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A Stickelberger theorem for p-adic Gauss sums

by

Régis Blache (Pointe à Pitre)

0. Introduction. Character sums over finite fields have been widely
studied since Gauss. During the last decade, coding theorists initiated the
study of a new type of sums, over points with coordinates in a p-adic field.
LetO(u)

m be the ring of integers ofKm = Qp(ζpm−1), the unramified extension
of degree m of the field of p-adic numbers Qp obtained by adjoining the

(pm−1)th roots of unity, and Tm = T ∗m∪{0} the Teichmüller of O(u)
m , where

T ∗m is the multiplicative subgroup of elements of finite order in O(u)∗
m . Many

character sums over finite fields can be extended to this situation; the first
studied was

∑
x∈Tm ψ̃l,m(f(x)), ψ̃l,m an additive character of order pl over

O(u)
m , f a polynomial in O(u)

m [X], in order to give a generalization of the
Weil–Carlitz–Uchiyama bound (cf. [6], and note that for l = 1, we get the
sums associated to a polynomial and an additive character over the finite
field with pm elements, Fpm).

In this paper we are concerned with certain sums looking as Gauss sums;
precisely, if ψ̃l,m is as above, and χ is a multiplicative character of order
dividing pm − 1, we define the p-adic Gauss sum of level l associated with
the characters ψ̃l,m and χ as

GTm(ψ̃l,m, χ) =
∑

x∈T ∗m
ψ̃l,m(x)χ(x).

These sums have already been studied in [11], where a bound is given, and
in [8], which has been our starting point.

Here we do not give a bound; we focus on the p-adic valuation of these
character sums. Our aim is to generalize the following theorem of Stick-
elberger on classical Gauss sums to this situation. We first recall some
notations: let ψ̃1,m be an additive character of order p on O(u)

m , and χ a
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multiplicative character of order exactly pm − 1, both taking values in Cp,
the (algebraically closed) completion of an algebraic closure of Qp. If we set
γ = ψ̃1,m(1) − 1, then γ is a generator of the maximal ideal of the ring of
integers of Ω1, the ramified extension of degree p− 1 of Qp obtained by ad-
joining the pth roots of unity. Let K1,m be the compositum of Ω1 and Km.
In this situation, the Gauss sums of level 1 are exactly the classical Gauss
sums over finite fields (cf. [2]), and we have:

Theorem (Stickelberger, [7]). In O1,m, the ring of integers of K1,m, for
any 0 ≤ a ≤ pm − 2, we have

GTm(χ−a, ψ̃1,m) ≡ −γ
s(a)

p(a)
[γs(a)+1],

where if a=a0+pa1+· · ·+pm−1am−1 is the p-adic expansion of the integer a,
we define s(a) := a0 + a1 + · · ·+ am−1 and p(a) := a0! · · · am−1!.

We use ideas close to Dwork’s in his proof of the rationality of the zeta
functions of varieties over finite fields (cf. [4]); our generalization of this the-
orem relies on an improvement of his splitting functions. Roughly speaking,
a splitting function, in the sense of Dwork, is an analytic representation of
an additive character of order p with values in C∗p; it is a power series Θ with
coefficients in Ω1, converging in the closed disk of center 0 and radius 1, and
such that for any t ∈ T := T1, Θ(t) = ψ1(t), where t is the image of t in
the finite field with p elements Fp ' Zp/pZp, and ψ1 is a nontrivial additive
character of Fp. Let us give an example of such a function. Consider the series

G(X) =
∑

i≥0

Xpi

pi
∈ Qp[[X]].

It has p − 1 zeroes of valuation (p − 1)−1, and if γ1 is one of them, then
the series θ1(X) := exp(G(γ1X)) converges in the closed unit disk, and is a
splitting function.

The main problem here is to extend this concept to additive characters
of order pl. We shall define splitting functions of level l, in order to give an
analytic representation of an additive character ψ̃l of Zp of order pl. The first
point is to define functions representing the plth roots of unity; in order to do
this we follow closely the ideas of Dwork, replacing γ1 as above by γl, a zero
of G of valuation (pl−1(p− 1))−1, and defining θl(X) := exp(G(γlX)). Then
we use the Witt vectors representation of the rings Zp/plZp and O(u)

m /plO(u)
m .

Since Zp/plZp ' Z/plZ ' Wl(Fp), the ring of Witt vectors of length l with
coefficients in Fp, we shall require a splitting function Θl to satisfy, for any
(t0, . . . , tl−1) in T l, the condition that Θl(t0, . . . , tl−1) = ψl(t0, . . . , tl−1),
where ψl is a character of Wl(Fp) via the above isomorphisms. Once this
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has been done, the generalization of Stickelberger’s theorem is an easy con-
sequence of the description of the coefficients of the splitting function.

The paper is organized as follows: we begin Section 1 by recalling some
useful results on plth roots of unity in Cp. Then we use the Artin–Hasse
exponential and the roots of Artin–Hasse power series to construct power
series whose values at the elements of T are plth roots of unity; note that this
construction is very close to Dwork’s construction of his splitting functions
(cf. [4]). In Section 2, after recalling some definitions about rings of Witt
vectors, we define splitting functions of level l, and we give an example of
such a function relying on the preceding construction; this is Theorem 2.3.
The key lemma in its proof is Lemma 2.4. It gives a link between the shape
of Artin–Hasse power series and certain polynomials arising from the ad-
dition of Witt vectors, and allows us to show that our function represents
an additive character. Section 3 is devoted to the proof of Stickelberger’s
theorem.

Notations. In this paper, Qp is the field of p-adic numbers, Zp the ring
of p-adic integers; let T := {x ∈ Zp; xp = x} ⊂ Zp be the Teichmüller of Zp.
Note that T = T × ∪ {0}, where T × = {x ∈ Zp; xp−1 = 1} is the subgroup
of elements of finite order in Z×p . Let also k := Fp be the residue field of
Zp. Note that T is the image of a lifting of k to Zp, called the Teichmüller
lifting.

We denote by Cp a completion of the algebraic closure of Qp, and by
vp the p-adic valuation on Cp, normalized such that vp(p) = 1. Let Km

be the extension of Qp generated by the (pm − 1)th roots of unity; it
is well known that Km is an unramified extension of degree m of Qp.
We denote by O(u)

m its valuation ring, and by Tm its Teichmüller, Tm :=
{x ∈ O(u)

m ; xp
m

= x}; once again, Tm = T ×m ∪ {0}, where T ×m = {x ∈ Zp;
xp

m−1 = 1} is the subgroup of elements of finite order in O(u)×
m , and Tm is

the image of the Teichmüller lifting, a lifting of km := Fpm to O(u)
m . Recall

that any element x ∈ Km can be written uniquely as

x = p−rt−r + · · ·+ t0 + pt1 + · · ·
for some t−r, . . . , t0, t1, . . . in Tm.

The extension Km/Qp is Galois, with cyclic Galois group of order m,
generated by the Frobenius F , whose action on x = p−rt−r+· · ·+t0+pt1+· · ·
is

F (x) = p−rtp−r + · · ·+ tp0 + ptp1 + · · · .
We can also define a trace from Km to Qp by Tr(x) = x + F (x) + · · · +
Fm−1(x).

Let l ≥ 1 be an integer. We let R := R1 be the ring Z/plZ = Zp/plZp,
and Rm = O(u)

m /plO(u)
m . Note that the action of Frobenius passes to the
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quotient; in this way, we can consider the ring Rm as the unramified cyclic
extension of R of degree m, adopting the terminology in [9].

1. Analytic representation of plth roots of unity. We begin this
section by giving properties of plth roots of unity, and the extensions of Qp
they generate, in Subsection 1.1. Then, in Subsection 1.2, we consider series
whose values at elements of T × are such roots. Dwork has already shown
that the series

G(X) =
∑

i≥0

Xpi

pi
∈ Qp[[X]]

has p − 1 zeroes of valuation (p− 1)−1, and that given one of these zeroes,
say γ1, the values of the series θ1(X) := exp(G(γ1X)) at elements of T ×
are pth roots of unity. Here we generalize this remark to plth roots of unity,
using the roots of G of valuation (pl−1(p− 1))−1.

1.1. The fields generated by plth roots of unity. Let Ωl := Qp(ζpl) denote
the extension of Qp obtained by adjoining a primitive plth root of unity ζpl ,

and O(r)
l its ring of integers.

Lemma 1.1. The field Ωl is a totally ramified extension of Qp, of degree
pl − pl−1; moreover , we have

vp(ζpl − 1) = (pl − pl−1)−1,

that is, ζpl−1 is a generator of the maximal ideal m(r)
l of the local ring O(r)

l .

Proof. Clearly a primitive plth root of unity is a root of the polynomial

(Xpl − 1)/(Xpl−1 − 1) = X(p−1)pl−1
+ · · ·+Xpl−1

+ 1.

Thus ζpl − 1 is a root of P (X) := (X + 1)(p−1)pl−1
+ · · ·+ (X + 1)p

l−1
+ 1.

Looking modulo p, we get

P (X) ≡ (Xpl−1
+ 1)p−1 + · · ·+ (Xpl−1

+ 1) + 1 [p]

≡
p∑

k=1

( k∑

i=1

Ck−ip−i
)
X(p−k)pl−1

[p].

Now since Ck−ip−i ≡ (−1)k−iCi−1
k−1 [p], the coefficient of degree k is zero modulo

p for k ≥ 2; we get P (X) ≡ X(p−1)pl−1
[p]. Since the constant term of P

is p, it is an Eisenstein polynomial, thus irreducible, and all its roots are of
valuation (pl−1(p− 1))−1, generating the maximal ideal of O(r)

l .

The following corollary will be useful:
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Corollary 1.2. Let ζ and ζ ′ be two plth roots of unity in Cp. If vp(ζ−ζ ′)
> 1, then ζ = ζ ′.

Proof. Since ζ − ζ ′ = ζ ′(ζ(ζ ′)−1 − 1), we have vp(ζ(ζ ′)−1 − 1) > 1, and
ζ(ζ ′)−1 is a pkth root of unity for some 0 ≤ k ≤ l. Thus from Lemma 1.1,
we must have k = 0, that is, ζ = ζ ′.

1.2. Analytic representation of plth roots of unity. Let us begin by a
quick overview of the theory of Newton polygons (cf. [1, Chapter 4.3], [5,
Chapter IV]). If f(X) :=

∑
n≥0 anX

n is a polynomial or a power series in
Cp[[X]], its Newton polygon NP(f) is the convex hull of the set of points
with coordinates (n, vp(an)), n ≥ 0. Then we have the following remarkable
result (cf. [1, Theorem 4.4.4], [5, p. 106, Corollary to Theorem 14]): if NP(f)
has an edge of (horizontal) length l and slope s, then f has exactly l zeroes
of valuation −s in Cp. Applying this result to G, we see that for any k ≥ 1,
G(X) has pk − pk−1 zeroes of valuation (pk − pk−1)−1 in Cp.

Lemma 1.3. Let γl be a zero of G with vp(γl) = (pl − pl−1)−1, l ≥ 2.
Then there is a unique root γl−1 of G with valuation (pl−1 − pl−2)−1 such
that γl−1 ≡ γpl [pγl].

Proof. We will consider the Newton polygon of Gl(X) := G(X + γpl ).
Set Gl(X) :=

∑
k≥0 fkX

k. For k ≥ 1, a rapid calculation gives

fk =
∑

i≥dlogp(k)e

Ck
pi

pi
γ
p(pi−k)
l .

Since vp(Ckpi) = i − vp(k), we get vp(fk) ≥ −vp(k). Moreover, if k = pj ,
j ≥ 0, the term with minimal valuation in fk is the term i = j, which is
p−j ; we get vp(fpj ) = −j. Finally, the constant term is

∑

k≥1

γp
k

l

pk−1 = p
∑

k≥1

γp
k

l

pk
= p(G(γl)− γl) = −pγl,

which is of valuation 1 + (pl − pl−1)−1. Thus the Newton polygon of Gl has
vertices (0, 1 + (pl− pl−1)−1) and (pk,−k), k ≥ 0. It has an edge of length 1
with slope −1 − (pl − pl−1)−1, that is, Gl has a unique zero of valuation
1 + (pl − pl−1)−1, say αl, and all other zeroes are of valuation less than or
equal to (p − 1)−1. Finally, G has a unique zero γl−1 := γpl + αl such that
γl−1 ≡ γpl [pγl]. Any other zero γ satisfies vp(γ − γpl ) ≤ (p− 1)−1.

From the above lemma, we fix once and for all a “compatible” sequence
(γk)0≤k≤l in Cp, that is, γl is a fixed root of G of valuation (pl − pl−1)−1,
for 1 ≤ k ≤ l− 1, γk is a zero of G(X) of valuation (pk − pk−1)−1 such that
γk ≡ γpk+1 [pγk+1], and γ0 := 0, the trivial zero of G.
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Definition 1.4. Let us define the Artin–Hasse exponential as AH(X)
:= exp(G(X)), and θk(X) := AH(γkX), 0 ≤ k ≤ l.

First recall that from Dwork’s lemma (cf. [5, IV.2, Lemma 3]), the series
AH(X) is in 1 + XZp[[X]]. Let us deduce some properties of θk from this
result.

Proposition 1.5. Let 1 ≤ k ≤ l. If the development of θk in power
series in Cp[[X]] is

θk(X) =
∑

n≥0

λn,kX
n,

then its coefficients satisfy

vp(λn,k) ≥
n

pk − pk−1 , n ≥ 0, λn,k =
γnk
n!
, 0 ≤ n ≤ p− 1.

In particular the function θk converges in the open disk with center 0 and
radius p1/(pk−pk−1).

Proof. Write AH(X) =
∑

i≥0 eiX
i. From Dwork’s lemma, we know that

e0 = 1 and ei ∈ Zp, that is, vp(ei) ≥ 0. Now from the definition of θk, we
have λn,k = enγ

n
k , and vp(λn,k) ≥ vp(γnk ) = n/(pk − pk−1). This shows the

first assertion.
Moreover, the first p terms are those of the development of exp(γkX) in

power series; we get λn,k = γnk /n! for 0 ≤ n ≤ p− 1.

Now we show that from the compatible system (γk)0≤k≤l and the func-
tions θk, we can define a compatible system of plth roots of unity (ζpk)0≤k≤l
in the following sense:

Definition 1.6. For all 0 ≤ k ≤ l, let ζpk be a pkth root of unity in Cp.
We say that the family (ζpk)0≤k≤l forms a compatible system of pkth roots
of unity in Cp if the following holds:

(i) ζpk is a primitive pkth root of unity,
(ii) ζp

pk
= ζpk−1 for 1 ≤ k ≤ l.

Proposition 1.7. The family (θk(1))0≤k≤l forms a compatible system
of plth roots of unity.

Proof. Clearly, since θ0(X) = 1, we have θ0(1) = 1. Now we show that
θk(1) is a primitive pkth root of unity for 1 ≤ k ≤ l. From the description
of θk in Proposition 1.5, we have

θk(1) =
∑

n≥0

λn,k = 1 + γk + · · ·

(this series converges by Proposition 1.5); this gives in particular

vp(θk(1)−1) = (pk−1(p− 1))−1.

Thus from Lemma 1.1 it just remains to show that θk(1)p
k

= 1.



A Stickelberger theorem for p-adic Gauss sums 17

From the equality of formal power series exp(X)p
k

= exp(pkX), we get

AH(X)p
k

= exp(pkG(X)).

Let x be an element of Cp with vp(x) ≥ (pk − pk−1)−1; then

vp

(
pk
xp

i

pi

)
≥ pi−k+1

p− 1
− i+ k;

this quantity is minimal for i = k − 1, k, and equals then 1 + (p − 1)−1;
thus vp(pkG(x)) ≥ 1 + (p − 1)−1, and pkG(x) is in the convergence disk of
the exponential. The above equality of formal power series gives AH(x)p

k
=

exp(pkG(x)), and we get

θk(1)p
k

= AH(γk)p
k

= exp(pkG(γk)) = exp(0) = 1.

Now we show that θk(1)p = θk−1(1) for 1 ≤ k ≤ l. We have

θk(1)p =
(∑

n≥0

λn,k

)p
≡
∑

n≥0

λpn,k [pγk],

since λn,k ≡ 0 [γk] for n ≥ 1. Moreover we have λ0,k = λ0,k−1 = 1, and
λpn,k = epn(γpk)n ≡ enγ

n
k−1 = λn,k−1 [pγk] for n ≥ 1 since γpk ≡ γk−1 [pγk] by

Lemma 1.3 and the en are in Zp. Finally, we get

θk−1(1) =
∑

n≥0

enγ
n
k−1 ≡

∑

n≥0

enγ
np
k [pγk]

≡
∑

n≥0

λpn,k [pγk] ≡ θk(1)p [pγk].

Since both sides are pkth roots of unity, the result now follows from Corol-
lary 1.2.

In the following, we set ζpk := θk(1) for all 0 ≤ k ≤ l.
Remark 1.8. (i) If t ∈ T ∗, then tγk is also a root of G of valuation

(pk−1(p−1))−1, and the proof of Proposition 1.7 shows that θk(t) = AH(tγk)
is also a primitive pkth root of unity.

(ii) We also see that the fields Ωk and Qp(γk) are equal (they are both
totally ramified extensions of degree pk − pk−1 of Qp, and Proposition 1.7
implies that Ωk ⊂ Qp(γk)); thus γk and ζpk − 1 are both generators of the
maximal ideal of Ωk such that ζpk − 1 ≡ γk [γ2

k ].

2. The splitting functions of level l. When proving the rationality of
zeta functions of varieties over finite fields, one of the main ideas of Dwork
was that of a splitting function, i.e. power series over Cp “representing”
additive characters over finite fields. The aim of this section is to extend
this concept to the rings R and Rm. In fact, via Witt vectors, any element
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of these rings can be represented as an l-tuple of elements of their residue
fields k and km; our strategy is to use coordinatewise Teichmüller lifting
of these vectors and the results of Section 1 (in particular Remark 1.8) to
construct power series of l variables representing characters of R and Rm.

In 2.1, we recall some facts about rings of Witt vectors, then in 2.2, we
give the link between the rings R and Rm and rings of Witt vectors with
coordinates in the fields k and km. Finally, in 2.3, we give a precise definition
of the splitting functions of level l and give an example of such a function.

2.1. Some background on rings of Witt vectors. We recall here the def-
initions and some properties of rings of Witt vectors; the reader can find
more details in [10] or [3].

The Witt polynomials Φ0, . . . , Φn, . . . are defined in Z[(Xi)i∈N] by:

Φ0(X0) = X0, . . . , Φn(X0, . . . ,Xn) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn, . . .

There exists two families of elements (Si)i∈N, (Pi)i∈N in Z[(Xi, Yi)i∈N] such
that, for all n ≥ 0,

Φn(X0, . . . ,Xn) + Φn(Y0, . . . , Yn) = Φn(S0, . . . , Sn),

Φn(X0, . . . ,Xn)Φn(Y0, . . . , Yn) = Φn(P0, . . . , Pn).

Note that if we assign the weight pj to the variables Xj, Yj , then Si is
isobarous of weight pi, and Pi is isobarous of weight 2pi.

We are now ready to define rings of Witt vectors.

Definition 2.1. Let A be a (commutative) ring. The ring of Witt vec-
tors of length l, with coefficients in A, Wl(A), is the set Al, with addition ⊕
and multiplication ⊗ defined by

(a0, . . . , al−1)⊕ (b0, . . . , bl−1) := (S0(a0, b0), . . . , Sl−1(a0, . . . , bl−1)),

(a0, . . . , al−1)⊗ (b0, . . . , bl−1) := (P0(a0, b0), . . . , Pl−1(a0, . . . , bl−1)).

Note that for 0 ≤ i ≤ l − 1, the map Φi from Wl(A) to A is a ring
homomorphism; the image of a vector in Wl(A) by Φi is often called its ith
ghost component.

As usual,

V : Wl(A)→Wl(A), V (a0, . . . , al−1) = (0, a0, . . . , al−2),

denotes the Verschiebung; it is a group endomorphism (for the additive
structure of Wl(A)), but not a ring endomorphism. Note that for any vector
(a0, . . . , al−1) in Wl(A), we have the equality of Witt vectors

(a0, . . . , al−1) =
l−1⊕

i=0

V i(ai, 0, . . . , 0).

Finally, if φ : A → B is a ring homomorphism, then Wl(φ), the map from
Wl(A) to Wl(B) sending (a0, . . . , al−1) to (φ(a0), . . . , φ(al−1)), is again a
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ring homomorphism. In particular, if A is a ring of characteristic p, the
Frobenius of A, sending an element to its pth power, induces a homomor-
phism of Wl(A), sending (a0, . . . , al−1) to (ap0, . . . , a

p
l−1). We shall denote

this morphism by F , and call it the Frobenius of Wl(A).

2.2. The ring Z/plZ and its unramified extensions. In this section, we
recall results about the ring Z/plZ and its unramified extensions; the proofs
and more details can be found in [9]. The image of Tm under reduction
modulo pl is a subset of Rm, which is the image of a section τ of reduction
modulo p from Rm to km; moreover, every element b in Rm can be written
in a unique way as b0 + · · ·+ pl−1bl−1, with b0, . . . , bl−1 in the image of Tm.

The Galois group of the extension Rm/R is cyclic of order m, generated
by the Frobenius F sending b = b0+· · ·+pl−1bl−1 to F (b) = bp0+· · ·+pl−1bpl−1.
We also define a trace from Rm to R by

TrRm/R(b) = b+ F (b) + · · ·+ Fm−1(b).

With the help of the trace, we can describe the additive characters of the
rings Rm, m ≥ 1. Let ψl be a primitive additive character of R, i.e. sending
the class of 1 to a primitive plth root of unity; then every character of Rm
can be written as y 7→ ψl(TrRm/R(xy)) for some x in Rm.

For any m ≥ 1, we fix an isomorphism wm : Wl(km)→ Rm defined by:

wm(a0, . . . , al−1) = τ(a0) + pF−1τ(a1) + · · ·+ pl−1F−(l−1)τ(al−1).

Note that via wm, the Frobenius F on Rm corresponds to the Frobenius F
of Wl(km) defined in 2.1. Moreover the trace from Rm to R corresponds to
the trace from Wl(km) to Wl(k) defined by

TrWl(km)/Wl(k)(a0, . . . , al−1) =
m−1⊕

i=0

F i(a0, . . . , al−1) =
m−1⊕

i=0

(ap
i

0 , . . . , a
pi

l−1).

2.3. The splitting functions. Recall the concept of a splitting function,
as introduced by Dwork (cf. [4]). A splitting function Θ is a power series
in one variable over Ω1 that converges in a disk of radius strictly greater
than 1 and has the following two properties:

(i) For x in k, denote by x̃ ∈ T its Teichmüller representative, the
unique element of T that reduces to x modulo p. Then the function
x 7→ Θ(x̃) is a nontrivial additive character ψ of k, with values in Ω1.

(ii) For each m ≥ 1, the additive character ψm of km obtained by com-
posing ψ with the trace from km to k can be represented as follows:
for x in km, denote by x̃ ∈ Tm its Teichmüller representative; then
we have

ψm(x) =
m−1∏

i=0

Θ(x̃p
i
).
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We shall generalize this concept in order to represent additive characters
of order pl, i.e. additive characters of the rings Rm. We first need to give
an equivalent of the Teichmüller lifting. For this we will use Witt vectors.
From the isomorphisms wm, we can define an equivalent of the Teichmüller
representative and generalize the notion of splitting function.

Let x ∈ Rm whose image under w−1
m is (x0, . . . , xl−1). We define the lift

of x as x̂ := (x̃0, . . . , x̃l−1), the element of T lm ⊂ Clp obtained by replacing
each component of the Witt vector corresponding to x by its Teichmüller
representative. We also define, for any i ≥ 0,

F ix̂ = (x̃p
i

0 , . . . , x̃
pi

l−1);

note that it is the lift of F ix.
We are now ready to define the splitting functions of level l:

Definition 2.2. A splitting function of level l, Θl, is a power series
in l variables over Ωl that converges in an open subset of Clp of the form
D(0, r1) × · · · × D(0, rl), with r1, . . . , rl > 1, and has the following two
properties:

(i) The function from R to Cp defined by x 7→ Θl(x̂) is an additive
character ψl of order pl of R, with values in Ωl.

(ii) For each m ≥ 1, the additive character ψl,m of Rm obtained by
composing ψl with the trace from Rm to R can be represented as

ψl,m(x) =
m−1∏

i=0

Θl(F ix̂).

The aim of this section is to construct a splitting function of level l from
the functions θi of Section 1. Let

Θl :
l∏

i=1

D(0, p(pi−1(p−1))−1
)→ Cp,

(X0, . . . ,Xl−1) 7→ θl(X0) · · · θ1(Xl−1).

Then we have

Theorem 2.3. The function Θl is a splitting function of level l.

We show this theorem in several steps. Remark first that Θl is a power
series in l variables over Ωl that converges in a suitable open subset of Clp by
Proposition 1.5. It remains to show properties (i) and (ii). We begin with an
equality of formal power series relating the series F and polynomials arising
from addition of Witt vectors; this equality will be the cornerstone of the
proof of the theorem.
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Lemma 2.4. (i) We have the following equality of formal power series

in Zp[[X,Y ]]:

AH(X)AH(Y ) =
∏

k≥0

AH(Tk(X,Y )),

where, for any k ≥ 0, Tk is a homogeneous polynomial of degree pk

in Z[X,Y ].
(ii) Let x0, . . . , xl−1, y0, . . . , yl−1 ∈ km, and let x̃0, . . . , ỹl−1 ∈ Tm be their

Teichmüller representatives. If we let

(z0, . . . , zl−1) = (x0, . . . , xl−1)⊕ (y0, . . . , yl−1)

in Wl(km), we have the following congruence in Cp:
Θl(x̃0, . . . , x̃l−1)Θl(ỹ0, . . . , ỹl−1) ≡ Θl(z̃0, . . . , z̃l−1) [pγl].

Proof. (i) Let Tk(X,Y ) := Sk(X, 0, . . . , 0, Y, 0, . . . , 0). Since Sk is
isobarous of weight pk, we see that Tk is homogeneous of degree pk.
Consider, for any l ≥ 0, the following equality of Witt vectors in
Wl+1(Zp[[X,Y ]]):

(X, . . . ,X)⊕ (Y, . . . , Y ) =
l⊕

k=0

(V k(X, 0, . . . , 0)⊕ V k(Y, 0, . . . , 0))

=
l⊕

k=0

V k(T0(X,Y ), . . . , Tl(X,Y )) =
l⊕

k=0

l⊕

i=0

V k+i(Ti(X,Y ), 0, . . . , 0)

=
l⊕

i=0

V i
( l⊕

k=0

V k(Ti(X,Y ), 0, . . . , 0)
)

=
l⊕

i=0

V i(Ti(X,Y ), . . . , Ti(X,Y )).

Now the image under Φl of the vector V i(Ti(X,Y ), . . . , Ti(X,Y )) in
Wl+1(Qp[[X,Y ]]) is

piTi(X,Y )p
l−i

+ · · ·+ plTi(X,Y ) = pl
l−i∑

j=0

Ti(X,Y )p
j

pj
.

Thus, taking the images under Φl (the lth ghost components) of both
sides of the above equality of Witt vectors, and dividing by pl, we obtain
the following congruence in Qp[[X,Y ]]:

G(X) +G(Y ) ≡ G(T0(X,Y )) + · · ·+G(Tl(X,Y )) mod (X,Y )p
l+1
.

Finally, letting l grow to infinity, we get in Qp[[X,Y ]]:

G(X) +G(Y ) =
∑

k≥0

G(Tk(X,Y )).

Applying exp to this last equality gives the desired result.
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(ii) We show the congruence by induction on l. First note that the
equality of formal power series above is valid whenever the two sides
converge, that is, for any x, y ∈ Cp with |x|, |y| < 1. Let us show the case
l = 1. If x, y are in km, we have

Θ1(x̃)Θ1(ỹ) = θ1(x̃)θ1(ỹ) = AH(γ1x̃)AH(γ1ỹ) =
∏

k≥0

AH(Tk(γ1x̃, γ1ỹ)).

Now it is well known that T0(X,Y ) = S0(X,Y ) = X + Y , and we get

AH(T0(γ1x̃, γ1ỹ)) = AH(γ1(x̃+ ỹ)) ≡ AH(γ1(x̃+ y)) = Θ1(x̃+ y) [pγ1],

since x̃+ ỹ ≡ x̃+ y [p], and the coefficients of the series AH are in Zp. On
the other hand, if k ≥ 1, since Tk is homogeneous of degree pk, we have

AH(Tk(γ1x̃, γ1ỹ)) = AH(γp
k

1 Tk(x̃, ỹ)) ≡ 1 [pγ1],

since vp(γ
pk

1 ) = pk/(p− 1) ≥ 1 + 1/(p− 1), that is, γp
k

1 ≡ 0 [pγ1], and
AH(X) ∈ 1 +XZp[[X]]. Thus we have Θ1(x̃)Θ1(ỹ) ≡ Θ1(x̃+ y) [pγ1], and
since both sides of the congruence are pth roots of unity, this proves the
case l = 1 with the help of Corollary 1.2.

Assume we have shown the result for l − 1. Then

Θl(x̃0, . . . , x̃l−1)Θl(ỹ0, . . . , ỹl−1)

= θl(x̃0)Θl−1(x̃1, . . . , x̃l−1)θl(ỹ0)Θl−1(ỹ1, . . . , ỹl−1).

From the equality in (i), and since Tk is homogeneous of degree pk, we
have

θl(x̃0)θl(ỹ0) = AH(γlx̃0)AH(γlỹ0) =
∏

k≥0

AH(γp
k

l Tk(x̃0, ỹ0)),

and we obtain as above the following congruences (note that from
Lemma 1.3, we have γp

i

l ≡ γl−i [pγl]):

AH(γp
i

l Ti(x̃0, ỹ0)) ≡ AH(γl−i ˜T i(x0, y0))

= θl−i( ˜T i(x0, y0)) [pγl] for i ≤ l − 1,

where T i stands for the reduction modulo p of Ti, and

AH(γp
i

l Ti(x̃0, ỹ0)) ≡ AH(0) = 1 [pγl] for i ≥ l.
Consequently, we obtain

θl(x̃0)θl(ỹ0) ≡ θl(x̃0 + y0)θl−1( ˜T 1(x0, y0)) · · · θ1( ˜T l−1(x0, y0)) [pγl]

≡ θl(x̃0 + y0)Θl−1( ˜T 1(x0, y0), . . . , ˜T l−1(x0, y0)) [pγl].
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Now the result comes from the induction hypothesis, the following equality
in Wl−1(km):

(z1, . . . , zl−1) = (T 1(x0, y0), . . . , T l−1(x0, y0))⊕(x1, . . . , xl−1)⊕(y1, . . . , yl−1),

and the fact that z0 = x0 + y0.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Property (i): From Remark 1.8, and since for
x ∈ R we have x̂ ∈ T l, it is clear that Θl(x̂) = Θl(x̃0, . . . , x̃l−1) is a plth
root of unity. Moreover, Θl(1̂) = Θl(1, 0, . . . , 0) = θl(1) = ζpl is a primitive
plth root of unity. On the other hand, from Lemma 2.4(ii), for x, y ∈ R
we have

Θl(x̂)Θl(ŷ) = Θl(x̃0, . . . , x̃l−1)Θl(ỹ0, . . . , ỹl−1)

≡ Θl(z̃0, . . . , z̃l−1) [pγl] ≡ Θl(x̂+ y) [pγl].

Now since both sides are plth roots of unity, Corollary 1.2 ensures that
the above congruence is in fact an equality. Summing up, we have shown
that the map x 7→ Θl(x̂) is an additive character of order pl of R, say ψl.

Property (ii): We first show that for (t0, . . . , tl−1) in T lm, the product∏m−1
i=0 Θl(t

pi

0 , . . . , t
pi

l−1) is a plth root of unity. Actually it is sufficient to

show that θl(t0)θl(t
p
0) · · · θl(tp

m−1

0 ) is a plth root of unity for any l. Since
tp
m

0 = t0, we have

(θl(t0)θl(t
p
0) · · · θl(tp

m−1

0 ))p
l

=
m−1∏

i=0

exp
(
pl
(
γlt

pi

0 + · · ·+ (γlt
pi

0 )p
l

pl
+ · · ·

))

= exp((plγl + · · ·+ γp
l

l + · · ·)(t0 + · · ·+ tp
m−1

0 )).

Note that we can write these equalities since all the terms occurring are
in the convergence disk of the exponential (cf. proof of Proposition 1.7);
since γl is a zero of G, the last term is 1, and we are done.

From Lemma 2.4(ii), for any x0, . . . , xl−1 ∈ km we have
m−1∏

i=0

Θl(x̃
pi

0 , . . . , x̃
pi

l−1) ≡ Θl(ỹ0, . . . , ỹl−1) [pγl],

where we have set, in Wl(km),

(y0, . . . , yl−1) =
m−1⊕

i=0

(xp
i

0 , . . . , x
pi

l−1) = TrWl(km)/Wl(k)(x0, . . . , xl−1).

Thus the yi are actually in k, and both sides of the congruence are plth
roots of unity; once more, Corollary 1.2 shows that the congruence is an
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equality; finally we get, for any x ∈ Rm,
m−1∏

i=0

Θl(F
ix̂) =

m−1∏

i=0

Θl(x̃
pi

0 , . . . , x̃
pi

l−1) = Θl(ỹ0, . . . , ỹl−1)

= ψl ◦ wm(y0, . . . , yl−1)

= ψl ◦ wm(TrWl(km)/Wl(k)(x0, . . . , xl−1))

= ψl(TrRm/R(x)) = ψl,m(x),

and this ends the proof of Theorem 2.3.

3. A Stickelberger theorem for p-adic Gauss sums. Let ζpl be

as above, and ψ̃l,m = ψ̃l ◦ TrKm/Qp be an additive character of order pl of

O(u)
m , where ψ̃l is the additive character of Zp sending 1 to ζpl . Let ζ be

a primitive (pm − 1)th root of unity, i.e. a generator of T ×m := Tm \ {0},
and χ be the multiplicative character from T ×m to C×p , of order pm − 1,
sending ζ to ζ. For any integer 0 ≤ a ≤ pm − 2 we define the following
Gauss sums:

GTm(χ−a, ψ̃l,m) =
∑

x∈T ∗m
χ−a(x)ψ̃l,m(x).

Note that for l = 1 these sums coincide with classical Gauss sums over
finite fields. They are the same sums as in [8], where they are called
incomplete Gauss sums.

These sums lie in the ring of integers Ol,m of Kl,m, the compositum of
Ωl and Km. Notice that γl is a generator of the maximal ideal of Ol,m.
Our aim is to show

Theorem 3.1. Let a be an integer such that 0 ≤ a ≤ pm − 2, and
a = a0 + pa1 + · · · + pm−1am−1 be its p-adic expansion (0 ≤ ai ≤ p − 1).
Set s(a) := a0 + a1 + · · · + am−1 and p(a) := a0! · · · am−1!. Then we have
the following congruence in Ol,m:

GTm(χ−a, ψ̃l,m) ≡ −γ
s(a)
l

p(a)
[γs(a)+1
l ].

Remark 3.2. Note that by the Remark 1.8(ii) we can replace γl by
ζpl − 1 in the preceding congruence.

Proof of Theorem 3.1. We first rewrite the Gauss sum. The character
ψ̃l,m factors to the character ψl,m : O(u)

m /plO(u)
m = Rm → C∗p, obtained by

composing ψl : R → Cp, the character sending 1 to ζpl , with the trace
from Rm to R. Since an element x of Tm is sent via w−1

m to the element
(x, 0, . . . , 0) of Wl(km), we get

ψ̃l,m(x) = Θl(x, 0, . . . , 0) · · ·Θl(xp
m−1

, 0, . . . , 0) = θl(x) · · · θl(xp
m−1

);
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thus we can write, in Cp (actually in Ol,m),

GTm(χ−a, ψ̃l,m) =
∑

x∈T ∗m
x−a0−pa1−···−pm−1am−1θl(x) · · · θl(xp

m−1
)

=
∑

x∈T ∗m

(∑

n≥0

λn,lx
n−a0

)
· · ·
(∑

n≥0

λn,l(xp
m−1

)n−am−1
)

=
∑

n0,...,nm−1≥0

λn0,l · · ·λnm−1,l

∑

x∈T ∗m
xn0−a0+···+pm−1(nm−1−am−1)

=
∑

n0,...,nm−1≥0

λn0,l · · ·λnm−1,l

∑

x∈T ∗m
xn0+···+pm−1nm−1−a

= (pm − 1)
∑

n0,...,nm−1≥0
n0+···+pm−1nm−1≡a [pm−1]

λn0,l · · ·λnm−1,l

(notice that the sum
∑

x∈T ∗m x
n is pm − 1 if n ≡ 0 [pm − 1] and zero

otherwise). Now vp(λn0,l · · ·λnm−1,l) ≥ (n0 + · · ·+ nm−1)/(pl−1(p− 1)), and

λa0,l · · ·λam−1,l =
γ
s(a)
l

p(a)

by the description of the coefficients λn,l for n ≤ p− 1 in Proposition 1.5;
thus the theorem comes from the following lemma.

Lemma 3.3. Let 0 ≤ a ≤ pm−2 and n0, . . . , nm−1 be m+1 nonnegative
integers such that

n0 + · · ·+ pm−1nm−1 ≡ a [pm − 1].

If a = a0 + pa1 + · · ·+ pm−1am−1 is the p-adic expansion of the integer a,
then

n0 + · · ·+ nm−1 ≥ s(a) = a0 + · · ·+ am−1,

and equality occurs if and only if n0 = a0, . . . , nm−1 = am−1.

Proof. Set n0 + · · ·+pm−1nm−1 = a0 +pa1 + · · ·+pm−1am−1 +k(pm−1).
We must have k ≥ 0 since 0 ≤ a ≤ pm − 2. We rewrite this as

n0 + · · ·+ pm−1nm−1

= a0 + k(p− 1) + p(a1 + k(p− 1)) + · · ·+ pm−1(am−1 + k(p− 1)).

Reducing this last equality modulo p, we get n0 ≡ a0 − k [p], and there
exists an integer k1 such that n0 = a0 − k + k1p. Moreover k1 is a
nonnegative integer since 0 ≤ a0 ≤ p − 1, and k, n0 ≥ 0. We can rewrite
the first equality of this proof as

p(n1 + k1) + · · ·+ pm−1nm−1 = p(a1 + kp) + · · ·+ pm−1(am−1 + k(pm − 1)).
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Dividing both sides by p and reducing modulo p yields n1 + k1 = a1 + pk2
with k2 an integer, nonnegative since k1 ≥ 0 and 0 ≤ a1 ≤ p − 1. We
can repeat this process to get nonnegative integers k3, . . . , km−1 such that
ni + ki = ai + pki+1 for 1 ≤ i ≤ m − 2, and nm−1 + km−1 = am−1 + kp.
Summing all these equalities, we get

n0 + · · ·+nm−1 +k1 + · · ·+km−1 = a0−k+k1p+a1 +k2p+ · · ·+am−1 +kp,

n0 + · · ·+ nm−1 = a0 + a1 + · · ·+ am−1 + (k + k1 + · · ·+ km−1)(p− 1).

Since k and the ki are nonnegative integers, this last equality proves the
lemma.

Remark. Note that for l = 1, we obtain the classical Stickelberger
theorem (cf. [2], [7]).
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97159 Pointe à Pitre Cedex - FWI
E-mail: rblache@univ-ag.fr

Received on 5.1.2004
and in revised form on 15.9.2004 (4689)


