k = O(1/a) and (23) is proved.

By Lemma 8, we obtain

(27) Mj = Qj(log a, 1/a) +O

(
logn−3 a

ae1+d2

)
,

where Qj(log a, 1/a) is some polynomial in log a and 1/a with rational co-
efficients depending on the coefficients of the polynomials pi.

We consider the coefficient of (logn−3 a)/adj−d2 in Qj . We expand the
determinant in (25) according to the first row and get

Mj =
n∑

k=3

(−1)k(l(1)
k − l

(2)
k )Njk =

n∑

k=3

(−1)k

adk−d2

(
1 +O

(
1
a

))
Njk,

where Njk are the corresponding minors. By (26) and (4), there is no con-
tribution of the summands with k > j. For k < j, we have

Njk

logn−3 a

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 d3 . . . dk−1 dk+1 . . . dj−1 dj dj+1 . . . dn
1 −e3 . . . dk−1 dk+1 . . . dj−1 dj dj+1 . . . dn
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 dk−1 . . . −ek−1 dk+1 . . . dj−1 dj dj+1 . . . dn
1 dk . . . dk dk+1 . . . dj−1 dj dj+1 . . . dn
1 dk+1 . . . dk+1 −ek+1 . . . dj−1 dj dj+1 . . . dn
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 dj−1 . . . dj−1 dj−1 . . . −ej−1 dj dj+1 . . . dn
1 dj+1 . . . dj+1 dj+1 . . . dj+1 dj+1 −ej+1 . . . dn
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 dn . . . dn dn . . . dn dn dn . . . −en

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+O

(
1

a log a

)
.

Subtracting dl times the first column from the column corresponding to l,
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we obtain, with hl = −el − dl (3 ≤ l ≤ n),

Njk = logn−3 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 . . . 0 0 0 . . . 0
1 h3 . . . 0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 ∗ . . . hk−1 0 . . . 0 0 0 . . . 0
1 ∗ . . . ∗ 0 . . . 0 0 0 . . . 0
1 ∗ . . . ∗ hk+1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 ∗ . . . ∗ ∗ . . . hj−1 0 0 . . . 0
1 ∗ . . . ∗ ∗ . . . ∗ ∗ hj+1 . . . 0
...

...
. . .

...
...

. . .
...

...
...

. . .
...

1 ∗ . . . ∗ ∗ . . . ∗ ∗ ∗ . . . hn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+O

(
logn−4 a

a

)
,

where ∗ stands for constants which are not important to us. Hence for k < j,
Njk = O((logn−4 a)/a), and there is no contribution to the term considered.
In the same fashion we get, for k = j,

Njj = logn−3 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 . . . 0
1 h3 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

1 ∗ . . . hj−1 0 . . . 0
1 ∗ . . . ∗ hj+1 . . . 0
...

...
. . .

...
...

. . .
...

1 ∗ . . . ∗ ∗ . . . hn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+O

(
logn−4 a

a

)

= logn−3 a
n∏

l=3
l 6=j

(−el − dl) +O

(
logn−4 a

a

)
.

Thus the coefficient of (logn−3 a)/adj−d2 in (27) does not vanish, which
implies (24) since dj − d2 < e1 + d2 by (4).

7. Cases j = 1 and j = 2. In both cases, we choose (i1, . . . , in−1) =
(1, 2, 4, . . . , n). We set

j′ :=
{

2 if j = 1,
1 if j = 2,

and get
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Mj,j = (−1)j
′

∣∣∣∣∣∣∣∣∣∣∣

1 l
(j′)
j′ l

(j′)
4 . . . l

(j′)
n

1 l
(3)
j′ l

(3)
4 . . . l

(3)
n

...
...

...
. . .

...
1 l

(n)
j′ l

(n)
4 . . . l

(n)
n

∣∣∣∣∣∣∣∣∣∣∣

,

Mj,j′ = (−1)j

∣∣∣∣∣∣∣∣∣∣∣

1 l
(j′)
j l

(j′)
4 . . . l

(j′)
n

1 l
(3)
j l

(3)
4 . . . l

(3)
n

...
...

...
. . .

...
1 l

(n)
j l

(n)
4 . . . l

(n)
n

∣∣∣∣∣∣∣∣∣∣∣

and ∆j,j = 1 and ∆j,j′ = 0. We now choose the linear combination vj :=
(d2 − d3)(uj − I) + (d3 + e1)uj′ , which yields

Mj =

∣∣∣∣∣∣∣∣∣∣∣

1 (d2 − d3)l(j
′)

j′ + (d3 + e1)l(j
′)

j l
(j′)
4 . . . l

(j′)
n

1 (d2 − d3)l(3)
j′ + (d3 + e1)l(3)

j l
(3)
4 . . . l

(3)
n

...
...

...
. . .

...
1 (d2 − d3)l(n)

j′ + (d3 + e1)l(n)
j l

(n)
4 . . . l

(n)
n

∣∣∣∣∣∣∣∣∣∣∣

.

By subtracting appropriate multiples of column 1 from the other columns
such that the first row becomes ( 1 0 . . . 0 ) and by expanding the de-
terminant according to the first row, we obtain

(28) Mj =

∣∣∣∣∣∣∣

ν3 l
(3)
4 − l(j

′)
4 . . . l

(3)
n − l(j

′)
n

...
...

. . .
...

νn l
(n)
4 − l(j

′)
4 . . . l

(n)
n − l(j

′)
n

∣∣∣∣∣∣∣
,

where νi := (d2 − d3)(l(i)j′ − l
(j′)
j′ ) + (d3 + e1)(l(i)j − l

(j′)
j ), i = 3, . . . , n.

By Lemma 8 we see that

ν3 = (d2 − d3)(l(3)
j′ − l

(j′)
j′ ) + (d3 + e1)(l(3)

j − l
(j′)
j )

= (d2 − d3)(d3 + e1) log a+ (d3 + e1)(d3 − d2) log a+O(a−1) = O(a−1)

and

l
(3)
k − l

(j′)
k = dk log a− dk log a+O(a−1) = O(a−1), 4 ≤ k ≤ n,

which proves (23).
In order to prove (24) we note that it is sufficient to show that the

coefficient Cj of logn−3 a in the expansion of Mj according to Lemma 8
satisfies Cj = Ω(a−e1−d2+1).
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Lemma 11. Assume Cj = O(a−e1−d2). Then for 3 ≤ k ≤ n we have

Cj =
k∏

l=4

(−el − dl)(29a)

×

∣∣∣∣∣∣∣∣∣∣

gk,k,j gk+1,k,j gk+2,k,j . . . gn,k,j
µk+1,k −ek+1−dk+1 0 . . . 0
µk+2,k dk+2−dk+1 −ek+2−dk+2 . . . 0

...
...

...
. . .

...
µn,k dn−dk+1 dn−dk+2 . . . −en−dn

∣∣∣∣∣∣∣∣∣∣

,

where

(29b) gh,k,j = l
(3)
h − l

(j′)
h , k + 1 ≤ h ≤ n,

(29c) gk,k,j is a Z-linear combination of l(m)
i , m ∈ {j′, 3}, i 6= m,

(29d) gk,k,j = O(1/a),

(29e) µh,k ∈ N, k + 1 ≤ h ≤ n.
Proof. We observe that (29c) and Lemma 8 imply that there are non-

negative integers λ+
i,m,k,j and λ−i,m,k,j such that

gk,k,j =
∑

(m,i)

(λ+
i,m,k,j − λ−i,m,k,j)l

(m)
i = g̃k,k,j +O

(
1

ae1+d2

)
,

where

g̃k,k,j = log
∣∣∣∣1 +

∏
(m,i)(pi − pm)λ

+
i,m,k,j−∏(m,i)(pi−pm)λ

−
i,m,k,j

∏
(m,i)(pi−pm)λ

−
i,m,k,j

∣∣∣∣

and where the indices (i,m) range over m ∈ {j ′, 3}, i 6= m. (29d) asserts
that the degree of the numerator is less than the degree of the denominator,
hence there is a nonzero integer χk,j and an sk,j ∈ N such that

(30) gk,k,j =
χk,j
ask,j

(
1 +O

(
1
a

))
+O

(
1

ae1+d2

)
.

We now prove the lemma by induction on k.
Let k = 3. The definition of Cj , Lemma 8 and the fact that the first row

in the determinant in (28) is O(a−1) necessitate a term containing log a in
rows 2 to n−2 in order to get logn−3 a. Since l(k)

h − l
(j′)
h = O(a−1) for h > k,

we obtain the representation (29a). (29b) is clear and

(31) g3,3,j = (d2 − d3)
(
l
(3)
j′ +

∑

h6=j′
l
(j′)
h

)
+ (d3 + e1)(l(3)

j − l
(j′)
j )

implies (29c). (29d) has already been observed and (29e) follows from (4)
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since for 4 ≤ h ≤ n,

µh,3 = (d2 − d3)(dh + e1) + (d3 + e1)(dh − d2)(32)

= (d2 + e1)(dh−d3) ∈ N.

Assume now that the lemma holds for some 3 ≤ k ≤ n − 1. Then by
(29a), (30) and Lemma 8 we have, with s′k,j := min{dk+1 − d3, sk,j}+ 1,

Cj =
k∏

h=4

(−eh − dh)

×

∣∣∣∣∣∣∣∣∣∣∣∣

χk,j
ask,j

− 1
adk+1−d3

0 . . . 0

µk+1,k −ek+1 − dk+1 0 . . . 0
µk+2,k dk+2 − dk+1 −ek+2 − dk+2 . . . 0

...
...

...
. . .

...
µn,k dn − dk+1 dn − dk+2 . . . −en − dn

∣∣∣∣∣∣∣∣∣∣∣∣

+O

(
1

as
′
k,j

)

=
k∏

h=4

(−eh − dh)
(
χk,j
ask,j

(−ek+1 − dk+1) +
1

adk+1−d3
µk+1,k

)

×
n∏

h=k+2

(−eh − dh) +O

(
1

as
′
k,j

)
.

By (29e), (4) and χk,j 6= 0, we see that if sk,j 6= dk+1−d3, then (24) follows
immediately. So we only have to consider the case

(33) sk,j = dk+1 − d3 =: sk, χk,j =
µk+1,k

ek+1 + dk+1
=: χk ∈ N.

(29a) yields

Cj =
k∏

h=4

(−eh − dh)

×

∣∣∣∣∣∣∣∣∣∣∣∣

gk,k,j + χkgk+1,k,j gk+1,k,j gk+2,k,j . . . gn,k,j
µk+1,k−χk(ek+1 + dk+1) −ek+1 − dk+1 0 . . . 0
µk+2,k + χk(dk+2−dk+1) dk+2−dk+1 −ek+2−dk+2 . . . 0

...
...

...
. . .

...
µn,k + χk(dn−dk+1) dn−dk+1 dn−dk+2 . . . −en−dn

∣∣∣∣∣∣∣∣∣∣∣∣

and by (33) we obtain
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Cj =
k∏

h=4

(−eh − dh)

×

∣∣∣∣∣∣∣∣∣∣

gk+1,k+1,j gk+1,k,j gk+2,k+1,j . . . gn,k+1,j

0 −ek+1 − dk+1 0 . . . 0
µk+2,k+1 dk+2 − dk+1 −ek+2 − dk+2 . . . 0

...
...

...
. . .

...
µn,k+1 dn − dk+1 dn − dk+2 . . . −en − dn

∣∣∣∣∣∣∣∣∣∣

,

where

gh,k+1,j := gh,k,j , k + 2 ≤ h ≤ n,(34a)

gk+1,k+1,j := gk,k,j + χkgk+1,k,j ,(34b)

µh,k+1 := µh,k + χk(dh − dk+1), k + 2 ≤ h ≤ n,(34c)

hence we have

Cj =
k+1∏

h=4

(−eh − dh)

∣∣∣∣∣∣∣∣

gk+1,k+1,j gk+2,k+1,j . . . gn,k+1,j

µk+2,k+1 −ek+2 − dk+2 . . . 0
...

...
. . .

...
µn,k+1 dn − dk+2 . . . −en − dn

∣∣∣∣∣∣∣∣
,

which implies (29a) for k + 1. (34a) yields (29b), (34b) and (29b) result in
(29c) and (29d), and (34c), (33), and (4) give (29e) for k + 1.

By (34c) and (33) we see that the recursive definition of ψi in (3) matches
the definition of χi, so that χi = ψi for 3 ≤ i ≤ n− 1.

(34b) and (31) yield

gn,n,j =
[
(d3 + e1)l(3)

j +
n∑

k=4

ψk−1l
(3)
k

]

−
[
(e1 + 2d3 − d2)l(j

′)
j + (d3 − d2)l(j

′)
3 + (d3 − d2)l(3)

j′

+
n∑

k=4

(ψk−1 + d3 − d2)l(j
′)

k

]
.

From Lemma 8 follows

gn,n,j +O

(
1

ae1+d2

)
= log

(
Q+
j

Q−j

)
= log

(
1 +

Q+
j −Q−j
Q−j

)
,

where Q+
j and Q−j have been defined in Theorems 1 and 2. Assume that

(24) does not hold. This implies Cj = O(a−e1−d2), and so we can apply
Lemma 11 to deduce that ψi ∈ N, 3 ≤ i ≤ n − 1, and gn,n,j = O(a−e1−d2).
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But in this case, (5) can be used to show gn,n,j = Ω(a−e1−d2+1), which
yields a contradiction. Hence (24) and therefore Proposition 10 are proved.

8. Large solutions. To exclude “large” solutions linear forms in loga-
rithms can be employed in the usual procedure. Since we do not care about
constants, we will use the explicit bound for the solutions of Thue equations
due to Bugeaud and Győry [5].

Theorem 12 (Bugeaud–Győry [5]). Let F ∈ Z[X,Y ] be a homogeneous
irreducible polynomial of degree n≥ 3 and 0 6= m∈Z. Let B≥max{|m|, e},
α be a zero of F (X, 1), K := Q(α), R := RK the regulator and r the unit
rank of K. Let H ≥ 3 be an upper bound for the absolute values of the
coefficients of F . Then all solutions (x, y) ∈ Z2 of

F (x, y) = m

satisfy

max{|x|, |y|} < exp(C1 ·R ·max{logR, 1} · (R+ log(HB))),

where
C1 = C1(n, r) = 3r+27(r + 1)7r+19n2n+6r+14.

In our situation, we have m = 1, B = e, RK ≤ RO ≤ RG = O(logn−1 a)
by (17), r = n− 1, H = aO(1), which yields

log |y| = O(log2n−1 a).

This is a contradiction to Proposition 10, hence there are no solutions with
|y| ≥ 2 for sufficiently large values of a, which proves Theorems 1 and 2.

9. Proof of Corollary 3. If δ4 = 1, we have 0<ψ3 = (e2 +d2)/(e4 +d4)
< 1 so that ψ3 6∈ N and we are done. Therefore, we can assume d4 − d3 > 1.

Calculating Q+
j and Q−j , we obtain

Q+
j = adegQ+

j

(
1 +

(
(e1 + d3)(c3 − δj2δ3) +

n∑

k=4

ψk−1ck

)1
a

+O

(
1
a2

))
,

Q−j = adegQ−j

(
1 +

(
(e1 − d2 + 2d3)(c2 − δ2) + 2(d3 − d2)(c3 − δj1δ3)

+
n∑

k=4

(ψk−1 + d3 − d2)ck
)1
a

+O

(
1
a2

))
,

where degQ+
j = degQ−j = d3(e1 + d3) +

∑n
k=4 dkψk−1, δi has been defined

in Corollary 3 and δkl denotes the usual Kronecker delta, δkl = 1 if k = l
and 0 otherwise.
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We easily see that (11) implies deg(Q+
j −Q−j ) = degQ−j − 1 > degQ−j −

e1 − d2, hence Theorem 1 (or Theorem 2) can be applied.
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