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To my long time friend Pierre Samuel,
octogenarian in love with Diophantus

1. Introduction. Let F > 1 be a square-free integer. In his papers
[3]–[6] Ljunggren studied the quartic equation

x4 − Fy2 = 1

(and similar equations) and proved that the equation has at most two so-
lutions (x, y) in positive integers. He also gave an algorithm to find the
solutions.

When F = p is a prime number, Ljunggren showed that

x4 − py2 = 1

has no solution in positive integers when p 6= 5, 29. Moreover if p = 5 the
only solution is (3, 4) and if p = 29 the only solution is (99, 1820). In [12]
Samuel gave another proof for p = 5.

The proof of this result leads to the study of the systems
{
x2 − 2y2 = ±1,

x2 − 2py2 = ∓1.

In our paper we shall need binary recurring sequences. Let P > 0, Q 6= 0
be integers such that D = P 2 − 4Q > 0. We shall consider the Lucas
sequences (Un)n, (Vn)n with parameters (P,Q):

U0 = 0, U1 = 1,

Un = PUn−1 −QUn−2 for n ≥ 2,

Un = (−1/Qn)U−n for n < 0;

V0 = 2, V1 = P,

Vn = PVn−1 −QVn−2 for n ≥ 2,

Vn = (1/Qn)V−n for n < 0.
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As is easily seen, the above recurrences still hold for any integer n. When
needed, we shall use the notation Un = Un(P,Q), Vn = Vn(P,Q).

Given the square-free integer F > 1, let ε = c+d
√
F be the fundamental

unit of the ring Z[
√
F ], so c > 0, d > 0. As is well known, c and d are

effectively bounded in terms of F . Let P = 2c, Q = c2 − Dd2 = ±1, let
Un = Un(2c,Q), Vn = Vn(2c,Q). Then

εn =
Vn
2

+ dUn
√
F.

As is easily seen, Vn is even for every n ∈ Z− and V2n ≡ 2 (mod 4) for
every n ∈ Z. If s ≥ 1 we define

ks =
1
4

(2 +QsV2s), hs =
1
4

(2−QsV2s),

so hs, ks 6= 0, 1 and ks + hs = 1.

(1.1) Theorem. Let F > 1, G ≥ 1 be square-free integers, let s ≥ 1,
f 6= 0 and g = fks or g = fhs. Then there exists an integer N > 0,
effectively computable in terms of F , G, f and s, such that if p = 1 or p is
a prime number , if x ≥ 0, y ≥ 0, z > 0 are integers such that

{
x2 − Fy2 = f,

x2 − pGz2 = g,

then x, y, z, p < N .

2. Preliminaries

A. Binary recurring sequences. Let P > 0, Q 6= 0 with D = P 2−4Q > 0.
We gather some properties of Un = Un(P,Q) and Vn = Vn(P,Q) which will
be needed in this paper.

Let α, β be the roots of X2 − PX +Q, so

α =
P +

√
D

2
, β =

P −
√
D

2
,

α+ β = P, αβ = Q, α− β =
√
D.

For each n ∈ Z:

Un =
αn − βn
α− β , Vn = αn + βn.

If m,n ∈ Z:

2Um+n = UmVn + UnVm,

Um+n = UmVn −QnUm−n, Vm+n = VmVn −QnVm−n,
U2m = UmVm, V2m = V 2

m − 2Qm,

V 2
m −DU2

m = 4Qm.
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The following lemma will be required:

(2.1) Lemma. For every s ≥ 1 and n ∈ Z we have
(a) V 2

n − Vn−sVn+s = Qn−s(2Qs − V2s),
(b) V 2

n −DUn−sUn+s = Qn−s(2Qs + V2s),
(c) D(U2

n − Un−sUn+s) = Qn−s(−2Qs + V2s),
(d) DU2

n − Vn−sVn+s = −Qn−s(2Qs + V2s).

Proof. We just prove (a):

V 2
n − Vn−sVn+s = (αn + βn)2 − (αn−s + βn−s)(αn+s + βn+s)

= α2n + β2n + 2(αβ)n

− [α2n + β2n − (αβ)n−s(α2s + β2s)]

= Qn−s(2Qs − V2s).

Now we assume gcd(P,Q) = 1. If m,n ≥ 1 and d = gcd(m,n) then

gcd(Um, Un) = Ud,

gcd(Vm, Vn) =
{
Vd if m/d and n/d are odd,

1 or 2 otherwise,

gcd(Um, Vn) =
{
Vd if m/d is even,

1 or 2 otherwise,

gcd(Un, Q) = 1, gcd(Vn, Q) = 1.

If a, b ∈ Z, not both equal to 0, let

Wn = aUn + bVn for all n ∈ Z.
Then

Wn = PWn−1 −QWn−2 for all n ∈ Z.
We also have

Wm+n = WmVn −QnWm−n for all m,n ∈ Z.
If gcd(P,Q) = 1 then

gcd(Wn, Q) = gcd(W1, Q) for all n ≥ 1.

The following lemma will also be required:

(2.2) Lemma. Assume that Wn 6= 0 for all n ≥ 1 and gcd(W1, Q) = 1.
If t ≥ 1 then gcd(Wn,Wn+t) divides W1W2 · · ·Wt for all n ≥ 1.

Proof. The lemma is trivial for n = 1, . . . , t. Let t ≤ n and assume the
lemma true for 1, 2, . . . , n. Let d = gcd(Wn+1,Wn+1+t). We have Wn+1+t =
Wn+1Vt − QtWn+1−t. Since 1 ≤ n + 1 − t ≤ n and gcd(Wn+1, Q) =
gcd(W1, Q) = 1, it follows that d divides gcd(Wn+1−t,Wn+1), which, by
induction, divides W1W2 · · ·Wt, thus concluding the proof.
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We shall need the following theorem (see Shorey & Tijdeman [14], Shorey
& Stewart [13], Pethő [9]), which we quote in the special case needed in this
paper.

With the preceding notations:

(2.3) Theorem. Assume that gcd(P,Q) = 1 and D 6= 0. Let a, b ∈ Z,
not both equal to 0, let Wn = aUn + bVn for all n ∈ Z. Let A > 0 be
a square-free integer. Then there exists N > 0, effectively computable in
terms of P,Q, a, b, A such that if n ≥ 0 and Wn = A� (where � denotes
a non-zero integer which is a square) then n < N .

The proof of this theorem involves inequalities of Baker for linear forms
in logarithms and the constant N provided by the proof is usually very large.

For special sequences, the explicit determination of squares and double-
squares has been achieved. We quote a few results for sequences with pa-
rameters P even and Q = ±1.

For P = 2, Q = 1, Un and Vn are the Pell numbers and we have:

{n | Un = �} = {1, 7,−1,−7}, {n | Un = 2�} = {2},
{n | Vn = �} = ∅, {n | Vn = 2�} = {0, 1}.

The above results are due to Ljunggren [5]; the determination of the
square Pell numbers required deep arguments.

Ljunggren [5] and Cohn [1] studied the sequences of numbers Un(4,−1)
and Vn(4,−1):

{n | Un(4,−1) = �} = {1, 2,−1}, {n | Un(4,−1) = 2�} = {4},
{n | Vn(4,−1) = �} = {1}, {n | Vn(4,−1) = 2�} = {0, 2,−2}.
In [1] Cohn obtained more results about squares and double squares in

the sequences Un(2c,±1) and Vn(2c,±1), for special values of 2c.
The reader may obtain more information about recurring sequences in

Ribenboim [11] (see Chapter 1 entitled “The Fibonacci Numbers and the
Arctic Ocean”). More specifically about Pell numbers, see Ribenboim [10].

B. Pell equations. We keep the same notations: F > 1, f 6= 0, ε =
c + d

√
F is the fundamental unit of Z[

√
F ], so c ≥ 1, d ≥ 1; P = 2c,

Q = c2−Fd2 = ±1, Un = Un(2c,Q), Vn = Vn(2c,Q). We consider solutions
of x2 − Fy2 = f .

Two solutions (x, y) and (x′, y′) of the Pell equation are said to be equiv-
alent if there exists n ∈ Z such that

Qn = 1 and
x+ y

√
F

x′ + y′
√
F

= εn.

If Q = 1 let c′ + d′
√
F = c+ d

√
F = ε. If Q = −1 let

c′ + d′
√
F = (c2 + d2F ) + 2cd

√
F = ε2.
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We note that if c = 1 then Q = −1 so c′ > 1.
A solution (a, b) with a ≥ 0 and b ≥ 0 is called a fundamental solution if

the following inequalities are satisfied:

0 ≤ a ≤
√

(c′ + δ)|f |
2

, 0 ≤ b ≤ d′
√

|f |
2(c′ + δ)

where δ = |f |/f .
Nagell proved (see [7] and [8]):

(2.4) Theorem. Every solution (x, y) with x ≥ 0, y ≥ 0 of x2−Fy2 = f
is equivalent to a fundamental solution.

3. Proof of Theorem (1.1). We divide the proof into three parts.
1o) Let S be the set of all (x, y, z, p) such that x ≥ 0, y ≥ 0, z > 0, p = 1

or p is a prime number and
{
x2 − Fy2 = f,

x2 − pGz2 = fks.

[The proof when g = fhs is similar and will not be given.]
Let T be the set of all (x, y) such that x ≥ 0, y ≥ 0, x2 − Fy2 = f and

there exists (z, p) such that (x, y, z, p) ∈ S. Clearly, it suffices to show that
the set T is effectively computable.

By the theorem of Nagell (2.4) if the equation x2−Fy2 = f has solutions,
then it has a non-empty effectively computable set of fundamental solutions
and every solution (x, y), with x ≥ 0, y ≥ 0 is given by a relation x+y

√
F =

(a+b
√
F )εn, where a ≥ 0, b ≥ 0, (a, b) is a fundamental solution, ε = c+d

√
F

is the fundamental unit of Z[
√
F ], Q = c2 − d2F , Qn = 1.

We fix an arbitrary fundamental solution (a, b) and write

xn + yn
√
F = (a+ b

√
F )εn = (a+ b

√
F )
(
Vn
2

+ dUn
√
F

)
,

where Un = Un(2c,Q) and Vn = Vn(2c,Q). So

xn = a
Vn
2

+ bdFUn, yn = adUn + b
Vn
2
.

It suffices to show that the set R = {n > s | (xn, yn) ∈ T} is effectively
bounded.

2o) We show that if Qn = 1 and s ≥ 1 then

x2
n − Fyn−syn+s = fks.

Indeed:

x2
n =

(
a
Vn
2

+ bdFUn

)2

= a2 V
2
n

4
+
b2F

4
DU2

n + abdFU2n.
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Next

Fyn−syn+s = F

(
b
Vn−s

2
+ adUn−s

)(
b
Vn+s

2
+ adUn+s

)

=
b2F

4
Vn−sVn+s + abdFU2n + a2d2FUn−sUn+s

=
b2F

4
Vn−sVn+s + abdFU2n +

a2

4
DUn−sUn+s.

In the above calculation we used identities indicated in Section 2. It
follows that

x2
n − Fyn−syn+s =

a2

4
(V 2
n −DUn−sUn+s) +

b2F

4
(DU2

n − Vn−sVn+s).

By Lemma (2.1) we have

x2
n − Fyn−syn+s =

a2

4
Qns(2Qs + V2s)−

b2F

4
Qns(2Qs + V2s)

=
f

4
(2 +QsV2s) = fks,

because Qn = 1. [For the proof of the theorem when g = fhs we need the
relation

x2
n − xn−sxn+s = fhs,

which is established in a similar way.]

3o) By Lemma (2.2) for every n > s, gcd(yn−s, yn+s) divides y1y2 · · · y2s;
we note that the integer y1y2 · · · y2s is effectively computable in terms of F ,
s and the chosen fundamental solution (a, b). For every positive integer e
dividing y1y2 · · · y2s, let

Re = {n ∈ R | gcd(yn−s, yn+s) = e}.
Let n ∈ Re, so from Fyn−syn+s = pGz2 it follows that

e2F 2 yn−s
e
· yn+s

e
= pFG� = pδH�,

where δ = 0 or 1, p -H, H is square-free and H |FG. Hence
yn−s
e
· yn+s

e
= pδH�.

LetH = {(H ′,H ′′) | H ′H ′′ is square-free,H ′H ′′ |FG and gcd(H ′,H ′′) = 1},
so H is effectively computable. For each (H ′,H ′′) let R′e,(H′,H′′) be the set
of all n ∈ Re such that

yn−s
e

= pδH ′�, yn+s

e
= H ′′�.

By Theorem (2.3) the set {n+ s | n ∈ R′e,(H′,H′′)}, hence also R′e,(H′,H′′)
is effectively bounded. Similarly, let R′′e,(H′,H′′) be the set of n ∈ Re such
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that
yn−s
e

= H ′�, yn+s

e
= pδH ′′�.

Then again R′′e,(H′,H′′) is effectively bounded. Since this holds for each
(H ′,H ′′) ∈ H the set Re is effectively bounded for each e | y1y2 · · · y2s. Hence
R is effectively bounded and this concludes the proof of the theorem.

4. A numerical example. We give an example where our method is
applied with success to determine explicitly all solutions. To begin we prove
a lemma.

(4.1) Lemma. Let Un, Vn be the Pell numbers for all n ∈ Z. Then

(a) {n 6= 0 | Un = 3�} = {4}, {n | Vn = 3�} = ∅,
(b) {n 6= 0 | Un = 6�} = ∅.
Proof. (a) Let Un = 3�. By considering the sequence Un modulo 3 we

see that 4 divides n. Let n = 4h, so Un = U2hV2h, with gcd(U2h, V2h) = 2.
Then either V2h = 2� or U2h = 2�. So h = 1 and n = 4. If Vn = 3�, since
2 |Vn but 4 -Vn this is impossible.

(b) If Un = 6� then n = 4h and we have the following cases:

U2h = 3� 6� � 2�,
V2h = 2� � 6� 3�.

From (a) and the knowledge of m such that Um = �, 2�, Vm = �, 2� we
conclude that n = 0.

(4.2) Example. If p is a prime, or p = 1, if x, y, z are positive integers
and {

x2 − 2y2 = 1,

x2 − pz2 = 9,

then (x, y, z, p) = (99, 70, 24, 17).

Proof. ε = 1 +
√

2 is the fundamental unit of Z[
√

2], let P = 2, Q = −1,
Un, Vn are the Pell numbers, k2 = 9, so the method is applicable. ε2 =
3 + 2

√
2 is the fundamental solution of the first equation, xn + yn

√
2 =

εn+2 = Vn+2/2+Un+2
√

2 and we work with n even since Q = −1. We have:

2yn−2yn+2 = pz2 6= 0,

that is, UnUn+4 = 2p� 6= 0.
(a) p = 2, so UnUn+4 = �. If n ≡ 2 (mod 4) then gcd(Un, Un+4) = U2

= 2, so Un = 2� and Un+4 = 2�, which is impossible. If n ≡ 0 (mod 4) then
gcd(Un, Un+4) = U4 = 12, hence Un = 3�, Un+4 = 3�, which is impossible
by (4.1).
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(b) p 6= 2, so UnUn+4 = 2p�. If n ≡ 2 (mod 4) then Un ≡ Un+4 ≡ 2
(mod 4) so the 2-adic value of UnUn+4 is even, hence UnUn+4 = 2p� is
impossible.

Now let n ≡ 0 (mod 4), so the following cases are possible:

Un= 3� 6� 3p� 6p�,
Un+4 = 6p� 3p� 6� 3�.

(1) (2) (3) (4)

(1) It was seen that n = 4, hence U8 = 408 = 6 × 17� so p = 17,
x4 = V6/2 = 99, y4 = U6 = 70 and this gives the solution (x, y, z, p) =
(99, 70, 24, 17).

(4) n+ 4 = 4, n = 0 which is impossible, since then z = 0.
(2) and (3) are impossible as it was shown in Lemma (4.1).

As an exercise the reader may wish to show that if x, y, z are positive, if
p is a prime number and if

{
x2 − 3y2 = −3,

x2 − 3pz2 = −12,
then (x, y, z, p) = (3, 2, 1, 7).

The reader may employ the same method to prove the original result of
Ljunggren mentioned in the Introduction: if x, y are positive integers, if p is
a prime number and x4 − py2 = 1 then (x, y, p) = (3, 4, 5) or (99, 1820, 29).
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