Small solutions to linear congruences and Hecke equidistribution

by
Andreas Strömbergsson (Uppsala) and Akshay Venkatesh (Cambridge, MA)

1. Introduction. The purpose of the present paper is to give an explicit application of equidistribution of Hecke points to the problem of small solutions of linear congruences modulo primes. Let p be an odd prime. For a random system of d linear congruences in n variables modulo p, we shall ask how many "small" solutions it has. One typically expects the smallest solution to be of size $p^{d / n}$, and accordingly we shall study the number of solutions with size comparable to $p^{d / n}$. We will show that the answer has a limit distribution as $p \rightarrow \infty$.

Questions of a similar flavour for varieties of higher degree have been studied, i.e. given an affine variety $V \subset \mathbb{A}^{n}$ over $\mathbb{Z} / p \mathbb{Z}$ of codimension d, it may be regarded as defining a system of polynomial congruences for n integers $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$. One can ask (if very optimistic) whether there always exists an integral solution so that $\max _{1 \leq i \leq n}\left|x_{i}\right| \leq C p^{d / n}$, for some constant C depending only on the invariants of V, e.g. degree. This is easily seen to be false, but it turns out that one may prove weaker assertions of this nature: see, for example, [L]. The present paper shows that in the seemingly easy case of linear varieties, the small solutions exhibit interesting statistical properties which are, somewhat surprisingly, related to automorphic forms.

The question of small solutions of linear congruences is also closely related to the study of fractional parts of linear forms (cf. Section 7 below), which have been investigated by a number of authors using ergodic theory: see, e.g., Marklof [M1]. In our context, we shall use automorphic forms and spectral theory in place of ergodic theory; we are therefore able to give explicit error estimates.

[^0]The application of the spectral theory of automorphic forms to certain Diophantine questions in number theory is not new; see, for instance, Sarnak's ICM address [Sa2]. Hecke equidistribution in particular has been studied in great generality by Clozel, Oh and Ullmo in [COU]. Our problem involves passing from smooth to sharp cutoff test functions in the equidistribution results; for this we give a simple way of optimizing the harmonic analysis (Section 2). Our methods here allow us to get sharper error estimates than previous authors (see comments after Theorem 2). The application of Hecke equidistribution on $\mathrm{SL}_{n}(\mathbb{R})$ to the case of homogeneous linear congruences is carried out in Section 3.

We will also make use of the non-reductive group $\mathrm{SL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$, and establish some results about its spectrum that may be of independent interest. (Similar non-reductive groups have found applications in other works which use ergodic theory, for example $[\mathrm{K}],[\mathrm{EM}]$ and [M2]; the spectral bounds that we discuss here allow for error estimates, and we hope they will be useful in other contexts.) These results are established in Section 4 and applied to the statistics of inhomogeneous linear congruences in Section 5.

In the case of $\mathrm{SL}_{2}(\mathbb{R}) \ltimes \mathbb{R}^{2}$ we go further. By explicit geometric considerations we show how to obtain a better error term than is obtainable by "general representation-theoretic considerations" (Section 6). This involves a careful analysis of the smoothness at the boundary for several subsets of $\mathrm{SL}_{2}(\mathbb{R}) \ltimes \mathbb{R}^{2}$.

We now give a typical result; prior to doing so, we fix some notation that will be valid throughout the paper. Firstly, recalling that p will always denote an odd prime, we will repeatedly identify $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ with the set $\{-(p-1) / 2,-(p-3) / 2, \ldots,(p-1) / 2\}$. Correspondingly, we will identify $\mathbb{F}_{p}^{r}=(\mathbb{Z} / p \mathbb{Z})^{r}$ with the set $\{-(p-1) / 2,-(p-3) / 2, \ldots,(p-1) / 2\}^{r}$. Secondly, by an affine line or affine hyperplane in a vector space V we mean a translate of a (usual) line or hyperplane; thus, for instance, the linear congruence $x+y+z \equiv 1(\bmod p)$ defines an affine hyperplane in $(\mathbb{Z} / p \mathbb{Z})^{3}$. With these conventions:

Theorem 1. Let $K>0$ be fixed. Let p be a prime, and B the subset of $(\mathbb{Z} / p \mathbb{Z})^{3}$ defined by $\left\{\left|x_{i}\right| \leq K p^{2 / 3}: 1 \leq i \leq 3\right\}$. There are real positive constants c_{r}, for r a non-negative integer, with the property that $\sum_{r=0}^{\infty} c_{r}=1$, and so that the number of affine lines in $(\mathbb{Z} / p \mathbb{Z})^{3}$ that intersect B in precisely r points is $c_{r} p^{4}\left(1+O_{r}\left(p^{-1 / 12}\right)\right)$.

Thus the probability that a system of two linear congruences $a_{1} x+b_{1} y+$ $c_{1} z \equiv d_{1}, a_{2} x+b_{2} y+c_{2} z \equiv d_{2}(\bmod p)$ has exactly r solutions in the box $(x, y, z) \in\left[-K p^{2 / 3}, K p^{2 / 3}\right]^{3}$ converges to c_{r} as $p \rightarrow \infty$. Note that one could also make the implicit constant in $O\left(p^{-1 / 12}\right)$ explicit.

The corresponding statement for usual (non-affine) lines in $(\mathbb{Z} / p \mathbb{Z})^{3}$ (i.e. lines passing through $(0,0,0)$) is significantly easier, as it only uses SL_{3}.

This theorem holds (with the appropriate modifications) for affine hyperplanes of any dimension in any $(\mathbb{Z} / p \mathbb{Z})^{n}$. In the case $n=2$ we have determined the constants c_{r} explicitly for r or K small, by explicit computation of the relevant volumes in $\mathrm{SL}_{2}(\mathbb{R}) \ltimes \mathbb{R}^{2}$ (as well as in $\mathrm{SL}_{2}(\mathbb{R})$, for the case of homogeneous congruences); see Section 8. The formulas obtained generalize results of Mazel and Sinai [MS] in the context of Diophantine approximation (cf. Section 7). It is interesting to note that the c_{r} do not vary smoothly with K, the parameter that controls the size of the box; a similar phenomenon occurs in [EM].

Our approach of course owes much to previous authors. The notion of "smooth set" that we use appeared (as "well-rounded") in the paper [EsM] of Eskin-McMullen. The estimates for Hecke operators that are used in Section 3 are already in [COU], and Sobolev norms are used elegantly in [GO]. The computations in Section 8 are inspired by the method of Elkies and McMullen [EM, pp. 124-131].

We would like to thank T. Ekholm, J. Marklof, S. Janson, P. Sarnak and F. Strömberg for useful and inspiring discussions.
2. Harmonic analysis on Lie groups. The material in this section contains no essentially new ideas; we do however note in Lemma 2 a very simple method for obtaining essentially sharp (within ε) pointwise estimates for functions in terms of their Sobolev norms without explicit interpolation. This will later allow us to get estimates for Hecke equidistribution with sharp cutoff functions, better than those obtained by previous authors (cf. Theorem 2).

Let G be a real Lie group, and $\Gamma \subset G$ a lattice. Fix a basis $\left\{X_{i}\right\}$ for the Lie algebra of G. If V is any unitary G-representation, we define the Sobolev norm

$$
\begin{equation*}
S_{k}(v)=\sqrt{\sum_{\operatorname{ord}(D) \leq k}\|D v\|_{2}^{2}} \tag{1}
\end{equation*}
$$

the sum being over all monomials in the X_{i} s of degree $\leq k$. This norm depends on the choice of basis only up to a constant; in each of our applications, we will regard a basis $\left\{X_{i}\right\}$ as having been fixed for all time, and we will make use of it without explicit mention.

Throughout this paper, by representation we mean unitary representation.

If X is a metric space, $S \subset X$, and $\delta>0$, we set $B(S, \delta)$ to be the δ-neighbourhood of S in X. We further set $\partial_{\varepsilon} S=B(S, \varepsilon) \cap B(X-S, \varepsilon)$.

If X is a metric space endowed with a measure ν, we say a subset $S \subset X$ is K-smooth if $\nu\left(\partial_{\varepsilon} S\right) \leq K \varepsilon$ (this being assumed for $\varepsilon \leq 1$, say). We say it is smooth if it is K-smooth for some K.

Finally, suppose that X is as above (a metric space endowed with a measure ν), and additionally suppose that it is a smooth manifold and G acts on X smoothly and in a measure-preserving fashion. Then $L^{2}(X)$ is a unitary G-representation. If $f \in C^{\infty}(X)$ is any smooth function, we may define the k-Sobolev norm $S_{k}(f)$ formally according to (1), even if f or its derivatives do not belong to $L^{2}(X)$; with this definition it is possible that $S_{k}(f)=\infty$.

To avoid confusion, we denote by μ a (left) Haar measure on G and by vol the standard Lebesgue measure on \mathbb{R}^{n}. For definiteness, we will normalize so that $\mu(\Gamma \backslash G)=1$.

We now set $X=\Gamma \backslash G$. We fix a Riemannian metric d on G, left invariant for the G-action. Let U_{ε} be the ε-neighbourhood of $1 \in G$. The metric d descends to a Riemannian metric on $X=\Gamma \backslash G$ that we also denote by d. In particular, for $x, y \in X$, one has $d(x, y)<\varepsilon$ if and only if $x \in y U_{\varepsilon}$. We endow X with the G-invariant measure with total mass 1 . As above, we have a notion of Sobolev norm $S_{k}(f)$ for $f \in C^{\infty}(X)$.

For each $\delta \leq 1$ we fix k_{δ} to be a positive smooth compactly supported test function on G, so that:
(1) $\int_{G} k_{\delta}(g) d g=1$;
(2) $\int_{G}\left|D k_{\delta}(g)\right| d g \ll_{j} \delta^{-j}$ for any D, a monomial in the $X_{i} \mathrm{~s}$ of order j;
(3) $\operatorname{Supp} k_{\delta} \subset U_{\delta}$.

Our first lemma concerns approximating the characteristic function of a smooth set by C^{∞} functions. Let us recall that if G acts on the space X and f is a function on X, we define the convolution

$$
f \star k_{\delta}(x)=\int_{g \in G} f(x g) k_{\delta}\left(g^{-1}\right) d g
$$

Lemma 1. Let $T \subset X$ be K-smooth, and let e_{T} be its characteristic function. For each $0<\delta \leq 1 / 2$ there exist functions $e_{-, \delta}$ and $e_{+, \delta}$ in $C^{\infty}(X)$ so that for all $j \geq 1$ one has:

$$
\begin{align*}
& 0 \leq e_{-, \delta} \leq e_{T} \leq e_{+, \delta} \leq 1 \tag{2}\\
& S_{j}\left(e_{-, \delta}\right), S_{j}\left(e_{+, \delta}\right) \ll_{j} K^{1 / 2} \delta^{1 / 2-j} \tag{3}\\
& \left\|e_{ \pm, \delta}(x)-e_{T}(x)\right\|_{L^{1}} \leq 2 K \delta \tag{4}
\end{align*}
$$

Proof. Let $T_{-}=T-\left(\partial_{\delta} T\right)$ and $T_{+}=T \cup \partial_{\delta} T$. Now set $e_{T_{-}}$to be the characteristic function of T_{-}, and set $e_{-, \delta}=e_{T_{-}} \star k_{\delta}$; similarly define $e_{+, \delta}$. It is easy to see the first and last conditions.

Let D be any monomial in the X_{i} s of degree $\leq j$. Then $D e_{-, \delta}=e_{T_{-}} \star$ $\left(D k_{\delta}\right)$ is supported in a 2δ-neighbourhood of the boundary of T, in particular a set of volume $\leq 2 K \delta$; further $\left\|D e_{-, \delta}\right\|_{\infty} \leq \int_{G}\left|D k_{\delta}(g)\right| d g<_{j} \delta^{-j}$. One obtains immediately the stated result.

The following lemma allows us to give an almost sharp (to within ε) pointwise bound of Sobolev type.

Lemma 2 (Pointwise bounds). Let $M=\operatorname{dim}(G) / 2$. Let $k=[M]$ and $\{M\}=M-k$. Let $x \in X$ and $f \in C^{\infty}(X)$. Then

$$
|f(x)| \ll x, \varepsilon S_{k}(f)^{1-\{M\}-\varepsilon} S_{k+1}(f)^{\{M\}+\varepsilon}
$$

Proof. Indeed, by choosing a coordinate chart, it suffices to prove this for \mathbb{R}^{n}, where the result follows (for example) from Hölder's inequality and the usual Sobolev estimate.

It is more precise and more canonical to use interpolation (in fact, evidently the lemma above is an approximate form of interpolation). However, this very simple lemma allows us to get estimates that are just as good with a minimum of technical overhead!

We now give a variant of Lemma 1, needed in Section 6 below. Specifically, the above lemma concerned approximation of a characteristic function by smooth functions. The next lemma concerns approximation of functions that have (roughly speaking) one more derivative of smoothness than a characteristic function (e.g. the absolute value function on \mathbb{R}).

Lemma 3. Let $f: X \rightarrow \mathbb{R}$ be a continuous function such that for some positive constants $K, C, C_{1}, C_{2}, \ldots$, the following assumptions hold:
(i) $|f(x)-f(y)| \leq C d(x, y)$ for all $x, y \in X$;
(ii) there is a K-smooth closed subset $S \subset X$ of measure 0 such that $f \in C^{\infty}(X-S) ;$
(iii) $|D f(x)| \leq C_{j} \delta^{1-j}$ for each monomial D in the $X_{i} s$ of order $j \geq 1$ and all $0<\delta<1, x \in X-B(S, \delta)$.
Then for each $0<\delta<1 / 2$ there exist functions $e_{-, \delta}$ and $e_{+, \delta}$ in $C^{\infty}(X)$ such that:

$$
\begin{align*}
& e_{-, \delta} \leq f \leq e_{+, \delta} \tag{5}\\
& S_{j}\left(e_{-, \delta}\right), S_{j}\left(e_{+, \delta}\right) \ll \begin{cases}1 & \text { for } j=1 \\
\delta^{3 / 2-j} & \text { for } j \geq 2\end{cases} \tag{6}\\
& \left\|e_{ \pm, \delta}-f\right\|_{L_{1}} \ll \delta^{2} \log \left(\delta^{-1}\right) \tag{7}
\end{align*}
$$

(The implied constants depend only on the constants $K, C, C_{1}, C_{2}, \ldots$, and on j.)

Proof. The idea is to smoothen f by convolving it with a k_{δ}, and then to modify the result so as to ensure that it is either larger than or less than f.

Applying Taylor's formula to the function $t \mapsto f(x \exp t Y)$ for $x \in X$ and Y in the Lie algebra of G, and using (iii) for $j=2$, we find that there is a positive constant A which only depends on C_{1}, C_{2}, such that for all sufficiently small $\delta_{1}>0$ and all $x \in X-B\left(S, \delta_{1}\right), \delta \in\left(0, \delta_{1} / 2\right]$,

$$
\begin{equation*}
\left|\frac{1}{2}\left(f(x g)+f\left(x g^{-1}\right)\right)-f(x)\right| \leq A \delta_{1}^{-1} \delta^{2}, \quad \forall g \in U_{\delta} \subset G \tag{8}
\end{equation*}
$$

We increase A, if necessary, so that (8) holds whenever $0<2 \delta \leq \delta_{1} \leq 1$. Now let k_{δ} be as before, and impose the extra assumption that $k_{\delta}\left(g^{-1}\right)=k_{\delta}(g)$ for all $g \in G$. We then have $f \star k_{\delta}(x)=\frac{1}{2} \int_{G}\left(f(x g)+f\left(x g^{-1}\right)\right) k_{\delta}(g) d g$, and hence by (8), if $0<2 \delta \leq \delta_{1} \leq 1$,

$$
\begin{equation*}
\left|f \star k_{\delta}(x)-f(x)\right| \leq A \delta_{1}^{-1} \delta^{2}, \quad \forall x \in X-B\left(S, \delta_{1}\right) \tag{9}
\end{equation*}
$$

We also have, because of (i),

$$
\begin{equation*}
\left|f \star k_{\delta}(x)-f(x)\right| \leq C \delta, \quad \forall x \in X \tag{10}
\end{equation*}
$$

Now let $0<\delta<1 / 2$ be given. For any monomial $D=X_{i_{1}} \cdots X_{i_{j}}(j \geq 1)$ we have, by (i) and (ii),

$$
\begin{aligned}
D\left[f \star k_{\delta}\right](x) & =X_{i_{1}}\left[f \star X_{i_{2}} \cdots X_{i_{j}} k_{\delta}\right](x) \\
& =\int_{G}\left(\operatorname{Ad}(h) X_{i_{1}}\right) f\left(x h^{-1}\right) \cdot X_{i_{2}} \cdots X_{i_{j}} k_{\delta}(h) d h
\end{aligned}
$$

But $\left\{\operatorname{Ad}(h)\left(X_{i_{1}}\right): h \in U_{1 / 2}\right\}$ is a bounded subset of the Lie algebra of G, and hence $\left\|D\left(f \star k_{\delta}\right)\right\|_{\infty} \ll \delta^{1-j}$. Similarly, if $x \notin B(S, 2 \delta)$ we have $D\left[f \star k_{\delta}\right](x)=$ $\int_{G}(\operatorname{Ad}(h) D) f\left(x h^{-1}\right) \cdot k_{\delta}(h) d h$, and hence, writing $M=\left[\log _{2} \delta^{-1}\right] \in \mathbb{Z}^{+}$and using (iii), we have $D\left[f \star k_{\delta}\right](x) \ll j_{j}\left(2^{m} \delta\right)^{1-j}$ for all $m=1, \ldots, M$ and all $x \in X-B\left(S, 2^{m} \delta\right)$. Using these bounds and decomposing X into the regions $B(S, 2 \delta), B\left(S, 2^{m+1} \delta\right)-B\left(S, 2^{m} \delta\right)$ for $m=1, \ldots, M$, and $X-B\left(S, 2^{M+1} \delta\right)$ (which have measures $\ll \delta$, $\ll 2^{m} \delta$ and $\ll 1$, respectively), we obtain

$$
S_{j}\left(f \star k_{\delta}\right) \ll \begin{cases}1 & \text { if } j=1 \tag{11}\\ \delta^{3 / 2-j} & \text { if } j \geq 2\end{cases}
$$

For any $\delta_{1}>0$ we define $u_{\delta_{1}}=1_{B\left(S, 2 \delta_{1}\right)} \star k_{\delta_{1}}$, and let

$$
e_{ \pm, \delta}=f \star k_{\delta} \pm \max (C, A)\left(\delta^{2}+\delta \sum_{m=1}^{M+1} 2^{1-m} u_{2^{m} \delta}\right)
$$

Note that $0 \leq u_{\delta_{1}} \leq 1$ and $u_{\delta_{1}}(x)=1$ for all $x \in B\left(S, \delta_{1}\right)$. Hence (5) follows easily from (9) and (10). Furthermore, arguing as in the proof of Lemma 1, we find that $S_{j}\left(u_{\delta_{1}}\right) \ll_{j, K} \delta_{1}^{1 / 2-j}$ for each $j \geq 1$ and $0<\delta_{1}<10$. Combining this with (11), we obtain (6). Finally, decomposing X as before and using (9), (10) we find that $\left\|f \star k_{\delta}-f\right\|_{1} \ll \delta^{2} \log \left(\delta^{-1}\right)$. We also have $\left\|u_{\delta_{1}}\right\|_{1} \leq\left\|1_{B\left(S, 3 \delta_{1}\right)}\right\|_{1} \ll \delta_{1}$ for $0<\delta_{1}<10$. Hence we obtain (7).
3. Homogeneous linear congruences. Let Ω be a compact subset of \mathbb{R}^{n}. We shall assume that Ω contains a neighbourhood of the origin, and that Ω satisfies a certain mild smoothness condition (see below). For instance, if $K>0$, the sets $\Omega=\left\{\left(x_{1}, \ldots, x_{n}\right): \sum_{i}\left|x_{i}\right|^{2} \leq K\right\}$ or $\Omega=$ $\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{j}\right| \leq K\right.$ for all $\left.1 \leq j \leq n\right\}$ are both certainly admissible.

We shall now study how many solutions a system of j linear congruences $\bmod p$ has in the set $p^{j / n} \Omega$; the final result is stated in Theorem 2.

Set in this section $\Gamma=\mathrm{SL}_{n}(\mathbb{Z}), G=\mathrm{SL}_{n}(\mathbb{R}), X=\Gamma \backslash G$. As usual, $\Gamma \backslash G$ is identified with the moduli space of unimodular rank n lattices, via $g \mapsto \mathbb{Z}^{n} g$.
3.1. Hecke operators for SL_{n}. Let $T_{p, j}$ be the j th Hecke operator at p, explicitly described as follows: if L is a lattice, $T_{p, j}$ is the following formal linear combination of lattices:

$$
T_{p, j}=\frac{\sum_{L / L^{\prime} \equiv(\mathbb{Z} / p)^{j}}\left[\left(1 / p^{j / n}\right) L^{\prime}\right]}{\sum_{L^{\prime}} 1}
$$

Then $T_{p, j}$ induces a correspondence from $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$ to itself, whereby it induces an endomorphism of $L^{2}\left(\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})\right)$; we shall use the notation $T_{p, j}$ to also denote this endomorphism. To compute the operator norms of the $T_{p, j}$, we invoke some representation theory. Let $\mu_{T_{j}}$ be the restriction of Haar measure to the following $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$-double coset in $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$:

$$
\begin{equation*}
\operatorname{GL}_{n}\left(\mathbb{Z}_{p}\right) \operatorname{diag}\left(p^{-1}, p^{-1}, \ldots, p^{-1}, 1, \ldots, 1\right) \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right) \tag{12}
\end{equation*}
$$

We normalize $\mu_{T_{j}}$ so its total mass is $1 . \operatorname{Here} \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ refers to the diagonal matrix with entries a_{1}, \ldots, a_{n}, and there are exactly $j p^{-1} \mathrm{~S}$ in the matrix $\operatorname{diag}\left(p^{-1}, p^{-1}, \ldots, p^{-1}, 1, \ldots, 1\right)$.

It is then easy to verify that the action of $T_{p, j}$ corresponds, in the adelic viewpoint, to the action of $\mu_{T_{j}}$ on functions that is given by right convolution. (To be precise, identify $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$ with $\mathrm{PGL}_{n}(\mathbb{Z}) \backslash \mathrm{PGL}_{n}(\mathbb{R})$. This latter space may be identified with $\mathrm{PGL}_{n}(\mathbb{Q}) \backslash \mathrm{PGL}_{n}(\mathbb{A}) / K_{f}$, where \mathbb{A} is the ring of adeles of \mathbb{Q} and $K_{f}=\prod_{p} \mathrm{PGL}_{n}\left(\mathbb{Z}_{p}\right)$, where p ranges over finite places. Using this, one sees that a $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$-bi-invariant measure on $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ acts on $L^{2}\left(\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})\right)$.)

It is also known (cf. $[\mathrm{T}, \mathrm{O}])$ that the operator norm of $\mu_{T_{j}}$ on any irreducible representation of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ that is not one-dimensional is bounded above by $c_{n} p^{-\min (j, n-j) / 2}$ if $n>2$; here c_{n} depends only on n. If $n=2$ there is no such upper bound owing to the absence of property (T).

Furthermore, $T_{p, j}$ acts on $L^{2}(\Gamma \backslash G)$. Let $L_{0}^{2}(\Gamma \backslash G)$ be the orthogonal complement of the constants. We define, for $1 \leq j \leq n-1$ and $n \geq 2$,

$$
\beta(j, n)= \begin{cases}-1 / 2+7 / 64, & j=1, n=2 \tag{13}\\ -\min (j, n-j) / 2, & n>2\end{cases}
$$

Then, by the above remarks (for $n>2$) and by the work of Kim and Sarnak [KiS] (for $n=2$), the operator norm of $T_{p, j}$ acting on $L_{0}^{2}(\Gamma \backslash G)$ is $\ll{ }_{n} p^{\beta(j, n)}$. (Implicitly, we are using the fact that the orthogonal complement of the constants in $L^{2}\left(\mathrm{PGL}_{n}(\mathbb{Q}) \backslash \mathrm{PGL}_{n}(\mathbb{A})\right)$ does not weakly contain any 1-dimensional $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-subrepresentation; we omit the easy proof, cf. the proof of Lemma 8 below.)
3.2. Homogeneous linear congruences and lattices. Set $\widetilde{\Omega}_{r}=\{g \in$ $\left.\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R}):\left|\mathbb{Z}^{n} g \cap \Omega\right|=r\right\}$. We must first ascertain that $\widetilde{\Omega}_{r}$ does not have too badly behaved a boundary. Recall that the Haar measure μ is normalized so that $\mu\left(\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})\right)=1$.

Lemma 4. Suppose Ω is smooth (with respect to Lebesgue measure) and contains a neighbourhood of the origin. Then $\widetilde{\Omega}_{r}$ is also smooth (with respect to Haar measure).

Proof. Take $0<\varepsilon<1$. Let U_{ε} be an ε-neighbourhood of the identity in $\operatorname{SL}_{n}(\mathbb{R})$. Suppose $g \in \partial_{\varepsilon} \widetilde{\Omega}_{r}$. Then there exist $u, u^{\prime} \in U_{\varepsilon}$ so that $g u \in \widetilde{\Omega}_{r}$ and $g u^{\prime} \notin \widetilde{\Omega}_{r}$.

It follows $\left|\mathbb{Z}^{n} g \cap \Omega u^{-1}\right|=r$ and $\left|\mathbb{Z}^{n} g \cap \Omega u^{\prime-1}\right| \neq r$. There is a constant C (depending on how large Ω is) so that the symmetric difference of Ωu^{-1} and $\Omega u^{\prime-1}$ is contained in $\partial_{C \varepsilon} \Omega$. (Indeed, if $h \in U_{\varepsilon}$ and $x \in \mathbb{R}^{n}$, one has $\|x h-x\| \ll \varepsilon\|x\|$.

In particular the lattice $\mathbb{Z}^{n} g$ must contain a point in $\partial_{C \varepsilon} \Omega$. Note that for ε sufficiently small, $\partial_{C \varepsilon} \Omega$ does not contain the origin. By Siegel's theorem (see $[\mathrm{Si}$, Lecture XV]) the Haar measure of the set of such g is at most $\operatorname{vol}\left(\partial_{C \varepsilon} \Omega\right)=O(\varepsilon)$.

Lemma 5. Let Ω satisfy the same hypotheses as in Lemma 4. Let $\beta(j, n)$ be as in (13) and let $\varepsilon>0$. Then the number of Hecke translates (under $T_{p, j}$) of \mathbb{Z}^{n} that lie in $\widetilde{\Omega}_{r}$ is

$$
\mu\left(\widetilde{\Omega}_{r}\right)+O_{\Omega, r, \varepsilon}\left(p^{2 \beta(j, n) / n^{2}+\varepsilon}\right)
$$

Proof. We have seen that $\widetilde{\Omega}_{r}$ is smooth.
Let f be an arbitrary smooth L^{1} function on $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$, set $f_{0}=$ $f-\int_{\Gamma \backslash G} f d \mu$, and $k=\left[\left(n^{2}-1\right) / 2\right], \alpha=\left(n^{2}-1\right) / 2-k$. The operator norm of $T_{p, j}$, considered as an endomorphism of $L_{0}^{2}(\Gamma \backslash G)$ with the usual norm, bounds from above the operator norm of $T_{p, j}$ considered as an endomorphism of the corresponding k-Sobolev spaces (i.e. the completion of the space of smooth vectors in $L_{0}^{2}(\Gamma \backslash G)$ with respect to $\left.S_{k}\right)$. This is a straightforward deduction from the fact that $T_{p, j}$ commutes with the G-action; in fact the norms are equal, but we do not need this.

Combining this, Lemma 2, and the definition of $\beta(j, n)$ (see (13) and the remarks that follow), we obtain

$$
\begin{equation*}
T_{p, j} f\left(\mathbb{Z}^{n}\right)-\int_{\Gamma \backslash G} f d \mu=T_{p, j} f_{0}\left(\mathbb{Z}^{n}\right)<_{\varepsilon} p^{\beta(j, n)} S_{k}\left(f_{0}\right)^{1-\alpha-\varepsilon} S_{k+1}\left(f_{0}\right)^{\alpha+\varepsilon} . \tag{14}
\end{equation*}
$$

Let $e_{\widetilde{\Omega}_{r}}$ be the characteristic function of $\widetilde{\Omega}_{r}$. We have seen in Lemma 1 that one may approximate $e_{\tilde{\Omega}_{r}}$ from above and below by smooth functions $e_{\widetilde{\Omega}_{r}, \pm, \delta}$. We apply (14) with $f=e_{\tilde{\Omega}_{r, \pm, \delta}}$. The estimates on Sobolev norms supplied by Lemma 1 yield

$$
T_{p, j} e_{\widetilde{\Omega}_{r}}\left(\mathbb{Z}^{n}\right)=\mu\left(\widetilde{\Omega}_{r}\right)+O(\delta)+p^{\beta(j, n)} O\left(\delta^{1 / 2-\left(n^{2}-1\right) / 2-\varepsilon}\right)
$$

Choosing δ optimally, one obtains (possibly for a new ε)

$$
e_{\widetilde{\Omega}_{r}}\left(\mathbb{Z}^{n}\right)=\mu\left(\widetilde{\Omega}_{r}\right)+O\left(p^{2 \beta(j, n) / n^{2}+\varepsilon}\right)
$$

Note that a hyperplane $H \subset(\mathbb{Z} / p \mathbb{Z})^{n}$ of codimension j determines, by taking its inverse image in \mathbb{Z}^{n}, a sublattice $L_{H} \subset \mathbb{Z}^{n}$ so that $\mathbb{Z}^{n} / L \equiv$ $(\mathbb{Z} / p \mathbb{Z})^{j}$. As H varies through all hyperplanes in $(\mathbb{Z} / p \mathbb{Z})^{n}$, the corresponding (rescaled) lattices $p^{-j / n} L_{H}$ vary through the Hecke orbit of \mathbb{Z}^{n} under $T_{p, j}$. With this, we may translate the previous result into a statement about hyperplanes. Note that the number of hyperplanes of codimension j in $(\mathbb{Z} / p \mathbb{Z})^{n}$ is $p^{j(n-j)}\left(1+O\left(p^{-1}\right)\right)$; utilizing this, we obtain:

Theorem 2. Fix j and let $\Omega \subset \mathbb{R}^{n}$ be compact. Let $\varepsilon>0$. For $0 \leq r$ $\leq \infty$ set $c_{r}=\mu\left(\left\{g \in \mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R}):\left|\mathbb{Z}^{n} g \cap \Omega\right|=r\right\}\right)$. Assume that Ω contains a neighbourhood of the origin and is smooth with respect to Lebesgue measure. Then the number of hyperplanes of codimension j in \mathbb{F}_{p}^{n} that intersect $p^{j / n} \Omega$ in precisely r points is

$$
c_{r} p^{j(n-j)}\left(1+O_{\Omega, r, \varepsilon}\left(p^{2 \beta(j, n) / n^{2}+\varepsilon}\right)\right) .
$$

Here $\beta(j, n)$ is as in (13). In particular, as $p \rightarrow \infty$, a random system of j linear congruences in n variables modulo p has exactly r solutions in $p^{j / n} \Omega$ with probability c_{r}.

By way of comparison, let us note that Gan and Oh in [GO] use Hecke equidistribution to study points on certain varieties admitting a group action (cf. [GO, Thm. 4.7]). The idea of the above theorem is similar, but in the present context our methods yield considerably sharper error estimates (indeed the exponent of the above error term is about twice as good as that which would be obtained from [GO, Thm. 4.7]).
4. Analysis on the space of affine lattices. In this section we set up the necessary framework to prove a version of Theorem 2 in the context of affine hyperplanes. The main result is the computation of the operator norm of an "affine Hecke operator"; this is done by reducing to the case of the usual Hecke operators $T_{p, j}$ on GL_{n}.

The reader who wishes to take the proof for granted may read only the definition of these operators at the start of Section 4.1 and proceed to Section 5.
4.1. Hecke operators for affine lattices. Let $\mathcal{A} \mathcal{L}(V)$ denote the space of affine lattices in \mathbb{R}^{n} of covolume V. Here an affine lattice of covolume V is a translate of a lattice of covolume V. These form a homogeneous space for $\mathrm{ASL}_{n}(\mathbb{R})=\mathrm{SL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$. If L is an affine lattice, the set $(L-L)=\left\{\lambda_{1}-\lambda_{2}\right.$: $\left.\lambda_{1}, \lambda_{2} \in L\right\}$ is a usual lattice of the same covolume. One has a natural family of "Hecke operators": for each $1 \leq j \leq n-1$ we define a correspondence

$$
\mathcal{A L}(V) \xrightarrow{A T_{p, j}} \mathcal{A L}\left(p^{j} V\right)
$$

which is equivariant for the $\mathrm{ASL}_{n}(\mathbb{R})$-action. Namely,

$$
\begin{equation*}
A T_{p, j}(L)=\frac{\sum_{L^{\prime} \subset L,(L-L) /\left(L^{\prime}-L^{\prime}\right) \equiv(\mathbb{Z} / p)^{j}} L^{\prime}}{\sum_{L^{\prime}}} \tag{15}
\end{equation*}
$$

This associates to a lattice of covolume L a formal sum of lattices of covolume $p^{j} V$. In particular, it induces a map from $L^{2}(\mathcal{A} \mathcal{L}(V))$ to $L^{2}\left(\mathcal{A} \mathcal{L}\left(p^{-j} V\right)\right)$; this map will also be denoted $A T_{p, j}$. Our aim (realized eventually in Lemma 9) is to compute its norm when restricted to the complement of the constants; it will be no worse than for the usual SL_{n}-Hecke operator.

Let $\mathcal{A L}=\bigcup_{V} \mathcal{A} \mathcal{L}(V)$. This is a homogeneous space for $\mathrm{AGL}_{n}(\mathbb{R})=$ $\mathrm{GL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$, which we shall view as acting on the right, and it possesses an invariant measure for this action (a word of caution: $\mathrm{AGL}_{n}(\mathbb{R})$ is not unimodular and it has no center). For any ring R, we consider $\operatorname{AGL}_{n}(R)=$ $\left\{(A, \mathbf{v}): A \in \mathrm{GL}_{n}(R), \mathbf{v} \in R^{n}\right\}$ acting on the right on R^{n} via $\mathbf{x} \cdot(A, \mathbf{v})=$ $\mathbf{x} A+\mathbf{v}$. The multiplication rule is $(A, \mathbf{v}) \cdot\left(A^{\prime}, \mathbf{v}^{\prime}\right)=\left(A A^{\prime}, \mathbf{v} A^{\prime}+\mathbf{v}^{\prime}\right)$. With this definition, it is easy to verify that the stabilizer of the affine lattice \mathbb{Z}^{n} under the $\mathrm{AGL}_{n}(\mathbb{R})$-action is $\mathrm{AGL}_{n}(\mathbb{Z})$.

Let $\mathbb{Z}[1 / p]$ denote the ring of p-integers (rational numbers whose denominators are divisible by no primes other than p), i.e. the localization of \mathbb{Z} at p.

Let $\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$, as usual, be the maximal compact subring of the p-adic numbers. Considering $\mathbb{Z}[1 / p]$ as a subset of \mathbb{Q}_{p}, we have $\mathbb{Z}[1 / p] \cap \mathbb{Z}_{p}=\mathbb{Z}$, $\mathbb{Z}[1 / p]+\mathbb{Z}_{p}=\mathbb{Q}_{p}$ and $\mathbb{Z}_{p}^{\times} \cdot \mathbb{Z}[1 / p]^{\times}=\mathbb{Q}_{p}^{\times}$.
$\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ acts on "affine \mathbb{Z}_{p}-lattices in \mathbb{Q}_{p}^{n} ", i.e. translates of a free, rank n, \mathbb{Z}_{p}-submodule of \mathbb{Q}_{p}^{n}. Set $K_{p} \subset \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ to be the stabilizer of \mathbb{Z}_{p}^{n} in this action. Thus $K_{p}=\mathrm{AGL}_{n}\left(\mathbb{Z}_{p}\right)=\left\{(A, \mathbf{v}): A \in \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right), \mathbf{v} \in \mathbb{Z}_{p}^{n}\right\}$.

Lemma 6. $\mathcal{A L}$ is naturally identified with $\mathrm{AGL}_{n}(\mathbb{Z}[1 / p]) \backslash \mathrm{AGL}_{n}(\mathbb{R}) \times$ $\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right) / K_{p}$.

Note that here we consider $\mathrm{AGL}_{n}(\mathbb{Z}[1 / p])$ as a subgroup of $\mathrm{AGL}_{n}(\mathbb{R}) \times$ $\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ by means of the natural diagonal embedding $\mathbb{Z}[1 / p] \hookrightarrow \mathbb{R} \times \mathbb{Q}_{p}$.

Proof. Indeed, consider the map

$$
\operatorname{AGL}_{n}(\mathbb{Z}) \backslash \operatorname{AGL}_{n}(\mathbb{R}) \hookrightarrow \operatorname{AGL}_{n}(\mathbb{Z}[1 / p]) \backslash \mathrm{AGL}_{n}(\mathbb{R}) \times \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right) / K_{p}
$$

which is induced from the inclusion $g \mapsto(g, 1)$ of $\mathrm{AGL}_{n}(\mathbb{R})$ into $\mathrm{AGL}_{n}(\mathbb{R}) \times$ $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$. It is an inclusion as $\mathrm{AGL}_{n}(\mathbb{Z}[1 / p]) \cap K_{p}=\mathrm{AGL}_{n}(\mathbb{Z})$. We claim it is surjective. It suffices to verify that $\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right)=\operatorname{AGL}_{n}(\mathbb{Z}[1 / p]) \cdot K_{p}$.

Note first that $\operatorname{det}\left(\mathrm{GL}_{n}(\mathbb{Z}[1 / p]) \cdot \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)\right)=\mathbb{Z}[1 / p]^{\times} \cdot \mathbb{Z}_{p}^{\times}=\mathbb{Q}_{p}^{\times}$. On the other hand, $\mathrm{SL}_{n}(\mathbb{Z}[1 / p])$ is dense in $\mathrm{SL}_{n}\left(\mathbb{Q}_{p}\right)$ (as follows from strong approximation for $\left.\mathrm{SL}_{n}\right)$ and we see that $\mathrm{GL}_{n}(\mathbb{Z}[1 / p]) \cdot \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ is dense in $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$. This implies $\mathrm{GL}_{n}(\mathbb{Z}[1 / p]) \cdot \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)=\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ (for, given $g \in \mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$, the coset $g \cdot \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ must intersect $\mathrm{GL}_{n}(\mathbb{Z}[1 / p]) \cdot \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ by the denseness just established).

Therefore the set of products

$$
\left\{\left(A A^{\prime}, \mathbf{v} A^{\prime}+\mathbf{v}^{\prime}\right): A \in \mathrm{GL}_{n}(\mathbb{Z}[1 / p]), A^{\prime} \in \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right), \mathbf{v} \in \mathbb{Z}[1 / p]^{n}, \mathbf{v}^{\prime} \in \mathbb{Z}_{p}^{n}\right\}
$$

projects surjectively onto the first factor. On the other hand, given $A \in$ $\mathrm{GL}_{n}(\mathbb{Z}[1 / p])$ and $A^{\prime} \in \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ the set of vectors $\left(\mathbf{v} A^{\prime}+\mathbf{v}^{\prime}\right)=\left(\mathbf{v}+\mathbf{v}^{\prime} A^{\prime-1}\right) A^{\prime}$ exhausts \mathbb{Q}_{p}^{n}, as \mathbf{v} varies through $\mathbb{Z}[1 / p]^{n}$ and \mathbf{v}^{\prime} varies through \mathbb{Z}_{p}^{n}. Thus $\operatorname{AGL}_{n}(\mathbb{Z}[1 / p]) \cdot K_{p}=\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right)$.

This allows us to transfer questions about the action of $A T_{p, j}$ to questions about representation theory.

In fact, observe that the previous lemma ensures that any K_{p}-bi-invariant measure on $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ acts on $L^{2}(\mathcal{A L})$. It is not hard to construct such a measure whose action on $\mathcal{A} \mathcal{L}$ corresponds to $A T_{p, j}$ (defined in (15)). Namely, define $\mu_{A T_{p, j}}$ to be the restriction of Haar measure to

$$
\begin{array}{r}
\left\{(A, \mathbf{v}): A \in \operatorname{GL}_{n}\left(\mathbb{Z}_{p}\right) \operatorname{diag}\left(p^{-1}, \ldots, p^{-1}, 1, \ldots, 1\right) \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right), \mathbf{v} \in \mathbb{Z}_{p}^{n} \cdot A\right\} \tag{16}\\
=K_{p} \cdot\left(\operatorname{diag}\left(p^{-1}, \ldots, p^{-1}, 1, \ldots, 1\right), \mathbf{0}\right) \cdot K_{p}
\end{array}
$$

normalized so the total mass of $\mu_{A T_{p, j}}$ is 1 . (Here there are exactly $j p^{-1} \mathrm{~S}$ in $\operatorname{diag}\left(p^{-1}, \ldots, p^{-1}, 1, \ldots, 1\right)$.) In order to verify that the action of $\mu_{A T_{p, j}}$ coincides with that of $A T_{p, j}$ one notes that, since the actions of $\mu_{A T_{p, j}}$ and $A T_{p, j}$ on $L^{2}(\mathcal{A L})$ are $\mathrm{AGL}_{n}(\mathbb{R})$-equivariant, it suffices to check that they coincide when applied to \mathbb{Z}^{n}. This is easily done.

Note that the resulting measure is independent of whether one chooses a left or right Haar measure on $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$.

For each $V>0$, we normalize the $\mathrm{ASL}_{n}(\mathbb{R})$-invariant measure on $\mathcal{A} \mathcal{L}(V)$ so that the total mass is 1 . We also fix any $\operatorname{AGL}_{n}(\mathbb{R})$-invariant measure on $\mathcal{A L}$.

Lemma 7. Let $V>0$. Let $L_{0}^{2}(\mathcal{A L}(V))$ denote the orthogonal complement of the constants in $L^{2}(\mathcal{A} \mathcal{L}(V))$. Let $\mathcal{C} \subset L^{2}(\mathcal{A L})$ denote the subspace of $L^{2}(\mathcal{A L})$ consisting of functions that are essentially constant on each
subset $\mathcal{A} \mathcal{L}(V) \subset \mathcal{A} \mathcal{L}$. Let $L_{0}^{2}(\mathcal{A L})$ be the orthogonal complement of \mathcal{C} in $L^{2}(\mathcal{A L})$. Then the operator norm of $A T_{p, j}$, considered as a map $L_{0}^{2}(\mathcal{A L}(V))$ $\rightarrow L^{2}\left(\mathcal{A L}\left(p^{-j} V\right)\right)$, is bounded above by the operator norm of $A T_{p, j}$, considered as a map $L_{0}^{2}(\mathcal{A L}) \rightarrow L^{2}(\mathcal{A})$.

Proof. Fix s, a non-negative continuous compactly supported bump function on \mathbb{R}^{+}centred around 1. For L an affine lattice, we denote by $\operatorname{vol}(L)$ the covolume of L.

For any V and any function f on $\mathcal{A} \mathcal{L}(V)$, let F_{f} be the function on $\mathcal{A} \mathcal{L}$ given by $F_{f}(L)=s(\operatorname{vol}(L) / V) f\left(L \cdot(V / \operatorname{vol}(L))^{1 / n}\right)$. Then one has $\left\|F_{f}\right\|_{2}=$ $C\|f\|_{2}$ for some constant C that depends on s, V and the choice of measure on $\mathcal{A L}$. One may also check that $f \in L_{0}^{2}(\mathcal{A L}(V))$ if and only if $F_{f} \in L_{0}^{2}(\mathcal{A L})$.

On the other hand, one verifies that $A T_{p, j} F_{f}=F_{A T_{p, j} f}$, and one deduces the result.
4.2. Computation of the norm of $A T_{p, j}$ on $L_{0}^{2}(\mathcal{A L})$ for $n \geq 3$. In this section we apply some representation theory to compute the operator norm of $A T_{p, j}: L_{0}^{2}(\mathcal{A}) \rightarrow L^{2}(\mathcal{A} \mathcal{L})$.

We now recall the representation theory for $\operatorname{AGL}_{n}\left(\mathbb{Q}_{p}\right)$. Let N be the unipotent radical of AGL_{n}, so $N\left(\mathbb{Q}_{p}\right)=\mathbb{Q}_{p}^{n}$, and let ψ be a non-zero character of $N\left(\mathbb{Q}_{p}\right)$; let P_{ψ} be the stabilizer of ψ in $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$. (Here, $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ is viewed as acting on $N\left(\mathbb{Q}_{p}\right)$, and therefore as the character group of $N\left(\mathbb{Q}_{p}\right)$, by conjugation.)

Then, by the Mackey theory, an irreducible representation of $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ is either:
(1) lifted from an irreducible representation of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$, via the natural $\operatorname{map} \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ with kernel $N\left(\mathbb{Q}_{p}\right)$; or
(2) induced, of the form

$$
\operatorname{Ind}_{P_{\psi} \cdot N\left(\mathbb{Q}_{p}\right)}^{\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)}(\sigma \cdot \psi)
$$

Here σ is an irreducible representation of P_{ψ}, and $\sigma . \psi$ is the representation of $P_{\psi} \cdot N\left(\mathbb{Q}_{p}\right)$ that is σ when restricted to P_{ψ}, and is scalar multiplication by $\psi(n)$ when restricted to $N\left(\mathbb{Q}_{p}\right)$.
Lemma 8. The operator norm of $\mu_{A T_{p, j}}$ (defined as in (16)) on $L_{0}^{2}(\mathcal{A L})$ $i s<_{n} p^{\beta(j, n)}$.

Proof. We give the proof for $n \geq 3$. For $n=2$ the result remains valid and may be proved by a direct spectral decomposition of $L_{0}^{2}(\mathcal{A L})$ (roughly speaking, "Fourier analysis along N "); since we present in subsequent sections an alternate and very direct approach to the case $n=2$ we will not give details here.

Set $\widetilde{\mathcal{A L}}=\mathrm{AGL}_{n}(\mathbb{Z}[1 / p]) \backslash \mathrm{AGL}_{n}(\mathbb{R}) \times \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$. Then $\mathcal{A L}$ is the quotient of $\widetilde{\mathcal{A L}}$ by the compact group $\mathrm{AGL}_{n}\left(\mathbb{Z}_{p}\right)$.

Note that the right-invariant Haar measure on $\mathrm{AGL}_{n}(\mathbb{R}) \times \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$ is invariant under left multiplication by $\mathrm{AGL}_{n}(\mathbb{Z}[1 / p])$. We equip $\widetilde{\mathcal{A L}}$ with the quotient measure.

There is a "determinant" map $\widetilde{\mathcal{A L}} \rightarrow \mathbb{Z}[1 / p]^{\times} \backslash \mathbb{R}^{\times} \times \mathbb{Q}_{p}^{\times}$. Let $L_{0}^{2}(\widetilde{\mathcal{A L}})$ be the orthogonal complement in $L^{2}(\widetilde{\mathcal{A L}})$ to functions pulled back from $\mathbb{Z}[1 / p]^{\times} \backslash \mathbb{R}^{\times} \times \mathbb{Q}_{p}^{\times}$. (More precisely, take the orthogonal complement of the pullbacks of continuous, compactly supported functions.) Then one sees that, under the map $\widetilde{\mathcal{A L}} \rightarrow \mathcal{A L}$, functions in $L_{0}^{2}(\mathcal{A L})$ pull back to functions in $L_{0}^{2}(\widetilde{\mathcal{A L}})$.
$L_{0}^{2}(\widetilde{\mathcal{A L}})$ may be decomposed as a direct integral of $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$-representations which do not involve any one-dimensional irreducible representations. This can be proved by an explicit spectral decomposition, or more abstractly as follows: suppose that the spectral support of a non-zero $F \in L_{0}^{2}(\widetilde{\mathcal{A L}})$ were supported entirely on 1-dimensional representations of $\mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$. In particular, F is $\mathrm{ASL}_{n}\left(\mathbb{Q}_{p}\right)$-invariant. Now, convolve F with an appropriate compactly supported, continuous function in $\mathrm{AGL}_{n}(\mathbb{R}) \times \mathrm{AGL}_{n}\left(\mathbb{Q}_{p}\right)$; by doing this, we may replace F by $F^{\prime} \neq 0$ which is continuous and also $\mathrm{ASL}_{n}\left(\mathbb{Q}_{p}\right)$ invariant. One verifies by an approximation argument (viz. $\mathrm{ASL}_{n}(\mathbb{Z}[1 / p])$ is dense in $\left.\mathrm{ASL}_{n}(\mathbb{R})\right)$ together with the continuity of F^{\prime} that F^{\prime} is $\mathrm{ASL}_{n}(\mathbb{R})$ invariant. Thus F^{\prime} is $\mathrm{ASL}_{n}(\mathbb{R}) \times \mathrm{ASL}_{n}\left(\mathbb{Q}_{p}\right)$-invariant; it is therefore the pullback of a function on $\mathbb{Z}[1 / p]^{\times} \backslash \mathbb{R}^{\times} \times \mathbb{Q}_{p}^{\times}$. On the other hand, since $F^{\prime} \in L_{0}^{2}(\widetilde{\mathcal{A L}}), F^{\prime}$ is perpendicular to such pullbacks, so $\left\|F^{\prime}\right\|_{2}^{2}=0$, which is a contradiction.

It therefore suffices to bound the operator norm of $\mu_{A T_{p, j}}$ in each of the types of representation considered above, excluding case (1) when the representation of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ is one-dimensional.
(1) Representations lifted from $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$: It is clear from the definitionssee remarks before (13) - that the operator norm of $\mu_{A T_{p, j}}$ on a representation that is lifted from an infinite-dimensional representation of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ is bounded by $p^{\beta(j, n)}$. (Observe that the push-forward of the measure $\mu_{A T_{p, j}}$ to $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ is just the $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$-bi-invariant measure corresponding to the usual Hecke operator $T_{j}\left(\right.$ for $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$)—see (12).) Note this requires $n \geq 3$!
(2) Induced representations: It is formal to see that the operator norm of $\mu_{A T_{p, j}}$ in the induced representation $\operatorname{Ind}_{P_{\psi} \cdot N\left(\mathbb{Q}_{p}\right)}^{\mathrm{ALL}_{n}\left(\left(\mathbb{Q}_{p}\right)\right.}(\sigma)$ is bounded by the corresponding operator norm in

$$
W=\operatorname{Ind}_{P_{\psi} \cdot N\left(\mathbb{Q}_{p}\right)}^{\left.\mathrm{AGL}_{n}\right)}(1)
$$

the induction of the trivial representation. $N\left(\mathbb{Q}_{p}\right)$ acts trivially on W, so W is the extension of a certain unitary $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-representation. Further, one may check that W does not weakly contain any 1-dimensional representation
of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-indeed, directly from the definition, one may verify that W is a direct integral of representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ that are induced from the parabolic of type $(n-1,1)$.

One verifies as in case (1) that the operator norm of $\mu_{A T_{p, j}}$ in this case is again bounded by $p^{\beta(j, n)}$.

We conclude that the operator norm of $\mu_{A T_{p, j}}$ on $L_{0}^{2}(\widetilde{\mathcal{A L}})$ (and so also the operator norm of $A T_{p, j}$ acting on $L_{0}^{2}(\mathcal{A} \mathcal{L})$-see Lemma 7 for definitions) is bounded by $p^{\beta(j, n)}$.

Combining Lemma 7 , the definition of $\mu_{A T_{p, j}}$ in (16), and Lemma 8, we have proved:

Lemma 9. The operator $A T_{p, j}$, considered as a map from $L_{0}^{2}(\mathcal{A L}(V))$ to $L_{0}^{2}\left(\mathcal{A L}\left(p^{-j} V\right)\right)$, has operator norm $<_{n} p^{\beta(j, n)}$.
5. Inhomogeneous linear congruences. We fix a left-invariant Riemannian metric on $\operatorname{ASL}_{n}(\mathbb{R})$. For $V \in \mathbb{R}_{+}$, set $L_{0}(V)=V^{1 / n} \cdot \mathbb{Z}^{n}$; then $g \mapsto L_{0}(V) g$ identifies $\mathcal{A L}(V)$ with a quotient of $\mathrm{ASL}_{n}(\mathbb{R})$, and we give it the induced metric. We assign to $\mathcal{A} \mathcal{L}(V)$ the measure μ that is invariant under $\operatorname{ASL}_{n}(\mathbb{R})$ and has total mass 1 .

Set $\widetilde{\Omega}_{r}=\left\{L \in \mathcal{A} \mathcal{L}\left(p^{j}\right):\left|L \cap \Omega p^{j / n}\right|=r\right\}$. Warning: Note that the map from $\mathcal{A L}(V)$ to $\mathcal{A} \mathcal{L}\left(p^{j} V\right)$ defined as "scaling by $p^{j / n " ~ d o e s ~ n o t ~ c o m m u t e ~}$ with the $\mathrm{ASL}_{n}(\mathbb{R})$-action.

Lemma 10. Let $\Omega \subset \mathbb{R}^{n}$ be smooth with respect to Lebesgue measure. Then $\widetilde{\Omega}_{r}$, considered as a subset of $\mathcal{A} \mathcal{L}\left(p^{j}\right)$, is C-smooth for a constant C that is independent of p.

Proof. We mimic the proof of Lemma 4. Let U_{ε} be an ε-neighbourhood of the identity in $\operatorname{ASL}_{n}(\mathbb{R})$, and suppose $L \in \partial_{\varepsilon} \widetilde{\Omega}_{r}$. Then there exist $u, u^{\prime} \in U_{\varepsilon}$ so that $L u \in \widetilde{\Omega}_{r}$ and $L u^{\prime} \notin \widetilde{\Omega}_{r}$.

It follows that $\left|L \cap \Omega p^{j / n} u^{-1}\right|=r$ and $\left|L \cap \Omega p^{j / n} u^{\prime-1}\right| \neq r$. Now there is a constant C so that the symmetric difference of $\Omega p^{j / n} u^{-1}$ and $\Omega p^{j / n} u^{\prime-1}$ has volume $\leq C p^{j} \varepsilon$, and L contains at least one point belonging to this symmetric difference. Denote this symmetric difference by S.

Now note - by a version of Siegel's theorem for $\mathcal{A} \mathcal{L}$ that is actually much easier, since one can integrate first over translates of a given lattice - one has $\operatorname{vol}\{L \in \mathcal{A L}(V):|L \cap S| \geq 1\} \leq V^{-1} \operatorname{vol}(S)$. It follows that $\widetilde{\Omega}_{r}$ is smooth as claimed. (Note that Ω containing a neighbourhood of the origin is not necessary for this argument.)

Let f be a C^{∞} and L^{1} function on $\mathcal{A} \mathcal{L}\left(p^{j}\right), f_{0}=f-\int f$, and $k=$ $\left[\left(n^{2}+n-1\right) / 2\right], \alpha=\left(n^{2}+n-1\right) / 2-k$. Then, proceeding as in (14), and
using Lemma 9, we see that

$$
A T_{p, j} f\left(\mathbb{Z}^{n}\right)-\int_{\mathcal{A}\left(p^{j}\right)} f d \mu=A T_{p, j} f_{0}\left(\mathbb{Z}^{n}\right) \ll p^{\beta(j, n)} S_{k}\left(f_{0}\right)^{1-\alpha-\varepsilon} S_{k+1}\left(f_{0}\right)^{\alpha+\varepsilon}
$$

We may now proceed exactly as before, applying Lemma 1 with $X=$ $\mathcal{A} \mathcal{L}\left(p^{j}\right)$. At this point it is important to note (since p is varying) that the implicit constants furnished when applying Lemma 1 to $X=\mathcal{A L}\left(p^{j}\right)$ do not depend on p. This is immediate from the proof of Lemma 1 ; indeed the implicit constant depends only on k_{δ}.

Theorem 3. Fix j and let $\Omega \subset \mathbb{R}^{n}$ be compact and smooth with respect to Lebesgue measure. Set $c_{r}^{\prime}=\mu\left\{g \in \operatorname{ASL}_{n}(\mathbb{Z}) \backslash \mathrm{ASL}_{n}(\mathbb{R}):\left|\mathbb{Z}^{n} g \cap \Omega\right|=r\right\}$. Let $\varepsilon>0$. Then the number of affine hyperplanes of codimension j in \mathbb{F}_{p}^{n} that intersect $p^{j / n} \Omega$ in precisely r points is

$$
c_{r}^{\prime} p^{j(n-j+1)}\left(1+O_{\Omega, r, \varepsilon}\left(p^{2 \beta(j, n) /\left(n^{2}+n\right)+\varepsilon}\right)\right)
$$

Here $\beta(j, n)$ is as in (13). In particular, as $p \rightarrow \infty$, the corresponding system of linear congruences has r solutions in $p^{j / n} \Omega$ with probability c_{r}^{\prime}.
6. A stronger bound for $n=2$. In this section we give an alternative approach in the inhomogeneous case; this yields an improved error bound for $n=2$ and special choices of Ω. It seems that it should be possible to extend this approach to the case $n \geq 3$, but we have not carried this out.

Let $\widetilde{\Omega}_{r}$ be as in Section 5. The starting point of our approach here is Lemma 11 below, which allows us to (roughly speaking) "push down" the characteristic function of $\widetilde{\Omega}_{r}$ to $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$ and work only with the usual Hecke operators on $\mathrm{SL}_{n}(\mathbb{R})$. The main issue is then to get an understanding of the smoothness of the pushed-down function on $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$; this is effected in Proposition 1 by two very explicit computations, dealing with the smoothness away from the cusp and near the cusp, respectively; both these computations use $n=2$ and the special choices of Ω. However, until Proposition 1 we are able to work with general n and Ω.

Let $\Gamma=\mathrm{SL}_{n}(\mathbb{Z}), G=\mathrm{SL}_{n}(\mathbb{R}), X=\Gamma \backslash G$, and let $T_{p, j}$ be as in Section 3 . We fix $r \in \mathbb{Z}_{\geq 0}$ once and for all. Given $\Omega \subset \mathbb{R}^{n}$ we define $f_{\Omega}: X \rightarrow[0,1]$ as

$$
\begin{equation*}
f_{\Omega}(\Gamma g)=\operatorname{vol}\left(\left\{x \in(\mathbb{R} / \mathbb{Z})^{n}:\left|\left(\mathbb{Z}^{n}+x\right) g \cap \Omega\right| \leq r\right\}\right) \tag{17}
\end{equation*}
$$

Now taking $\Omega \subset \mathbb{R}^{n}$ to be fixed, for each $\delta>0$ we assume that we are given some subsets $\Omega_{-, \delta}, \Omega_{+, \delta} \subset \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\Omega_{-, \delta} \subset \Omega-\partial_{\delta} \Omega, \quad \Omega \cup \partial_{\delta} \Omega \subset \Omega_{+, \delta} \tag{18}
\end{equation*}
$$

Lemma 11. Fix j, let $\Omega, \Omega_{ \pm, \delta}$ be as above, and keep $p>\operatorname{diam}(\Omega)^{n /(n-j)}$. Let $N(p)$ be the total number of affine hyperplanes of codimension j in \mathbb{F}_{p}^{n},
and let $N_{\Omega, r}(p)$ be the number of such hyperplanes that intersect $p^{j / n} \Omega$ in at most r points. Then, for $\delta=p^{-j / n} \sqrt{n} / 2$,

$$
\begin{equation*}
T_{p, j} f_{\Omega_{+, \delta}}\left(\mathbb{Z}^{n}\right) \leq \frac{N_{\Omega, r}(p)}{N(p)} \leq T_{p, j} f_{\Omega_{-, \delta}}\left(\mathbb{Z}^{n}\right) \tag{19}
\end{equation*}
$$

Proof. For L a sublattice of \mathbb{Z}^{n} and $x \in \mathbb{R}^{n}$ we define

$$
g(x, L, \Omega)=\left|(x+L) \cap p^{j / n} \Omega\right|
$$

We then have

$$
N(p)=p^{j} \sum_{L} 1, \quad N_{\Omega, r}(p)=p^{j-n} \sum_{L} \sum_{x \in\{0,1, \ldots, p-1\}^{n}} I(g(x, L, \Omega) \leq r)
$$

where I is the indicator function, and both L-sums are taken over all sublattices $L \subset \mathbb{Z}^{n}$ such that $\mathbb{Z}^{n} / L \equiv(\mathbb{Z} / p \mathbb{Z})^{j}$. It follows from (18) and our choice of δ that

$$
g\left(x+x^{\prime}, L, \Omega_{-, \delta}\right) \leq g(x, L, \Omega) \leq g\left(x+x^{\prime}, L, \Omega_{+, \delta}\right)
$$

for all $x \in \mathbb{R}^{n}$ and $x^{\prime} \in[-1 / 2,1 / 2]^{n}$. Hence, writing $J=[-1 / 2, p-1 / 2)$,

$$
\begin{align*}
p^{j-n} \sum_{L} \int_{J^{n}} I\left(g\left(x, L, \Omega_{+, \delta}\right)\right. & \leq r) d x \tag{20}\\
& \leq N_{\Omega, r}(p) \leq p^{j-n} \sum_{L} \int_{J^{n}} I\left(g\left(x, L, \Omega_{-, \delta}\right) \leq r\right) d x
\end{align*}
$$

Note that for each $L \subset \mathbb{Z}^{n}$ with $\mathbb{Z}^{n} / L \equiv(\mathbb{Z} / p \mathbb{Z})^{j}$ we have $p \mathbb{Z}^{n} \subset L$, and J^{n} contains exactly p^{n-j} points from each L-congruence class $x+L$. Hence the above integrals $\int_{J^{n}} \ldots d x$ may be rewritten as $p^{n-j} \int_{\mathcal{F}} \ldots d x$, where \mathcal{F} is any fundamental domain for \mathbb{R}^{n} modulo L. Also note that $p^{-j / n} L$ is unimodular, and (17) implies after scaling that

$$
f_{\Omega_{ \pm, \delta}}\left(p^{-j / n} L\right)=p^{-j} \int_{\mathcal{F}} I\left(\left|(L+x) \cap p^{j / n} \Omega_{ \pm, \delta}\right| \leq r\right) d x
$$

Hence it follows from the definition of $T_{p, j}$ that (20) is equivalent to (19).
Lemma 12. Let $Y \subset X$ be a compact subset and let $\Omega \subset \mathbb{R}^{n}$ be K smooth. Let f_{Ω} be as in (17). Then f_{Ω} is uniformly Lipschitz on Y : There is a constant $C=C(Y, K, \operatorname{diam}(\Omega))>0$ such that

$$
\begin{equation*}
\left|f_{\Omega}(x)-f_{\Omega}(y)\right| \leq C d(x, y), \quad \forall x, y \in Y \tag{21}
\end{equation*}
$$

Proof. Viewing f_{Ω} as a function on $\mathrm{SL}_{n}(\mathbb{R})$, it suffices to prove that given any compact subset $Y_{0} \subset \mathrm{SL}_{n}(\mathbb{R})$, there is some $C=C\left(Y_{0}, K\right.$, $\left.\operatorname{diam}(\Omega)\right)>0$ such that $\left|f_{\Omega}\left(g_{1}\right)-f_{\Omega}\left(g_{2}\right)\right| \leq C d\left(g_{1}, g_{2}\right)$ for all $g_{1}, g_{2} \in Y_{0}$.

Let $A_{\Omega, g}=\left\{x \in \mathbb{R}^{n}:\left|\left(\mathbb{Z}^{n}+x\right) g \cap \Omega\right|>r\right\}$, so that $f_{\Omega}(g)=1-$ $\operatorname{vol}\left(A_{\Omega, g} / \mathbb{Z}^{n}\right)$. For each subset $M \subset \mathbb{Z}^{n}$ we define

$$
A_{g}(M)=\bigcap_{v \in M}(\Omega-v g)-\bigcup_{v \in \mathbb{Z}^{n}-M}(\Omega-v g) .
$$

Then, given g, for each $x \in \mathbb{R}^{n}$ there is a unique subset $M \subset \mathbb{Z}^{n}$ for which $x g \in A_{g}(M)$, and $x \in A_{\Omega, g}$ if and only if the corresponding set M has $|M|>r$. For each $w \in \mathbb{Z}^{n}$ we note that $x g \in A_{g}(M)$ implies $(x+w) g \in$ $A_{g}(M-w)$; thus if the set corresponding to x is M then the set corresponding to $x+w$ is $M-w$. Let \sim be the equivalence relation on the subsets of \mathbb{Z}^{n} which is defined by $M_{1} \sim M_{2} \Leftrightarrow\left[\exists w \in \mathbb{Z}^{n}: M_{1}=M_{2}-w\right]$.

Given a compact subset $Y_{0} \subset \mathrm{SL}_{n}(\mathbb{R})$, we take $c\left(Y_{0}\right)>0$ so that $|v g| \geq$ $c\left(Y_{0}\right) \cdot|v|$ for all $g \in Y_{0}, v \in \mathbb{R}^{n}$, and let $D=\operatorname{diam}(\Omega) / c\left(y_{0}\right)$. Then note that if $g \in Y_{0}$, then $A_{g}(M) \neq \emptyset$ implies $|v-w| \leq D$ for all $v, w \in M$. Let F be the family of all subsets $M \subset \mathbb{Z}^{n}$ satisfying $|M|>r$ and $|v-w| \leq D$ for all $v, w \in M$, and let F_{0} be a set of representatives for F / \sim. Clearly F_{0} is finite, and it is easy to give an upper bound for its cardinality which only depends on D. It follows from our observations that if $g \in Y_{0}$, then the set $\bigsqcup_{M \in F_{0}} A_{g}(M) g^{-1}$ (a disjoint union) is a fundamental domain for $A_{\Omega, g}$ modulo \mathbb{Z}^{n}, and hence since g is unimodular,

$$
f_{\Omega}(g)=1-\sum_{M \in F_{0}} \operatorname{vol}\left(A_{g}(M)\right), \quad \forall g \in Y_{0} .
$$

Hence it suffices to prove that for each $M \in F_{0}$ there is a constant $C>0$ such that $\left|\operatorname{vol}\left(A_{g_{1}}(M)\right)-\operatorname{vol}\left(A_{g_{2}}(M)\right)\right| \leq C d\left(g_{1}, g_{2}\right)$ for all $g_{1}, g_{2} \in Y_{0}$. We may assume that $0 \in M$; then note that $A_{g}(M)$ may be expressed as a finite intersection,

$$
A_{g}(M)=\bigcap_{v \in B_{D}}\left\{\begin{array}{ll}
\Omega-v g & \text { if } v \in M \\
\complement(\Omega-v g) & \text { if } v \notin M
\end{array}\right\},
$$

where $B_{D}=\left\{v \in \mathbb{Z}^{n}:|v| \leq D\right\}$ and C denotes complement. It follows that

$$
\left|\operatorname{vol}\left(A_{g_{1}}(M)\right)-\operatorname{vol}\left(A_{g_{2}}(M)\right)\right| \leq \sum_{v \in B_{D}} \operatorname{vol}\left(\partial_{a} \Omega\right) \leq K a \cdot \sharp B_{D},
$$

where $a=\sup _{v \in B_{D}}\left|v\left(g_{1}-g_{2}\right)\right|$. The proof is completed by noting that $a \leq C d\left(g_{1}, g_{2}\right)$ for some constant $C=C\left(Y_{0}, D\right)>0$ and all $g_{1}, g_{2} \in Y_{0}$.

We now specialize to $n=2$, so that $X=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})$. Recall that we have fixed a basis X_{1}, X_{2}, X_{3} for the Lie algebra of $\mathrm{SL}_{2}(\mathbb{R})$ and a left invariant metric d on $\mathrm{SL}_{2}(\mathbb{R})$.

Proposition 1. Let $r \in \mathbb{Z}_{\geq 0}$ be as fixed from the start. Given any numbers $0<A_{1}<A_{2}$, there exist positive numbers K and C_{1}, C_{2}, \ldots such that the following holds for each $A \in\left[A_{1}, A_{2}\right]$: If $\Omega \subset \mathbb{R}^{2}$ equals either
the disk $\left\{(x, y): x^{2}+y^{2} \leq A^{2}\right\}$ or the square $\{(x, y):|x|,|y| \leq A\}$, then there exists a K-smooth closed subset $S \subset X$ of measure 0 , such that $f_{\Omega} \in$ $C^{\infty}(X-S)$ and $\left|D f_{\Omega}(x)\right| \leq C_{j} \max \left(1, \delta^{3 / 2-j}\right)$ for each monomial D in X_{1}, X_{2}, X_{3} of order $j \geq 1$ and all $0<\delta<1, x \in X-B(S, \delta)$.

Note that combined with Lemma 12, the bounds on the derivatives obtained here are more than sufficient to make us able to later apply Lemma 3.

Proof. Let Y_{0} be any fixed compact subset of $\mathrm{SL}_{2}(\mathbb{R})$. To start with, we will prove that the conclusion in Proposition 1 holds with X replaced by Y_{0} throughout. In view of the proof of Lemma 12, it suffices to prove a corresponding statement with f_{Ω} replaced by $f_{M, B}: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$,

$$
f_{M, B}(g)=\operatorname{Area}\left(\bigcap_{v \in B}\left\{\begin{array}{ll}
\Omega-v g & \text { if } v \in M \\
C(\Omega-v g) & \text { if } v \notin M
\end{array}\right\}\right)
$$

where M, B are any fixed finite subsets $\emptyset \neq M \subset B \subset \mathbb{Z}^{2}$. We first assume that Ω is the disk $\left\{(x, y): x^{2}+y^{2} \leq A\right\}$. Then let $S=S_{1} \cup S_{2}$, where

$$
\begin{aligned}
& S_{v_{1}, v_{2}}=\left\{g \in \mathrm{SL}_{2}(\mathbb{R}):\left|v_{1} g-v_{2} g\right|=2 A\right\}, S_{1}=\bigcup_{v_{1}, v_{2} \in B} S_{v_{1}, v_{2}} \\
& S_{v_{1}, v_{2}, v_{3}}=\left\{g \in \mathrm{SL}_{2}(\mathbb{R}): \bigcap_{j=1}^{3}\left(\partial \Omega-v_{j} g\right) \neq \emptyset\right\}, \quad S_{2}=\bigcup_{v_{1}, v_{2}, v_{3} \in B} S_{v_{1}, v_{2}, v_{3}}
\end{aligned}
$$

the unions being taken over all pairs v_{1}, v_{2} and triples v_{1}, v_{2}, v_{3}, respectively, of pairwise distinct elements in B.

We claim that S is of measure 0 and K-smooth as a subset of $\mathrm{SL}_{2}(\mathbb{R})$, where K only depends on A_{1}, A_{2}, B. To see this, it suffices to show that $S_{v_{1}, v_{2}}$ and $S_{v_{1}, v_{2}, v_{3}}$ are of measure 0 and K-smooth for any given pairwise distinct elements $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{n}$, where now K only depends on $A_{1}, A_{2}, v_{1}, v_{2}, v_{3}$. We prove this for $S_{v_{1}, v_{2}, v_{3}}$; the case of $S_{v_{1}, v_{2}}$ is easier. Since $S_{v_{1}, v_{2}, v_{3}}$ only depends on $v_{2}-v_{1}$ and $v_{3}-v_{1}$, we may assume $v_{1}=0$. We may then also assume v_{2}, v_{3} to be linearly independent, since otherwise $S_{v_{1}, v_{2}, v_{3}}=\emptyset$. Hence, writing $d=\operatorname{det}\binom{v_{2}}{v_{3}}$, we have a diffeomorphism $\mathbb{R}^{+} \times \mathbb{R} \times(\mathbb{R} / 2 \pi \mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{R})$:

$$
(a, b, \varphi) \mapsto g=\binom{v_{2}}{v_{3}}^{-1}\left(\begin{array}{cc}
a & 0 \\
b & d / a
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)
$$

Note that $g \in \mathrm{SL}_{2}(\mathbb{R})$ satisfies $\bigcap_{j=1}^{3}\left(\partial \Omega-v_{j} g\right) \neq \emptyset$ if and only if the three circles in \mathbb{R}^{2} with equal radii A and centers at $(0,0),(a, 0),(b, d / a)$ go through a common point. One checks that this holds if and only if

$$
\begin{equation*}
\left(a^{2} b(b-a)+d^{2}\right)^{2}=\left(4 A^{2}-a^{2}\right) d^{2} a^{2} \tag{22}
\end{equation*}
$$

From the geometrical description it is clear that this implies $|a|,|b| \leq 2 A$. Solving for b we obtain the equivalent equation

$$
\begin{equation*}
\left(b-\frac{a}{2}\right)^{2}=\eta \frac{d}{a} \sqrt{4 A^{2}-a^{2}}-\frac{d^{2}}{a^{2}}+\frac{a^{2}}{4} \quad(|a| \leq 2 A, \eta= \pm 1) \tag{23}
\end{equation*}
$$

Note that for each fixed η, there are at most 8 values $a \in[-2 A, 2 A]$ at which the right hand side of (23) vanishes. It follows that the set of solutions $(a, b) \in \mathbb{R}^{2}$ to (22) is a union of four graphs of the form $\left\{\left(a, b_{j}(a)\right): a \in I_{j}\right\}$, $j=1,2,3,4$, where each I_{j} is a union of at most five closed intervals $\subset[-2 A, 2 A]$ and each $b_{j}(a)$ is a continuous function on I_{j} which is C^{∞} in the interior of I_{j}. Implicit differentiation in (22) and Bézout's theorem show that there are certainly not more than 56 values of a for which $b_{j}^{\prime}(a)=0$ can hold; hence each I_{j} can be expressed as a union of at most 61 closed intervals $I_{j k}, 1 \leq k \leq 61$, such that $b_{j}(a)$ is either increasing or decreasing on each interval $I_{j k}$.

Now each curve segment $\left\{\left(a, b_{j}(a)\right): a \in I_{j k}\right\}$ is easily seen to be $K_{1^{-}}$ smooth with respect to the Euclidean metric in the (a, b)-plane with $K_{1}=$ $4+2\left|\beta_{2}-\beta_{1}\right|+2\left|\alpha_{2}-\alpha_{1}\right|$, where $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are the endpoints of the curve segment. Indeed, assuming $\alpha_{1}<\alpha_{2}$ and that $b_{j}(a)$ is increasing on $I_{j k}$, one checks that for each $0<\varepsilon \leq 1$, the ε-neighbourhood of the given curve segment is completely contained in the region which is bounded by the two curves $\left\{\left(a-\varepsilon, b_{j}(a)+\varepsilon\right): a \in I_{j k}\right\}$ and $\left\{\left(a+\varepsilon, b_{j}(a)-\varepsilon\right): a \in I_{j k}\right\}$, and the four lines $a=\alpha_{1}-\varepsilon, a=\alpha_{2}+\varepsilon, b=\beta_{1}-\varepsilon, b=\beta_{2}+\varepsilon$; and the area of this region is $4 \varepsilon^{2}+2\left(\left|\beta_{2}-\beta_{1}\right|+\left|\alpha_{2}-\alpha_{1}\right|\right) \varepsilon$. Using $|a|,|b| \leq 2 A$, we deduce that the full set of solutions to (22) has measure 0 and is K_{2}-smooth in the (a, b)-plane, with $K_{2}=10^{4}(1+A)$. Hence $S_{v_{1}, v_{2}, v_{3}}$ is of measure 0 and K-smooth for some K which only depends on $A_{2}, v_{1}, v_{2}, v_{3}, Y_{0}$.

We now fix some $g \in Y_{0}-S$. Let us write $M=\left\{v_{1}, \ldots, v_{m}\right\}, B-M=$ $\left\{v_{m+1}, \ldots, v_{b}\right\}$, and

$$
F=F\left(w_{1}, \ldots, w_{b}\right)=\operatorname{Area}\left(\bigcap_{l=1}^{b}\left\{\begin{array}{ll}
\Omega-w_{l} & \text { if } l \leq m \tag{24}\\
C\left(\Omega-w_{l}\right) & \text { if } l>m
\end{array}\right\}\right)
$$

so that $f_{M, B}(g)=F\left(v_{1} g, \ldots, v_{b} g\right)$. By our construction of S, there is some neighbourhood $W \subset \mathbb{R}^{2 b}$ of $\left(v_{1} g, \ldots, v_{b} g\right)$ such that for each $\left(w_{1}, \ldots, w_{b}\right)$ $\in W$, the boundary \mathfrak{B} of the region considered in (24) consists of a finite number of closed curves, each of which is a finite union of segments of the various circles $\partial \Omega-w_{l}$, joined at points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{K}, y_{K}\right)$, say, where each $\left(x_{k}, y_{k}\right)$ is a point of intersection between (exactly) two of the circles and varies smoothly with respect to $\left(w_{1}, \ldots, w_{b}\right) \in W$. But we have $F=\int_{\mathfrak{B}} x d y=\int_{\mathfrak{B}}(-y) d x$, where the integrals are taken over \mathfrak{B} in positive direction. It follows that there are numbers $\eta_{k l} \in\{0,1,-1\}$ such that,
writing $w_{l}=\left(x_{w_{l}}, y_{w_{l}}\right)$, we have

$$
\frac{\partial}{\partial x_{w_{l}}} F=\sum_{k=1}^{K} \eta_{k l} y_{k}, \quad \frac{\partial}{\partial y_{w_{l}}} F=-\sum_{k=1}^{K} \eta_{k l} x_{k}
$$

throughout W.
We now wish to give bounds on derivatives of the form $D x_{k}$ and $D y_{k}$, where D is a monomial in $\partial / \partial x_{w_{l}}$ and $\partial / \partial y_{w_{l}}(l=1, \ldots, b)$ of order $j \geq 1$. We may assume that $\left(x_{k}, y_{k}\right)$ is a point of intersection between $\partial \Omega-w_{1}$ and $\partial \Omega-w_{2}$. The functions x_{k}, y_{k} satisfy $\left(x_{k}-x_{w_{1}}\right)^{2}+\left(y_{k}-y_{w_{1}}\right)^{2}=A^{2}$ and $\left(x_{k}-x_{w_{2}}\right)^{2}+\left(y_{k}-y_{w_{2}}\right)^{2}=A^{2}$, and applying D to these two relations we obtain

$$
\left\{\begin{array}{l}
2\left(x_{k}-x_{w_{1}}\right) D x_{k}+2\left(y_{k}-y_{w_{1}}\right) D y_{k}=*, \\
2\left(x_{k}-x_{w_{2}}\right) D x_{k}+2\left(y_{k}-y_{w_{2}}\right) D y_{k}=*,
\end{array}\right.
$$

where the right hand sides are 0 or $2\left(x_{k}-x_{w_{l}}\right)$ or $2\left(y_{k}-y_{w_{l}}\right)$ for some l if $j=1$, while for $j \geq 2$ they are finite sums of products of the form [const]. $\prod_{s} D_{s} x_{k}$ or [const] $\prod_{s} D_{s} y_{k}$, where all D_{s} are monomials in $\partial / \partial x_{w_{l}}$ and $\partial / \partial y_{w_{l}}$ satisfying $1 \leq \operatorname{order}\left(D_{s}\right)<j$ and $\sum_{s} \operatorname{order}\left(D_{s}\right) \leq j$. (Some product may be empty, i.e. giving a constant term.) Note that the determinant

$$
\left|\begin{array}{ll}
x_{k}-x_{w_{1}} & y_{k}-y_{w_{1}} \\
x_{k}-x_{w_{2}} & y_{k}-y_{w_{2}}
\end{array}\right|
$$

has absolute value $\left|w_{1} w_{2}\right| \sqrt{A^{2}-\left|w_{1} w_{2}\right|^{2} / 4}$, where $\left|w_{1} w_{2}\right|$ denotes the distance between w_{1} and w_{2}. Note also that for $g \in Y_{0}-B(S, \delta)$ and $\left(w_{1}, \ldots, w_{b}\right)$ $=\left(v_{1} g, \ldots, v_{b} g\right)$ the distance $\left|w_{1} w_{2}\right|$ is bounded from below by a positive constant which only depends on Y_{0}, and $2 A-\left|w_{1} w_{2}\right| \gg$. Hence $D x_{k}, D y_{k} \ll \delta^{1 / 2-j}$, by induction on j. It follows that for each $j \geq 1$ there is a positive constant C_{j} which only depends on $Y_{0}, M, B, A_{1}, A_{2}, j$ such that $\left|D f_{M, B}(g)\right| \leq C_{j} \max \left(1, \delta^{3 / 2-j}\right)$ for each monomial D in X_{1}, X_{2}, X_{3} of order $j \geq 1$ and all $0<\delta<1, g \in Y_{0}-B(S, \delta)$.

The case of a square $\Omega=\{(x, y):|x|,|y| \leq A\}$ is similar but easier. In this case we let $\mathfrak{S}_{A}=\{(x, y): x \in\{0, A,-A\}$ or $y \in\{0, A,-A\}\}$ and

$$
S=\left\{g \in Y_{0}: \exists v_{1} \neq v_{2} \in B: v_{1} g-v_{2} g \in \mathfrak{S}_{A}\right\}
$$

Then S is of measure 0 and K-smooth as a subset of $\mathrm{SL}_{2}(\mathbb{R})$, where K only depends on A_{1}, A_{2}, Y_{0}, B. Furthermore $f_{M, B} \in C^{\infty}\left(Y_{0}-S\right)$, and this time we can give bounds on the derivatives which do not blow up: There are positive constants C_{j} which only depend on $Y_{0}, M, B, A_{1}, A_{2}, j$ such that $\left|D f_{M, B}(g)\right| \leq C_{j}$ for each monomial D in X_{1}, X_{2}, X_{3} of order $j \geq 1$ and all $g \in Y_{0}-B(S, \delta)$.

It now remains to treat the case when $\Gamma g \in X$ lies far out in the cusp. We use a form of Iwasawa coordinates, writing

$$
g=\left(\begin{array}{ll}
1 & t \tag{25}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\varrho^{-1} & 0 \\
0 & \varrho
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right), \quad t \in \mathbb{R}, \varrho>0, \varphi \in \mathbb{R}
$$

We restrict attention to the cuspidal region $X_{c} \subset X$ defined by $\varrho<$ $\min \left((4 A)^{-1}, A(r+10)^{-1}\right)$. Writing $v_{\varphi}=(\cos \varphi,-\sin \varphi), w_{\varphi}=(\sin \varphi, \cos \varphi)$, we have

$$
g=\binom{\varrho^{-1} v_{\varphi}+t \varrho w_{\varphi}}{\varrho w_{\varphi}}
$$

and hence by (17), $f_{\Omega}(\Gamma g)$ is the volume of the set of those $(x, y) \in[-1 / 2$, $1 / 2]^{2}$ which satisfy

$$
\begin{equation*}
\left|\left\{(n, m) \in \mathbb{Z}^{2}:(n+x)\left(\varrho^{-1} v_{\varphi}+t \varrho w_{\varphi}\right)+(m+y) \varrho w_{\varphi} \in \Omega\right\}\right| \leq r \tag{26}
\end{equation*}
$$

For each $x \in \mathbb{R}$ let $\ell(x)$ be the length of the line segment $\left\{y: x v_{\varphi}+y w_{\varphi}\right.$ $\in \Omega\}$. Then if Ω is the disk $\left\{(x, y): x^{2}+y^{2} \leq A^{2}\right\}$, we have $\operatorname{supp}(\ell)=$ $[-A, A]$ and $\ell(x)=2 \sqrt{A^{2}-x^{2}}$ for $x \in[-A, A]$, whereas if Ω is the square $\{(x, y):|x|,|y| \leq A\}$ then for $0<\varphi \leq \pi / 4$ we have $\operatorname{supp}(\ell)=\left[-x_{1}, x_{1}\right]$ with $x_{1}=A \sqrt{2} \cos (\pi / 4-\varphi)$, and

$$
\ell(x)=\left\{\begin{array}{ll}
\frac{2 A}{\cos \varphi}, & 0 \leq x \leq x_{2} \\
\frac{x_{1}-x}{\cos \varphi \sin \varphi}, & x_{2} \leq x \leq x_{1}
\end{array} \quad\left(x_{2}=A \sqrt{2} \cos (\pi / 4+\varphi)\right)\right.
$$

Note also that $\ell(x)$ is even, and concave in its interval of support. It follows from our assumption on ϱ that $\operatorname{supp}(\ell) \subset\left[-(2 \varrho)^{-1},(2 \varrho)^{-1}\right]$; hence only points (n, m) with $n=0$ occur in the set in (26) when $(x, y) \in[-1 / 2,1 / 2]^{2}$. This gives

$$
\begin{aligned}
f_{\Omega}(\Gamma g) & =\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2} I\left(\left|\left(x \varrho^{-1} v_{\varphi}+(\mathbb{Z}+y) \varrho w_{\varphi}\right) \cap \Omega\right| \leq r\right) d y d x \\
& =\int_{-(2 \varrho)^{-1}}^{(2 \varrho)^{-1}}\left\{\begin{array}{ll}
\varrho & \text { if } \ell(x)<r \varrho \\
(r+1) \varrho-\ell(x) & \text { if } r \varrho \leq \ell(x)<(r+1) \varrho \\
0 & \text { if }(r+1) \varrho \leq \ell(x)
\end{array}\right\} d x .
\end{aligned}
$$

Hence we obtain, in the case of the square and $0<\varphi \leq \pi / 4$,

$$
f_{\Omega}(\Gamma g)=1-2 A(\cos \varphi+\sin \varphi) \varrho+(2 r+1) \varrho^{2} \cos \varphi \sin \varphi
$$

Note that this formula also holds for $\varphi=0$, and since $f_{\Omega}(\Gamma g)$ is invariant under $\varphi \mapsto-\varphi$ and $\varphi \mapsto \varphi+\pi / 2$, this determines $f_{\Omega}(\Gamma g)$ for all values of φ. Now let S be the subset of our cuspidal region X_{c} defined by $\varphi \in(\pi / 2) \mathbb{Z}$; we then see that $f_{\Omega} \in C^{\infty}\left(X_{c}-S\right)$, and a standard computation shows
that S is smooth (and of measure 0) as a subset of X. Finally, if we take the basis elements X_{1}, X_{2}, X_{3} to be $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, respectively, one quickly computes that in our coordinates t, ϱ, φ (cf. (25)), the corresponding differential operators are

$$
\begin{aligned}
& X_{1}=[\ldots] \frac{\partial}{\partial t}+\varrho \sin \varphi \cos \varphi \frac{\partial}{\partial \varrho}-\sin ^{2} \varphi \frac{\partial}{\partial \varphi}, \\
& X_{2}=[\ldots] \frac{\partial}{\partial t}+\varrho \sin \varphi \cos \varphi \frac{\partial}{\partial \varrho}+\cos ^{2} \varphi \frac{\partial}{\partial \varphi}, \\
& X_{3}=[\ldots] \frac{\partial}{\partial t}+\varrho\left(\sin ^{2} \varphi-\cos ^{2} \varphi\right) \frac{\partial}{\partial \varrho}+2 \cos \varphi \sin \varphi \frac{\partial}{\partial \varphi} .
\end{aligned}
$$

Hence for each monomial D in X_{1}, X_{2}, X_{3} we see that $\left|D f_{\Omega}(x)\right|$ is bounded on all of $X_{c}-S$, by some constant which only depends on A_{1}, A_{2}, D, r.

In the case of the disk we obtain $f_{\Omega}(\Gamma g)=1+2 h(r \varrho / 2)-2 h((r+1) \varrho / 2)$, where

$$
h(x)=x \sqrt{A^{2}-x^{2}}-A^{2} \arctan \left(x^{-1} \sqrt{A^{2}-x^{2}}\right)
$$

Note that $h^{\prime}(x)=2 \sqrt{A^{2}-x^{2}}$. Hence in this case we may take $S=\emptyset$; we find that $f_{\Omega} \in C^{\infty}\left(X_{c}\right)$ and $\left|D f_{\Omega}(x)\right|$ is bounded on all of X_{c}, for each monomial D.

For Ω a disk or a square we now have the following improvement of Theorem 3. We write $\beta=\beta(1,2)$ (cf. (13) above).

Theorem 4. Fix $\varepsilon>0$ and $A>0$ and let $\Omega \subset \mathbb{R}^{2}$ be either the disk $\left\{(x, y): x^{2}+y^{2} \leq A^{2}\right\}$ or the square $\{(x, y):|x|,|y| \leq A\}$. Set $c_{r}^{\prime}=\mu\left(\widetilde{\Omega}_{r}\right)$ where $\widetilde{\Omega}_{r}=\left\{g \in \mathrm{ASL}_{2}(\mathbb{Z}) \backslash \mathrm{ASL}_{2}(\mathbb{R}):\left|\mathbb{Z}^{2} g \cap \Omega\right|=r\right\}$. Then the number of affine lines in \mathbb{F}_{p}^{2} that intersect $p^{1 / 2} \Omega$ in precisely r points is

$$
c_{r}^{\prime} p^{2}\left(1+O_{A, r, \varepsilon}\left(p^{8 \beta / 9+\varepsilon}\right)\right) \quad \text { as } p \rightarrow \infty .
$$

Proof. Let $\widetilde{\Omega}_{\leq r}=\bigcup_{s=0}^{r} \widetilde{\Omega}_{s}=\left\{g \in \operatorname{ASL}_{2}(\mathbb{R}):\left|\mathbb{Z}^{2} g \cap \Omega\right| \leq r\right\}$, which we view as a subset of $\mathrm{ASL}_{2}(\mathbb{Z}) \backslash \mathrm{ASL}_{2}(\mathbb{R})$. Clearly, it suffices to prove, for each fixed $r \in \mathbb{Z}_{\geq 0}$, that the number of affine lines in \mathbb{F}_{p}^{2} that intersect $p^{1 / 2} \Omega$ in at most r points is

$$
\begin{equation*}
\mu\left(\widetilde{\Omega}_{\leq r}\right) \cdot p^{2}\left(1+O_{A, r, \varepsilon}\left(p^{8 \beta / 9+\varepsilon}\right)\right) \quad \text { as } p \rightarrow \infty \tag{27}
\end{equation*}
$$

Note that we may take $\Omega_{ \pm, \delta}$ in (18) as the disk or square with parameter A replaced by $A \pm \delta$. Note also that by Lemma 12 and Proposition 1, the functions $f_{\Omega_{ \pm, \delta}}$ satisfy the assumptions of Lemma 3, for some constants $K, C, C_{1}, C_{2}, \ldots$ which do not depend on δ. (To extend the uniform Lipschitz bound in Lemma 12 to all of X we use the uniform bounds on the first derivatives of $f_{\Omega_{ \pm, \delta}}$ proved in Proposition 1, together with the fact that any two points p_{1}, p_{2} in X can be joined by a piecewise C^{∞} curve of length $(1+\varepsilon) d\left(p_{1}, p_{2}\right)$ which only intersects the exceptional set S in a finite number
of points. Note that this last fact is trivial in view of our explicit description of S in the proof of Proposition 1, but it actually holds for any smooth closed subset $S \subset X$ of measure 0 .)

Now by the same Sobolev technique as before we find that

$$
T_{p} f_{\Omega_{ \pm, \delta}}\left(\mathbb{Z}^{2}\right)=\int_{X} f_{\Omega_{ \pm, \delta}} d x+O\left(p^{8 \beta / 9+\varepsilon}\right)
$$

uniformly for $0<\delta<A / 2$ and $p \rightarrow \infty$. But by a similar argument to that of Lemma 10, we have $\int_{X} f_{\Omega_{ \pm, \delta}} d x=\mu\left(\widetilde{\Omega}_{\leq r}\right)+O(\delta)$. Hence the estimate in (27) follows from Lemma 11, since $\delta=(2 p)^{-1 / 2}$ and $\beta \geq-1 / 2$.

Remark 1. It is clear that the same technique allows us to prove Theorem 4 for many other explicit regions $\Omega \subset \mathbb{R}^{2}$. It is an interesting problem to try to extend Proposition 1 to nice regions Ω in dimension $n \geq 3$. Especially the treatment of the cuspidal region seems to be much more difficult for $n \geq 3$ than for $n=2$. If such an extension of Proposition 1 to $n \geq 3$ would turn out to be possible, this would lead to a corresponding improvement in Theorem 3; the error term $O\left(p^{2 \beta /\left(n^{2}+n\right)+\varepsilon}\right)$ therein could then be replaced by $O\left(p^{4 \beta / n^{2}+\varepsilon}\right)$.

REmark 2. By extending Lemma 3 to non-integral values of j, and using a more refined spectral analysis, it is possible improve the error term in Theorem 4 to $O\left(p^{\beta+\varepsilon}\right)$.
7. Fractional parts of linear forms. In this section we recall and comment on a result by Marklof [M1], concerning the number of values modulo one of a random linear form $\alpha_{1} m_{1}+\cdots+\alpha_{n-1} m_{n-1}$ at integer points $\left(m_{1}, \ldots, m_{n-1}\right)$ which fall inside a given small interval. This problem may be regarded as a kind of non-discrete relative of the counting problems in \mathbb{F}_{p}^{n} studied in earlier sections, and it leads to limits involving the same type of volumes in $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$ and $\mathrm{ASL}_{n}(\mathbb{Z}) \backslash \mathrm{ASL}_{n}(\mathbb{R})$ as in Theorems 2 and 3 . Hence our explicit computations in Section 8 will be of relevance also here.

We will use the following notation. Given any subset $\Omega \subset \mathbb{R}^{n}$ we write $\widetilde{\Omega}_{r}^{(\mathrm{SL})}=\left\{g \in \mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R}):\left|\mathbb{Z}^{n} g \cap \Omega\right|=r\right\}$ and $\widetilde{\Omega}_{r}^{(\mathrm{ASL})}=\{g \in$ $\left.\operatorname{ASL}_{n}(\mathbb{Z}) \backslash \operatorname{ASL}_{n}(\mathbb{R}):\left|\mathbb{Z}^{n} g \cap \Omega\right|=r\right\}$. Also, for $a \geq 0$ we define

$$
\begin{equation*}
f_{r}^{\mathrm{box}, \mathrm{SL}_{n}}(a)=\mu\left(\widetilde{\Omega}_{r}^{(\mathrm{SL})}\right), \quad f_{r}^{\mathrm{box}, \mathrm{ASL}_{n}}(a)=\mu\left(\widetilde{\Omega}_{r}^{(\mathrm{ASL})}\right) \tag{28}
\end{equation*}
$$

for Ω equal to the box $(-1 / 2,1 / 2)^{n-1} \times(-a / 2, a / 2) \subset \mathbb{R}^{n}$ of volume a. (Note that μ denotes Haar measure on different groups in the two formulae in (28).) The proofs of Lemma 4 and Lemma 10 show that $f_{r}^{\mathrm{box}, \mathrm{SL}_{n}}(a)$ and $f_{r}^{\text {box }, \mathrm{ASL}_{n}}(a)$ are continuous in $a>0$, and that we may as well include part or all of the boundary of the box $(-1 / 2,1 / 2)^{n-1} \times(-a / 2, a / 2)$ in Ω. It
follows from the right invariance of the Haar measure that we may take Ω to be any box of volume a in the definition of $f_{r}^{\text {box, }, \operatorname{ASL}_{n}}(a)$, and any box of volume a centred at the origin in the definition of $f_{r}^{\mathrm{box}, \mathrm{SL}_{n}}(a)$.

Theorem 5 (Marklof, [M1]). Let $a>0, r \in \mathbb{Z}_{\geq 0}$, let $d_{1}, \ldots, d_{n-1}>0$ be fixed numbers with $\prod_{j} d_{j}=1$, and let h be a continuous probability density on $(\mathbb{R} / \mathbb{Z})^{n-1}$. For $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in(\mathbb{R} / \mathbb{Z})^{n-1}, N>0$ and $\xi \in \mathbb{R} / \mathbb{Z}$, let $\mathcal{N}_{a}^{\alpha}(\xi, N)$ be the number of values of integer tuples $\left(m_{1}, \ldots, m_{n-1}\right)$ with $\left|m_{j}\right| \leq\left(d_{j} / 2\right) N^{1 /(n-1)}$ such that $\alpha_{1} m_{1}+\cdots+\alpha_{n-1} m_{n-1} \in[\xi-a / 2 N, \xi+$ $a / 2 N]+\mathbb{Z}$. Now take $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ at random according to the density function h. Then

$$
\begin{equation*}
\operatorname{Prob}\left\{\mathcal{N}_{a}^{\boldsymbol{\alpha}}(0, N)=r\right\} \rightarrow f_{r}^{\mathrm{box}, \mathrm{SL}_{n}}(a) \quad \text { as } N \rightarrow \infty \tag{29}
\end{equation*}
$$

If ξ is instead taken as a uniformly distributed random variable on \mathbb{R} / \mathbb{Z}, independent of $\boldsymbol{\alpha}$, then

$$
\begin{equation*}
\operatorname{Prob}\left\{\mathcal{N}_{a}^{\boldsymbol{\alpha}}(\xi, N)=r\right\} \rightarrow f_{r}^{\mathrm{box}, \mathrm{ASL}_{n}}(a) \quad \text { as } N \rightarrow \infty \tag{30}
\end{equation*}
$$

To see the relationship between Theorem 5 and Theorem 2 (with $j=1$), note that to each of the p^{n-1} tuples $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}\right) \in \mathbb{F}_{p}^{n-1}$, there corresponds a hyperplane of codimension one in \mathbb{F}_{p}^{n} given by $x_{n}=\sum_{j=1}^{n-1} \beta_{j} x_{j}$; the number of codimension one hyperplanes which are not parametrized in this way is of lower order, namely $\ll p^{n-2}$. Furthermore, if $\Omega=(-1 / 2,1 / 2)^{n-1} \times$ $(-a / 2, a / 2)$ and p is any large prime, then one easily checks that the \mathbb{F}_{p}^{n}-hyperplane $x_{n}=\sum_{j=1}^{n-1} \beta_{j} x_{j}$ intersects the set $p^{1 / n} \Omega$ in exactly $\mathcal{N}_{a}^{\boldsymbol{\beta} / p}\left(0, p^{(n-1) / n}\right)$ points, where $\mathcal{N}_{a}^{\boldsymbol{\alpha}}(\xi, N)$ is the number described in Theorem 5 , with $d_{1}=$ $\cdots=d_{n-1}=1$. Hence Theorem 2 can be viewed as a discrete version of (29) for $N=p^{(n-1) / n}$, where we only consider the p^{n-1} points $\boldsymbol{\alpha} \in\left(p^{-1} \mathbb{Z} / \mathbb{Z}\right)^{n-1}$ instead of all points $\boldsymbol{\alpha} \in(\mathbb{R} / \mathbb{Z})^{n-1}$. A similar relationship holds between Theorem 3 and (30).

Note that Theorem 5 is the same as Theorems 4.2 and 4.4 in [M1], except that we consider $\left|m_{j}\right| \leq\left(d_{j} / 2\right) N^{1 /(n-1)}$ and the interval $[\xi-a / 2 N, \xi+$ $a / 2 N]+\mathbb{Z}$, instead of $1 \leq m_{j} \leq d_{j} N^{1 /(n-1)}$ and $[\xi, \xi+a / N]+\mathbb{Z}$; corresponding to this we take $\Omega=(-1 / 2,1 / 2)^{n-1} \times(a / 2, a / 2)$ in (28), and not $\Omega=(0,1]^{n-1} \times(0, a]$. (Note that (30) remains true in both these settings, but the limit in (29) depends on which of the two settings we consider.) The proof remains virtually the same as in [M1].

Theorem 5 generalizes a result of Mazel and Sinai, [MS], where the case $n=2$, constant h, and $a \leq 1$ was treated, and an explicit formula was given for the limit. In Section 8 we will show how to extend these explicit formulas to all $a>0$ for $n=2$ and small r.

REMARK 3. In principle it should be possible to prove an explicit rate of convergence in Theorem 5 by methods similar to those used in the present
paper. For $n=2$ in (29), the proof in [M1] hinges on the asymptotic equidistribution of long closed horocycles in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})$, and in this case the question of the rate of convergence has been studied by a number of authors (cf. [Z, Sa1, FF, St]).

Remark 4. Using a result by Shah [Sh, Thm. 1.4], one can actually prove that any fixed, irrational ξ gives the same limit as the random ξ in (30): For $\boldsymbol{\alpha}$ as in Theorem 5 and any fixed, irrational $\xi \in \mathbb{R} / \mathbb{Z}$, we have

$$
\begin{equation*}
\operatorname{Prob}\left\{\mathcal{N}_{a}^{\alpha}(\xi, N)=r\right\} \rightarrow f_{r}^{{\mathrm{box}, \mathrm{ASL}_{n}}^{\alpha}(a) \quad \text { as } N \rightarrow \infty . . ~} \tag{31}
\end{equation*}
$$

Proof of (31). We set $G=\mathrm{SL}_{n}(\mathbb{R}), L=\operatorname{ASL}_{n}(\mathbb{R}), \Lambda=\mathrm{ASL}_{n}(\mathbb{Z})$, and let μ be the Haar measure on L normalized by $\mu(\Lambda \backslash L)=1$. We write $N_{j}=$ $d_{j} N^{1 /(n-1)}, a_{N}=\operatorname{diag}\left(N_{1}^{-1}, N_{2}^{-1}, \ldots, N_{n-1}^{-1}, N\right) \in G, \mathbf{v}_{\xi}=(0, \ldots, 0, \xi) \in$ \mathbb{R}^{n}, and

$$
u(\boldsymbol{\alpha})=\left(\begin{array}{cccc}
1 & & & \alpha_{1} \\
& \ddots & & \vdots \\
& & 1 & \alpha_{n-1} \\
& & & 1
\end{array}\right) \in G \quad \text { for } \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{R}^{n-1} .
$$

Arguing as in Marklof [M1, p. 1157] and using [M1, Lemma 4.1] (cf. our Lemma 10) and standard approximation from above and below, we find that it suffices to prove that

$$
\begin{equation*}
\int_{\boldsymbol{\alpha} \in(\mathbb{R} / \mathbb{Z})^{n-1}} f\left(\left(u(\boldsymbol{\alpha}) \cdot a_{N}, N \mathbf{v}_{\xi}\right)\right) h(\boldsymbol{\alpha}) d \boldsymbol{\alpha} \rightarrow \int_{\Lambda \backslash L} f(g) d \mu(g) \quad \text { as } N \rightarrow \infty, \tag{32}
\end{equation*}
$$

for each bounded continuous function $f: \Lambda \backslash L \rightarrow \mathbb{C}$. (Note: We continue to use the same conventions regarding the multiplication law in $L=\mathrm{ASL}_{n}(\mathbb{R})$ and the identification $\Lambda \backslash L \cong \mathcal{A} \mathcal{L}(1)$ as in Section 4 , which differ from those used in [M1].)

We now consider G as a subgroup of L via the imbedding

$$
G \ni g \mapsto\left(1, \mathbf{v}_{\xi}\right) \cdot(g, 0) \cdot\left(1,-\mathbf{v}_{\xi}\right) \in L .
$$

It then follows from Shah [Sh, Thm. 1.4], applied to the sequence a_{1}, a_{2}, \ldots, that if $\Lambda \cdot G$ is dense in L, then

$$
\lim _{N \rightarrow \infty} \int_{\boldsymbol{\alpha} \in(\mathbb{R} / \mathbb{Z})^{n-1}} f_{0}\left(\left(1, \mathbf{v}_{\xi}\right)(u(\boldsymbol{\alpha}), 0)\left(a_{N}, 0\right)\left(1,-\mathbf{v}_{\xi}\right)\right) h(\boldsymbol{\alpha}) d \boldsymbol{\alpha}=\int_{\Lambda \backslash L} f_{0}(g) d \mu(g)
$$

for each bounded continuous function $f_{0}: \Lambda \backslash L \rightarrow \mathbb{C}$. Taking f_{0} as the right $\left(1, \mathbf{v}_{\xi}\right)$-shift of f, viz., $f_{0}(\Lambda \ell):=f\left(\Lambda \ell \cdot\left(1, \mathbf{v}_{\xi}\right)\right)$ for all $\Lambda \ell \in \Lambda \backslash L$, we obtain (32).

Hence it only remains to prove that $\Lambda \cdot G$ is dense in L. But for each fixed $g_{0} \in G$, one checks by a quick computation that

$$
\left\{\mathbf{w} \in \mathbb{R}^{n}:\left(g_{0}, \mathbf{w}\right) \in \Lambda \cdot G\right\}=M_{\xi} \cdot g_{0}-\mathbf{v}_{\xi}
$$

where

$$
M_{\xi}=\left\{\mathbf{x}+\mathbf{v}_{\xi} \gamma: \gamma \in \mathrm{SL}_{n}(\mathbb{Z}), \mathbf{x} \in \mathbb{Z}^{n}\right\} \subset \mathbb{R}^{n}
$$

Hence it suffices to prove that M_{ξ} is dense in \mathbb{R}^{n}. This, however, is elementary: Given $y \in \mathbb{R}^{n}$ and $\varepsilon>0$ we may find integers x_{j} and $\gamma_{n, j}(j=$ $1, \ldots, n-1)$ such that $\left|x_{j}+\gamma_{n, j} \xi-y_{j}\right|<\varepsilon ;$ letting $d=\operatorname{gcd}\left(\gamma_{n, 1}, \ldots, \gamma_{n, n-1}\right)$ and taking r to be any integer relatively prime to d, we may then also find integers m and x_{n} such that $\left|x_{n}+m d \xi-\left(y_{n}-r \xi\right)\right|<\varepsilon$. Letting $\gamma_{n, n}=m d+r$ and choosing integers $\gamma_{i j}$ for $1 \leq i \leq n-1,1 \leq j \leq n$ such that $\gamma=\left(\gamma_{i j}\right) \in \operatorname{SL}_{n}(\mathbb{Z})$ (this is possible by [Si, Thm. 32]), we then have $\left|\mathbf{x}+\mathbf{v}_{\xi} \gamma-\mathbf{y}\right|<\sqrt{n} \varepsilon$.
8. Computations. We will now discuss how to compute $f_{r}^{\text {box, } \mathrm{ASL}_{2}}(a)$, i.e. the volume $\mu\left(\widetilde{\Omega}_{r}\right)$ of the set $\widetilde{\Omega}_{r}=\{L \in \mathcal{A} \mathcal{L}(1):|L \cap \Omega|=r\}$, for $\Omega \subset \mathbb{R}^{2}$ an arbitrary rectangle of area a (cf. (28)). We will use the same basic method as in Elkies and McMullen [EM, pp. 124-131], where the case corresponding to Ω a triangle and $r=0$ was treated.

We fix $r \in \mathbb{Z}_{\geq 0}$, and write $f_{r}(a)=f_{r}^{\text {box, } \mathrm{ASL}_{2}}(a)$ for short. For any interval $I \subset \mathbb{R}$ we write $\Omega_{I}=I \times(0,1)$, so that $f_{r}(a)=\mu\left\{L:\left|L \cap \Omega_{\left(a_{1}, a_{2}\right)}\right|=r\right\}$ for any real numbers a_{1}, a_{2} with $a_{2}-a_{1}=a$. We noted in Section 7 that $f_{r}(a)$ is continuous. Set $\Delta_{\varepsilon} F(a)=F(a+\varepsilon)-F(a)$. We wish to study the iterated difference $\Delta_{\varepsilon_{1}} \Delta_{\varepsilon_{2}} f_{r}(a)$ for $\varepsilon_{1}, \varepsilon_{2}>0$ small. We will show that for each $r \geq 0$ there exists a continuous function $g_{r}(a)$ of $a>0$ such that the following two ratios:

$$
\begin{align*}
& \left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \mu\left\{L:\left|L \cap \Omega_{\left(a_{1}, a_{2}\right)}\right|=r,\left|L \cap \Omega_{\left[a_{1}-\varepsilon_{1}, a_{1}\right]}\right| \geq 1,\left|L \cap \Omega_{\left[a_{2}, a_{2}+\varepsilon_{2}\right]}\right| \geq 1\right\}, \tag{33}\\
& \left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \mu\left\{L:\left|L \cap \Omega_{\left(a_{1}, a_{2}\right)}\right|=r,\left|L \cap \Omega_{\left[a_{1}-\varepsilon_{1}, a_{1}\right]}\right|=1,\left|L \cap \Omega_{\left[a_{2}, a_{2}+\varepsilon_{2}\right]}\right|=1\right\}
\end{align*}
$$

both tend to $g_{r}(a)$ as $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0^{+}$, uniformly for a in compact subsets of \mathbb{R}^{+}. Interpreting $\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \Delta_{\varepsilon_{1}} \Delta_{\varepsilon_{2}} f_{r}(a)$ in terms of such ratios, we obtain

$$
\lim _{\varepsilon_{1}, \varepsilon_{2} \rightarrow 0^{+}}\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \Delta_{\varepsilon_{1}} \Delta_{\varepsilon_{2}} f_{r}(a)=g_{r}(a)-2 g_{r-1}(a)+g_{r-2}(a)
$$

where we understand $g_{-1}(a) \equiv g_{-2}(a) \equiv 0$. It follows that f_{r} is a C^{2} function satisfying

$$
\begin{equation*}
f_{r}^{\prime \prime}(a)=g_{r}(a)-2 g_{r-1}(a)+g_{r-2}(a) . \tag{34}
\end{equation*}
$$

For $m \in \mathbb{Z}^{+}, a_{3}<a_{4}$ and $x_{0}, y_{1}, y_{2} \in \mathbb{R}$, we define $g=g^{[m]}\left(a_{3}, a_{4}, x_{0}, y_{1}, y_{2}\right)$ to be the unique element in $\mathrm{ASL}_{2}(\mathbb{R})$ with $(0,0) g=\left(a_{3}, y_{1}\right),(m, 0) g=$ $\left(a_{4}, y_{2}\right)$ and such that $(0,1) g$ has x-coordinate $=a_{3}+\left(a_{4}-a_{3}\right) x_{0} / m$. In
this parametrization, the Haar measure on $\mathrm{ASL}_{2}(\mathbb{R})$, normalized as usual so that $\mu\left(\mathrm{ASL}_{2}(\mathbb{Z}) \backslash \mathrm{ASL}_{2}(\mathbb{R})\right)=1$, equals

$$
d g^{[m]}=\frac{6}{m^{2} \pi^{2}} d x_{0} d y_{1} d y_{2} d a_{3} d a_{4}
$$

Let S and S^{\prime} denote the subsets of $\mathcal{A} \mathcal{L}(1)$ occurring in the first and the second line of (33), respectively. Then $S^{\prime} \subset S$, and for each element L in S there exists at least one $m \in \mathbb{Z}^{+}$such that L has a representative in the set

$$
\begin{aligned}
S_{0}^{[m]}=\left\{g=g^{[m]}\left(a_{3}, a_{4}, x_{0}, y_{1}, y_{2}\right): a_{3}\right. & \in\left[a_{1}-\varepsilon_{1}, a_{1}\right], a_{4} \in\left[a_{2}, a_{2}+\varepsilon_{2}\right] \\
& \left.x_{0}, y_{1}, y_{2} \in[0,1),\left|\mathbb{Z}^{2} g \cap \Omega_{\left(a_{1}, a_{2}\right)}\right|=r\right\}
\end{aligned}
$$

Clearly

$$
\begin{equation*}
\mu\left(S_{0}^{[m]}\right)=\frac{6}{m^{2} \pi^{2}} \int_{a_{1}-\varepsilon_{1}}^{a_{1}} \int_{a_{2}}^{a_{2}+\varepsilon_{2}} V_{r}^{[m]}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) d a_{3} d a_{4} \tag{35}
\end{equation*}
$$

where $V=V_{r}^{[m]}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the three-dimensional Euclidean volume

$$
\begin{equation*}
V=\left|\left\{\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}:\left|\mathbb{Z}^{2} g^{[m]}\left(a_{3}, a_{4}, x_{0}, y_{1}, y_{2}\right) \cap \Omega_{\left(a_{1}, a_{2}\right)}\right|=r\right\}\right| \tag{36}
\end{equation*}
$$

Writing $V_{r}^{[m]}(a):=V_{r}^{[m]}\left(a_{1}, a_{2}, a_{1}, a_{2}\right)$ (recall $a=a_{2}-a_{1}$), we will prove that for $a_{3} \in\left[a_{1}-\varepsilon_{1}, a_{1}\right]$ and $a_{4} \in\left[a_{2}, a_{2}+\varepsilon_{2}\right]$ we have

$$
\begin{equation*}
V_{r}^{[m]}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \rightarrow V_{r}^{[m]}(a) \tag{37}
\end{equation*}
$$

as $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$, uniformly for $a_{2}-a_{1}=a$ in any compact subset of \mathbb{R}^{+}. Hence $\lim _{\varepsilon_{1}, \varepsilon_{2} \rightarrow 0}\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \mu\left(S_{0}^{[m]}\right)=6(m \pi)^{-2} V_{r}^{[m]}(a)$. We will also prove that $V_{r}^{[m]}(a)$ is continuous, and that if $S_{1}^{[m]}$ is the subset of those $g \in S_{0}^{[m]}$ for which $\left|\mathbb{Z}^{2} g \cap \Omega_{\left[a_{1}-\varepsilon_{1}, a_{1}\right]}\right| \geq 2$ or $\left|\mathbb{Z}^{2} g \cap \Omega_{\left[a_{2}, a_{2}+\varepsilon_{2}\right]}\right| \geq 2$, then $\mu\left(S_{1}^{[m]}\right)=o\left(\varepsilon_{1} \varepsilon_{2}\right)$ as $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$, uniformly for a in compacta. Let us first note that these facts will immediately allow us to deduce our earlier claims regarding the two ratios in (33), with

$$
\begin{equation*}
g_{r}(a)=\sum_{m=1}^{r+1} \frac{6}{m^{2} \pi^{2}} V_{r}^{[m]}(a) \tag{38}
\end{equation*}
$$

Indeed, note that if $\varepsilon_{1}, \varepsilon_{2}<a /(r+2)$ then $S_{0}^{[m]}=\emptyset$ for $m>r+1$, so that $\mu\left(S^{\prime}\right) \leq \mu(S) \leq \sum_{m=1}^{r+1} \mu\left(S_{0}^{[m]}\right)$. On the other hand, the sets $S_{0}^{[m]}-S_{1}^{[m]}$, $m=1, \ldots, r+1$, are pairwise disjoint, and every element g in $\bigcup_{m}\left(S_{0}^{[m]}-S_{1}^{[m]}\right)$ certainly represents a lattice in S^{\prime}, and is not $\mathrm{ASL}_{2}(\mathbb{Z})$-left equivalent to any other element in $\bigcup_{m} S_{0}^{[m]}$; hence $\mu\left(S^{\prime}\right) \geq \sum_{m=1}^{r+1}\left(\mu\left(S_{0}^{[m]}\right)-\mu\left(S_{1}^{[m]}\right)\right.$. This leads to the desired conclusion.

Hence it now only remains to prove our statements made in connection with (37). We fix J as some large integer. We keep $0<2 a<J, 0<\varepsilon_{1}, \varepsilon_{2}<$ $a /(r+2), a_{2}-a_{1}=a>0, a_{3} \in\left[a_{1}-\varepsilon_{1}, a_{1}\right], a_{4} \in\left[a_{2}, a_{2}+\varepsilon_{2}\right]$, and $m \leq r+1$.

Given $j \in \mathbb{Z}$ and any $g=g^{[m]}\left(a_{3}, a_{4}, x_{0}, y_{1}, y_{2}\right)$ in the set defining V we let L_{j} be the line $\{(t, j) g: t \in \mathbb{R}\}$. Using the definition of g one checks that the equation of L_{j} is

$$
\begin{equation*}
y=\frac{1}{a_{4}-a_{3}}\left(j m+\left(y_{2}-y_{1}\right)\left(x-a_{3}\right)\right)+y_{1} \tag{39}
\end{equation*}
$$

From this it follows easily that $L_{j} \cap \Omega_{\left(a_{3}, a_{4}\right)}=\emptyset$ whenever $|j|>2 a$; hence only lines L_{j} with $|j| \leq J$ can have any points inside $\Omega_{\left(a_{3}, a_{4}\right)}$.

Define $(x(k, j), y(k, j))=(k, j) g \in \mathbb{Z}^{2} \cap L_{j}$. Then

$$
\begin{align*}
x(k, j) & =a_{3}+\frac{\left(j x_{0}+k\right)\left(a_{4}-a_{3}\right)}{m} \tag{40}\\
y(k, j) & =\frac{j m}{a_{4}-a_{3}}+\frac{\left(y_{2}-y_{1}\right)\left(j x_{0}+k\right)}{m}+y_{1}
\end{align*}
$$

In particular, because of our restriction on $\varepsilon_{1}, \varepsilon_{2}$, we have $x(k, 0) \in\left(a_{1}, a_{2}\right)$ for $1 \leq k<m$, and $x(0,0)=a_{3}, x(0, m)=a_{4}$, while $x(k, 0) \notin\left[a_{1}-\varepsilon_{1}, a_{2}+\varepsilon_{2}\right]$ whenever $k<0$ or $k>m$. By (40),

$$
\begin{equation*}
a_{3} \leq x(k, j) \leq a_{4} \Leftrightarrow-j x_{0} \leq k \leq m-j x_{0} \tag{41}
\end{equation*}
$$

In particular, $|j| \leq J$ and $a_{3} \leq x(k, j) \leq a_{4}$ forces $-J \leq k \leq m+J$. For each such pair j, k, the locus of those $x_{0} \in(0,1)$ for which $x(k, j) \in$ $\left[a_{1}-\varepsilon_{1}, a_{1}\right] \cup\left[a_{2}, a_{2}+\varepsilon_{2}\right]$ is a set (a union of at most two intervals) of measure $\leq m\left(\varepsilon_{1}+\varepsilon_{2}\right)\left(|j|\left(a_{4}-a_{3}\right)\right)^{-1} \leq(m / a)\left(\varepsilon_{1}+\varepsilon_{2}\right)$. Let $\mathfrak{S} \in(0,1)$ be the union of these sets taken over all $1 \leq|j| \leq J$ and $-J \leq k \leq m+J$. Then, by construction, the symmetric difference between the set in (36) defining $V_{r}^{[m]}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and the set defining $V_{r}^{[m]}\left(a_{3}, a_{4}, a_{3}, a_{4}\right)=V_{r}^{[m]}\left(a_{4}-a_{3}\right)$ contains only points $\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}$ with $x_{0} \in \mathfrak{S}$. Hence

$$
\left|V_{r}^{[m]}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)-V_{r}^{[m]}\left(a_{4}-a_{3}\right)\right| \leq|\mathfrak{S}| \leq \frac{2 J(2 J+m+1) m}{a}\left(\varepsilon_{1}+\varepsilon_{2}\right)
$$

Here $a \leq a_{4}-a_{3} \leq a+\varepsilon_{1}+\varepsilon_{2}$. Hence (37) will be proved once we have shown that $V_{r}^{[m]}(a)$ is continuous. Similarly we obtain $\mu\left(S_{1}^{[m]}\right)=o\left(\varepsilon_{1} \varepsilon_{2}\right)$ as $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$, by writing $S_{1}^{[m]}$ as an integral analogous to (35), (36), and noticing that this will only involve points $\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}$ with $x_{0} \in \mathfrak{S}$.

It now only remains to prove that $V_{r}^{[m]}(a)$ is continuous. At the same time we will indicate how this volume can be calculated explicitly. Thus from now on we keep $a_{3}=a_{1}, a_{4}=a_{2}$. Note that in this case the set in (36) is symmetric under $\left(x_{0}, y_{1}, y_{2}\right) \leftrightarrow\left(x_{0}, 1-y_{1}, 1-y_{2}\right)$. It follows from our observations above that we may decompose the set in (36) as follows. For each sequence $\mathbf{e}=\left\{e_{j}\right\}_{|j| \leq J}$ of integers satisfying $0 \leq e_{j} \leq m, e_{0}=m-1$ and $\sum_{j} e_{j}=r$, we define

$$
\begin{aligned}
W^{[m, \mathbf{e}]} & =W^{[m, \mathbf{e}]}(a) \\
& =\left\{\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}: y_{1}<y_{2} \text { and }\left|\mathbb{Z}^{2} g \cap \Omega_{\left(a_{3}, a_{4}\right)} \cap L_{j}\right|=e_{j}, \forall j\right\}
\end{aligned}
$$

(Note that the condition for $j=0$ is satisfied for all $\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}$, because of $e_{0}=m-1$ and our observations above.) Furthermore, for any interval $I \subset[0,1]$ we define

$$
W_{I}^{[m, \mathbf{e}]}(a)=\left\{\left(x_{0}, y_{1}, y_{2}\right) \in W^{[m, \mathbf{e}]}(a): x_{0} \in I\right\}
$$

We let I_{1}, \ldots, I_{N} be the consecutive open intervals in a Farey dissection of $[0,1]$ of order J, viz., I_{1}, \ldots, I_{N} are the connected components which remain after all the Farey fractions $\left\{q_{1} / q_{2}: 0 \leq q_{1}<q_{2} \leq J,\left(q_{1}, q_{2}\right)=1\right\}$ have been removed from $[0,1)$. Then $V_{r}^{[m]}(a)$ can be expressed as a finite sum:

$$
\begin{equation*}
V_{r}^{[m]}(a)=2 \sum_{\mathbf{e}} \sum_{n=1}^{N}\left|W_{I_{n}}^{[m, \mathbf{e}]}(a)\right| \tag{42}
\end{equation*}
$$

where e runs through all sequences as above. Hence it now suffices to prove that $\left|W_{I_{n}}^{[m, \mathbf{e}]}(a)\right|$ is continuous for all \mathbf{e}, n.

The point of using the Farey dissection is to ensure that if $\left(x_{0}, y_{1}, y_{2}\right) \in$ $W_{I_{n}}^{[m, \mathbf{e}]}(a)$ then for each j with $1 \leq|j| \leq J$, the number $j x_{0}$ falls strictly between two consecutive integers which only depend on n and j. Hence, in view of (41), there is an integer $K=K(n, j)$ such that $a_{1}<x(k, j)<a_{2}$ holds if and only if $k \in\{K, K+1, \ldots, K+m-1\}$. Furthermore, each line L_{j} has positive slope, since we require $y_{1}<y_{2}$. Hence if $1 \leq j \leq J$ and $1 \leq e_{j} \leq m-1$, the condition $\left|\mathbb{Z}^{2} g \cap \Omega_{\left(a_{1}, a_{2}\right)} \cap L_{j}\right|=e_{j}$ can be reformulated as $y\left(K+e_{j}-1, j\right)<1, y\left(K+e_{j}, j\right) \geq 1$. If $1 \leq j \leq J$ and $e_{j}=0$ (or $e_{j}=m$), then the corresponding reformulation is $y(K, j) \geq 1$ (or $y(K+m-1, j)<1$, respectively). Similarly, if $-J \leq j \leq-1$, then $\left|\mathbb{Z}^{2} g \cap \Omega_{\left(a_{1}, a_{2}\right)} \cap L_{j}\right|=e_{j}$ can be formulated as one or both of the inequalities $y\left(K+m-e_{j}, j\right)>0$, $y\left(K+m-e_{j}-1, j\right) \leq 0$.

Let us now substitute

$$
y_{3}=y_{2}-y_{1}, \quad y_{4}=m / a+y_{3} x_{0} / m
$$

Then note that $y(k, j)=y_{1}+(k / m) y_{3}+j y_{4}$, a linear expression in y_{1}, y_{3}, y_{4}. Also note that the inequalities $0<y_{1}<y_{2}<1$ are equivalent to $0<y_{1}$, $0<y_{3}, y_{1}+y_{3}<1$. In conclusion, for any given admissible m, \mathbf{e}, n, we can construct a finite set of linear inequalities in y_{1}, y_{3}, y_{4} (the coefficients of which only depend on m, \mathbf{e}, n) such that if $C_{m, \mathbf{e}, n}$ denotes the corresponding convex region in the $\left(y_{1}, y_{3}, y_{4}\right)$-space, then for all $\left(x_{0}, y_{1}, y_{2}\right) \in \mathbb{R}^{3}$ we have

$$
\left(x_{0}, y_{1}, y_{2}\right) \in W_{I_{n}}^{[m, \mathbf{e}]}(a) \Leftrightarrow x_{0} \in I_{n},\left(y_{1}, y_{3}, y_{4}\right) \in C_{m, \mathbf{e}, n}
$$

(The region $C_{m, \mathbf{e}, n}$ may well be empty. In general, it contains part but not all of its boundary $\partial C_{m, \mathbf{e}, n}$.) Hence, since $d y_{1} d y_{2}=d y_{1} d y_{3}$,

$$
\begin{equation*}
\left|W_{I_{n}}^{[m, \mathbf{e}]}(a)\right|=\int_{x_{0} \in I_{n}} A_{m, \mathbf{e}, n}\left(x_{0}, a\right) d x_{0} \tag{43}
\end{equation*}
$$

where $A_{m, \mathbf{e}, n}\left(x_{0}, a\right)$ is the area of the projection onto the $\left(y_{1}, y_{3}\right)$-plane of the intersection between $C_{m, \mathbf{e}, n}$ and the plane $y_{4}=m / a+y_{3} x_{0} / m$.

Since $C_{m, \mathbf{e}, n}$ is defined by a finite set of linear inequalities, there is at most a finite subset $F \subset I_{n}$ of x_{0}-values for which the plane $y_{4}=m / a+$ $y_{3} x_{0} / m$ is parallel to a bounding 2 -simplex of $C_{m, \mathbf{e}, n}$. Clearly $A_{m, \mathbf{e}, n}\left(x_{0}, a\right)$ is continuous for $\left(x_{0}, a\right) \in\left(I_{n}-F\right) \times\left(0, \frac{1}{2} J\right)$. Note also that $0 \leq A_{m, \mathbf{e}, n}\left(x_{0}, a\right)$ $\leq 1 / 2$ everywhere, since $C_{m, \mathbf{e}, n}$ is restricted by $0<y_{1}, 0<y_{3}, y_{1}+y_{3}<1$. Hence (43) implies that $\left|W_{I_{n}}^{[m, \mathbf{e}]}(a)\right|$ is a continuous function of a, as claimed. Note that it is also clear from the above how to compute $f_{r}^{\prime \prime}(a)$ explicitly, at least in principle.

For a sufficiently small there is a simple explicit formula for $f_{r}(a)$:
Proposition 2. We have
$f_{r}(a)=\left\{\begin{array}{ll}\frac{3}{\pi^{2}} a^{2}-a+1 & \text { if } r=0 \\ -\frac{21}{4 \pi^{2}} a^{2}+a & \text { if } r=1 \\ \frac{3}{\pi^{2}}\left((r-1)^{-2}-2 r^{-2}+(r+1)^{-2}\right) a^{2} & \text { if } r \geq 2\end{array}\right\} \quad$ for $0<a \leq 1$.
If $r \geq 5$, the formula $f_{r}(a)=3 \pi^{-2}\left((r-1)^{-2}-2 r^{-2}+(r+1)^{-2}\right) a^{2}$ actually holds for all $0<a \leq[(r-1) / 2]$.

In view of our remarks in Section 7 , the case $0<a \leq 1$ of the above proposition can be viewed as a rederivation of the formulae proved by Mazel and Sinai in $[\mathrm{MS}]$. The fact that the same formula also holds for larger values of a when $r \geq 5$ seems to be new.

Proof. We will show that

$$
\begin{equation*}
g_{r}(a)=\frac{6}{\pi^{2}}(r+1)^{-2} \quad \text { for all } 0<a<\max \left(1,\left[\frac{r+1}{2}\right]\right) \tag{44}
\end{equation*}
$$

Clearly this suffices to prove the proposition, if we use (34) and the fact that $\lim _{a \rightarrow 0^{+}} f_{r}(a)$ and $\lim _{a \rightarrow 0^{+}} f_{r}^{\prime}(a)$ can be computed easily.

Now fix r, a as in (44), and let J be an integer $>2 a$ as before. Let $\mathbf{e}=\left\{e_{j}\right\}_{|j| \leq J}$ be any sequence of integers satisfying $0 \leq e_{j} \leq e_{0}+1$ and $\sum_{j} e_{j}=r$, and write $m=e_{0}+1$ (thus $1 \leq m \leq r+1$). We will prove that $W^{[m, \mathbf{e}]}(a)=\emptyset$ except if $e_{0}=r$ and $e_{j}=0$ for all $j \neq 0$, and that for this exceptional sequence e we have $W^{[m, \mathbf{e}]}(a)=\left\{\left(x_{0}, y_{1}, y_{2}\right) \in(0,1)^{3}: y_{1}<y_{2}\right\}$. Since this set has volume $1 / 2$, we obtain (44) via (38) and (42).

If $m \geq a$ then (39) implies $L_{j} \cap \Omega_{\left(a_{3}, a_{4}\right)}=\emptyset$ for all $j \neq 0$, and the desired conclusion follows directly from the definition of $V_{r}^{[m]}(a)$ and $W^{[m, \mathbf{e}]}(a)$. In particular, the proof is complete for the case $0<a<1$.

Now assume $1 \leq m<a$. Note that we then have $r \geq 3$ and $m<a<r$, by (44). We have to prove $W^{[m, \mathrm{e}]}(a)=\emptyset$; we will do this by assuming $W^{[m, \mathrm{e}]}(a)$ to contain an element $\left(x_{0}, y_{1}, y_{2}\right)$, and showing that this leads to a contradiction.

Let $N=[a / m] \geq 1$. Then note that by (39) we have $L_{j} \cap \Omega_{\left(a_{3}, a_{4}\right)}=\emptyset$ for all $|j|>N$, and hence $e_{j}=0$ for all these j. Furthermore, for each $j \in\{1, \ldots, N\}$ we note that if $e_{j} \geq 1$ then it follows from $\left(x_{0}, y_{1}, y_{2}\right) \in$ $W^{[m, \mathrm{e}]}(a)$ and (39), (40) that $j m / a+\left(y_{2}-y_{1}\right)\left(e_{j}-1\right) / m+y_{1}<1$, since the line L_{j} has positive slope $\left(y_{2}-y_{1}\right) / a$. Similarly, if $e_{j-N-1} \geq 1$ we find $(j-N-1) m / a+\left(y_{2}-y_{1}\right)\left(m+1-e_{j-N-1}\right) / m+y_{1}>0$. By considering the difference between these two inequalities and using $(N+1) m / a>1$ we obtain $e_{j}+e_{j-N-1} \leq m+1$. Note that this holds even if e_{j} or e_{j-N-1} is 0 , since $e_{j}, e_{j-N-1} \leq m$. Hence

$$
r=\sum_{j} e_{j}=e_{0}+\sum_{j=1}^{N}\left(e_{j}+e_{j-N-1}\right) \leq m-1+N(m+1) .
$$

But $N \leq a / m<[(r+1) / 2] / m$ and hence $N \leq([(r+1) / 2]-1) / m=$ $m^{-1}[(r-1) / 2]$. Note here that $1 \leq m \leq[(r-1) / 2]$. Using these facts we obtain

$$
r \leq m+m^{-1}\left[\frac{r-1}{2}\right]-1+\left[\frac{r-1}{2}\right] \leq 2\left[\frac{r-1}{2}\right] \leq r-1 .
$$

This is a contradiction.
The evaluation of $f_{r}(a)$ for larger values of a is much more involved. We have written a Maple program to evaluate $f_{r}(a)$ for small values of r, using the formulae (34), (38), (42), (43). To present the result, it is convenient to define $\Xi(a)$ for $a>0$ by

$$
\Xi^{\prime \prime}(a)=\left(1-a^{-1}\right)^{2} \log \left|1-a^{-1}\right|, \quad \Xi(1)=\Xi^{\prime}(1)=0 .
$$

Then $\Xi \in C^{3}\left(\mathbb{R}^{+}\right)$, but the fourth derivative of Ξ has a logarithmic singularity at $a=1$. Now

$$
\begin{aligned}
f_{0}^{\mathrm{box}, \mathrm{ASL}_{2}}(a) & =f_{0}(a) \\
& = \begin{cases}\frac{3}{\pi^{2}} a^{2}-a+1 & \text { if } 0 \leq a \leq 1, \\
\frac{12}{\pi^{2}}(\Xi(a)-\Xi(a / 2))+\frac{6}{\pi^{2}} a \log a+c_{1} a+c_{2} & \text { if } 1 \leq a,\end{cases}
\end{aligned}
$$

where

$$
c_{1}=\frac{6+6 \log 2}{\pi^{2}}-2, \quad c_{2}=\frac{18 \log 2}{\pi^{2}}
$$

furthermore

$$
\begin{aligned}
& f_{1}(a)= \begin{cases}-\frac{21}{4 \pi^{2}} a^{2}+a & \text { if } 0 \leq a \leq 1, \\
-\frac{12}{\pi^{2}}(3 \Xi(a)-4 \Xi(a / 2))+\ell_{1}(a) & \text { if } 1 \leq a \leq 2, \\
-\frac{12}{\pi^{2}}(3 \Xi(a)-10 \Xi(a / 2) & \\
+6 \Xi(a / 3)+2 \Xi(a / 4))+\ell_{2}(a) & \text { if } 2 \leq a \leq 4, \\
-\frac{12}{\pi^{2}}(3 \Xi(a)-6 \Xi(a / 2)+3 \Xi(a / 3))+\ell_{3}(a) & \text { if } 4 \leq a,\end{cases}
\end{aligned}
$$

where $\ell_{1}(a), \ldots, \ell_{9}(a)$ are expressions of the form $d_{1} \log ^{2} a+d_{2} a \log a$ $+d_{3} \log a+d_{4} a^{2}+d_{5} a+d_{6}$, with explicit constants d_{j}. The formulae quickly grow more complicated as r increases. We have posted a Maple file on the web containing the exact formulae for $f_{r}(a), r=0,1,2,3,4$ (cf. [StV]).

The derivation of the precise formulae in $[\mathrm{StV}]$ involved heavy use of computer algebra applied on long and complicated expressions, and it is only reasonable to ask what type of tests were implemented to ascertain
the correctness of the results. We consider the numerical data presented in Section 9 to be our strongest evidence in this regard. As further evidence we mention that we verified $\lim _{a \rightarrow \infty} f_{r}(a)=0$ for $r=0,1,2,3,4$ by exact computation; note that this relation is far from "built-in" to our computations, as $f_{r}(a)$ is obtained by integration of (34) starting from $a=0$.

The graphs of $f_{r}(a)$ for $r=0,1,2,3,4$, and their cumulative sums $\sum_{r=0}^{n} f_{r}(a)$

One more test is provided by considering the second moment of the random variable X_{a} given by $\operatorname{Prob}\left\{X_{a}=r\right\}=f_{r}(a)$ for $r=0,1, \ldots$ (i.e., X_{a} is the number of points in the intersection $L \cap \Omega$ of a random translated lattice L and the box $\Omega=(0,1) \times(0, a))$. By a computation using Siegel's theorem for $\mathrm{SL}_{n}(\mathbb{Z}) \backslash \mathrm{SL}_{n}(\mathbb{R})$, one can show that for any compact set $\Omega \subset$ \mathbb{R}^{n} one has $\sum_{r=0}^{\infty} r^{2} \cdot \mu\left(\widetilde{\Omega}_{r}^{(\mathrm{ASL})}\right)=\operatorname{vol}(\Omega)^{2}+\operatorname{vol}(\Omega)$. Hence, in particular, $E\left(X_{a}^{2}\right)=\sum_{r=0}^{\infty} r^{2} f_{r}(a)=a^{2}+a$ for all $a>0$. This is of course easy to check by a direct computation for $0<a \leq 1$ in view of Proposition 2, but since $f_{r}(a)=3 \pi^{-2}\left((r-1)^{-2}-2 r^{-2}+(r+1)^{-2}\right) a^{2}$ also holds for $1 \leq a \leq 2$ whenever $r \geq 5$ one obtains the non-trivial relation

$$
\sum_{r=1}^{4} r^{2} f_{r}(a)=\frac{6929}{1200 \pi^{2}} a^{2}+a \quad \text { for } 1 \leq a \leq 2
$$

We have verified this to hold for our explicit formulae for $f_{r}(a)$.
Regarding other moments, note that $\sum_{r=0}^{\infty} r f_{r}(a)=E\left(X_{a}\right)=a$ by the $\mathrm{ASL}_{n}(\mathbb{R})$-version of Siegel's theorem; but this formula is also a trivial consequence of (34) (which implies $\frac{d^{2}}{d a^{2}} E\left(X_{a}\right)=0$) and Proposition 2, and hence does not give an independent test of our formulae. Note also that all higher moments are infinite; $E\left(X_{a}^{n}\right)=\infty$ for $n \geq 3$, by Proposition 2 .

Using methods similar to those described above, we have also computed explicit formulas for $f_{r}^{\text {box, } \mathrm{SL}_{2}}(a)$ (cf. (28)). The details of these computations are slightly less involved than for $f_{r}^{\text {box, } \mathrm{ASL}_{2}}(a)$, since we may there proceed by studying $\frac{d}{d a} f_{r}^{\mathrm{box}, \mathrm{SL}_{2}}(a)$, i.e. the first derivative instead of the second. Note that by symmetry in the origin, $f_{2 r}^{\text {box, }, \mathrm{SL}_{2}}(a)=0$ for all $r \geq 0$. Note also that $f_{2 r+1}^{\mathrm{box}, \mathrm{SL}_{2}}(a)=0$ whenever $a \geq 4(r+1)$, by an easy generalization of Minkowski's theorem [Si, Thm. 10].

Our results are as follows.

Proposition 3. For all $r \in \mathbb{Z}_{\geq 0}$ and $0<a \leq 2$ we have

$$
f_{2 r+1}^{\mathrm{box}, \mathrm{SL}_{2}}(a)= \begin{cases}1-\frac{3}{\pi^{2}} a & \text { if } r=0 \\ \frac{3}{\pi^{2}}\left(r^{-2}-(r+1)^{-2}\right) a & \text { if } r \geq 1\end{cases}
$$

If $r \geq 3$, the formula $f_{2 r+1}^{\mathrm{box}^{\mathrm{SL}}}{ }_{2}(a)=3 \pi^{-2}\left(r^{-2}-(r+1)^{-2}\right)$ a actually holds for all $0<a \leq 2[(r-1) / 2]+2$.

We define $\Psi(a)$ for $a>0$ by

$$
\Psi^{\prime}(a)=\left(a^{-1}-1\right) \log \left|a^{-1}-1\right|, \quad \Psi(1)=0 .
$$

Now

$$
\begin{aligned}
& f_{1}^{\text {box,SL }}(a)= \begin{cases}1-\frac{3}{\pi^{2}} a & \text { if } 0 \leq a \leq 2, \\
\frac{12}{\pi^{2}}(\Psi(a / 4)-\log a) \\
+\frac{3}{\pi^{2}} a+\frac{12}{\pi^{2}}(2 \log 2-1) & \text { if } 2 \leq a \leq 4, \\
0 & \text { if } 4 \leq a,\end{cases} \\
& f_{3}^{\text {box, } \mathrm{SL}_{2}}(a)= \begin{cases}\frac{9}{4 \pi^{2}} a & \text { if } 0 \leq a \leq 2, \\
-\frac{24}{\pi^{2}} \Psi(a / 4)+q_{1}(a) & \text { if } 16 / 3 \leq a \leq 8 \\
\frac{12}{\pi^{2}}(\Psi(a / 4)+2 \Psi(a / 8))+q_{2}(a) \\
\frac{24}{\pi^{2}} \Psi(a / 4)+q_{3}(a) \\
0 & \text { if } 8 \leq a,\end{cases}
\end{aligned}
$$

$$
f_{5}^{\text {box }, \mathrm{SL}_{2}}(a)= \begin{cases}\frac{5}{12 \pi^{2}} a & \text { if } 0 \leq a \leq 2 \\ \frac{12}{\pi^{2}} \Psi(a / 4)+q_{4}(a) & \text { if } 2 \leq a \leq 4 \\ -\frac{12}{\pi^{2}}(2 \Psi(a / 4)+3 \Psi(a / 8))+q_{5}(a) & \text { if } 4 \leq a \leq 16 / 3 \\ -\frac{12}{\pi^{2}}(5 \Psi(a / 4)-3 \Psi(a / 8))+q_{6}(a) & \text { if } 16 / 3 \leq a \leq 6 \\ -\frac{12}{\pi^{2}}(5 \Psi(a / 4)-3 \Psi(a / 8) & \text { if } 6 \leq a \leq 36 / 5 \\ -2 \Psi(a / 12))+q_{7}(a) & \text { if } 8 \leq a \leq 12 \\ -\frac{12}{\pi^{2}}(4 \Psi(a / 4)-3 \Psi(a / 8))+q_{8}(a) \\ \frac{24}{\pi^{2}} \Psi(a / 4)+q_{9}(a) & \text { if } 12 \leq a \\ 0 & \end{cases}
$$

where $q_{1}(a), \ldots, q_{9}(a)$ are expressions of the form $d_{1} \log a+d_{2} a+d_{3}$, with explicit constants d_{j}. We again refer to $[\mathrm{StV}]$ for the exact formulae for $f_{r}^{\text {box, } \mathrm{SL}_{2}}(a), r=3,5,7,9$.

Regarding moments, note that $\sum_{r=0}^{\infty} r f_{r}^{\mathrm{box}, \mathrm{SL}_{2}}(a)=a+1$ by Siegel's theorem, and $\sum_{r=0}^{\infty} r^{n} f_{r}^{\text {box, } \mathrm{SL}_{2}}(a)=\infty$ for all $n \geq 2$ (and all $a>0$), by Proposition 3.
9. Numerical experiments. In this section we present some data from numerical experiments related to several of the main results in this paper.

Table 1 concerns the error term in Theorem 2 for Ω a two-dimensional square, $\Omega=\Omega_{a}=[-\sqrt{a} / 2, \sqrt{a} / 2]^{2} \subset \mathbb{R}^{2}$. We let $N_{a, r}(p)$ denote the number of lines through the origin in \mathbb{F}_{p}^{2} which intersect $p^{1 / 2} \Omega_{a}$ in exactly r points. Recall the definition of $f_{r}^{\text {box, } \mathrm{SL}_{2}}(a)$ in (28). We note that both $N_{a, r}(p)=0$ and $f_{r}^{\text {box, } \mathrm{SL}_{2}}(a)=0$ hold whenever r is even, and also for all $a \geq 2 r+2$ (the fact that $N_{a, r}(p)=0$ for all $a \geq 2 r+2$ follows by an easy extension of Thue's theorem, [N, Thm. 75]). We have computed the deviations

$$
\left|\frac{N_{a, r}(p)}{p+1}-f_{r}^{\mathrm{box}, \mathrm{SL}_{2}}(a)\right|, \quad a \in\{0.2,0.4,0.6, \ldots\}, a<2 r+2
$$

for $r \in\{1,3,5,7,9\}$ and certain values of p. The exact value of $f_{r}^{\text {box, } \mathrm{SL}_{2}}(a)$ was computed using the explicit formalae in $[\mathrm{StV}]$. In Table 1 we list the maximum $\delta_{r}^{(\max)}$ and the average $\delta_{r}^{(\mathrm{av} .)}$ of these deviations.

Table 1. Maximum and average deviation, lines through the origin in \mathbb{F}_{p}^{2}

p	$\delta_{1}^{(\max)}$	$\delta_{3}^{(\max)}$	$\delta_{5}^{(\max)}$ $\delta_{1}^{\text {(av.) }}$	$\delta_{3}^{(\text {av. })}$	$\delta_{5}^{(\max)}$
	$1.2 \cdot 10^{-2}$	$1.9 \cdot 10^{-2}$	$2.1 \cdot 10^{-2}$	$2.1 \cdot 10^{-2}$	$\delta_{9}^{(\max)}$
	$5.9 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$	$4.8 \cdot 10^{-3}$	$4.6 \cdot 10^{-3}$	$3.9 \cdot 10^{-3}$
50021	$5.4 \cdot 10^{-3}$	$6.3 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$	$6.1 \cdot 10^{-3}$	$8.5 \cdot 10^{-3}$
	$1.7 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$
500009	$0.99 \cdot 10^{-3}$	$2.4 \cdot 10^{-3}$	$2.5 \cdot 10^{-3}$	$2.6 \cdot 10^{-3}$	$2.5 \cdot 10^{-3}$
	$4.2 \cdot 10^{-4}$	$5.2 \cdot 10^{-4}$	$5.0 \cdot 10^{-4}$	$4.2 \cdot 10^{-4}$	$4.5 \cdot 10^{-4}$
500011	$4.4 \cdot 10^{-4}$	$5.7 \cdot 10^{-4}$	$6.0 \cdot 10^{-4}$	$8.8 \cdot 10^{-4}$	$8.5 \cdot 10^{-4}$
	$1.8 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$

Table 2 gives similar data concerning the error term in Theorem 4 (cf. also Remark 2): we list the maximum $\delta_{r}^{(\max)}$ and the average $\delta_{r}^{(\text {av. })}$ of the deviations

$$
\left|\frac{\tilde{N}_{a, r}(p)}{p(p+1)}-f_{r}^{\mathrm{box}^{\mathrm{ASL}} 2}(a)\right|, \quad a \in\{0.1,0.2,0.3, \ldots, 15.0\}
$$

where $\widetilde{N}_{a, r}(p)$ is the number of affine lines in \mathbb{F}_{p}^{2} which intersect the square $p^{1 / 2} \Omega_{a}$ in exactly r points.

Table 2. Maximum and average deviation, affine lines in \mathbb{F}_{p}^{2}

	$\delta_{0}^{(\max)}$	$\delta_{1}^{(\max)}$	$\delta_{2}^{(\max)}$	$\delta_{3}^{(\max)}$	$\delta_{4}^{(\max)}$
p	$\delta_{0}^{(\text {av. })}$	$\delta_{1}^{(\mathrm{av.})}$	$\delta_{2}^{(\mathrm{av.})}$	$\delta_{3}^{(\mathrm{av.})}$	$\delta_{4}^{(\mathrm{av.})}$
503	$3.7 \cdot 10^{-2}$	$3.9 \cdot 10^{-2}$	$4.1 \cdot 10^{-2}$	$5.0 \cdot 10^{-2}$	$5.2 \cdot 10^{-2}$
	$2.7 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$4.0 \cdot 10^{-3}$	$4.5 \cdot 10^{-3}$	$5.5 \cdot 10^{-3}$
5003	$1.4 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$
	$0.80 \cdot 10^{-3}$	$0.18 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$
50021	$3.9 \cdot 10^{-3}$	$4.0 \cdot 10^{-3}$	$4.2 \cdot 10^{-3}$	$4.5 \cdot 10^{-3}$	$5.9 \cdot 10^{-3}$
	$3.1 \cdot 10^{-4}$	$3.0 \cdot 10^{-4}$	$4.2 \cdot 10^{-4}$	$4.9 \cdot 10^{-4}$	$5.8 \cdot 10^{-4}$
500009	$1.4 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$
	$0.87 \cdot 10^{-4}$	$0.90 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$

Note that the above data are consistent with a $p^{-1 / 2}$-decay of the deviations, both for the SL_{2} and the ASL_{2} case. For the ASL_{2} case this is in agreement with Remark 2 and the Ramanujan-Petersson conjecture that $\beta(1,2)=-1 / 2$. For the SL_{2} case the tables might suggest that at least when
Ω is sufficiently "nice", the exponent in the error term in Theorem 2 is not optimal.

References

[COU] L. Clozel, H. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent. Math. 144 (2001), 327-351.
[EM] N. D. Elkies and C. T. McMullen, Gaps in $\sqrt{n} \bmod 1$ and ergodic theory, Duke Math. J. 123 (2004), 95-139.
[EsM] A. Eskin and C. T. McMullen, Mixing, counting and equidistribution in Lie groups, ibid. 71 (1993), 181-209.
[FF] L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, ibid. 119 (2003), 465-526.
[GO] W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: a problem of Linnik, Compositio Math. 136 (2003), 323-352.
[KiS] H. H. Kim and P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, appendix 2 to: H. H. Kim, Functoriality for the exterior square of GL_{4} and symmetric fourth of GL_{2}, J. Amer. Math. Soc. 16 (2003), 139-183.
[K] D. Y. Kleinbock, Badly approximable systems of affine forms, J. Number Theory 79 (1999), 83-102.
[L] W. Z. Luo, Rational points on complete intersections over \mathbf{F}_{p}, Int. Math. Res. Not. 1999, 901-907.
[M1] J. Marklof, The n-point correlations between values of a linear form, Ergodic Theory Dynam. Systems 20 (2000), 1127-1172.
[M2] - Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. 158 (2003), 419-471.
[MS] A. E. Mazel and Ya. G. Sinai, A limiting distribution connected with fractional parts of linear forms, in: Ideas and Methods in Mathematical Analysis, Stochastics and Applications, S. Albeverio et al. (eds.), Cambridge Univ. Press, Cambridge, 1992, 220-229.
[N] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
[O] H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), 133-192.
[Sa1] P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981), 719-739.
[Sa2] -, Diophantine problems and linear groups, in: Proc. Internat. Congress of Mathematicians (Kyoto, 1990), Vol. I, II, Math. Soc. Japan, Tokyo, 1991, 459-471.
[Sh] N. A. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 105-125 [available electronically at: www.arXiv.org].
[Si] C. L. Siegel, Lectures on the Geometry of Numbers, Springer, Berlin, 1989.
[St] A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J. 123 (2004), 507-547.
[StV] A. Strömbergsson and A. Venkatesh, volumes.mws, a Maple file available at www.math.uu.se/ astrombe/computations.html.
[T] M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. 19 (1986), 335-382.
[Z] D. Zagier, Eisenstein series and the Riemann zeta function, in: Automorphic Forms, Representation Theory and Arithmetic, Tata Inst. Fund. Res. Studies in Math. 10, Springer, Berlin, 1981, 275-301.

Department of Mathematics, Box 480
Department of Mathematics
Uppsala University
S-75106 Uppsala, Sweden
E-mail: astrombe@math.uu.se
77 Massachusetts Ave. Cambridge, MA 02139, U.S.A.

[^0]: 2000 Mathematics Subject Classification: Primary 11P21; Secondary 11F70.
 A.S. was supported by a Swedish STINT Postdoctoral award.
 A.V. was supported by NSF grant DMS-0245606.

