Generators and defining equation of the modular function field of the group $\Gamma_1(N)$

by

NOBUHIKO ISHIDA and NOBURO ISHII (Osaka)

1. Introduction. Let N be a positive integer. Let $\Gamma(N)$ denote the principal congruence subgroup of level N and $\Gamma_1(N)$ a subgroup of $\text{SL}_2(\mathbb{Z})$ defined by

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \mod N, \ c \equiv 0 \mod N \right\}.$$

Let $A(N)$ and $A_1(N)$ be the modular function fields with respect to the groups $\Gamma(N)$ and $\Gamma_1(N)$ respectively. Further let $X_1(N)$ be the modular curve associated with the modular function field $A_1(N)$. The genus of $X_1(N)$ is ≥ 1 if and only if $N = 11, N \geq 13$. The purpose of this paper is to construct “good” generators of $A_1(N)$ such that we can obtain a “simple” equation of the field $A_1(N)$, which gives an affine, in general, singular model over \mathbb{Q} of the curve $X_1(N)$.

The non-cuspidal, \mathbb{C}-rational points of $X_1(N)$ parametrize the isomorphism classes of pairs of the elliptic curve over \mathbb{C} and a point of order N on it. From this property, Reichert [9] obtained the equations of $X_1(N)$ for $N = 11, 13, \ldots, 18$ from “raw forms” which were deduced from the equation satisfied by N-torsion points on the elliptic curve called the $E(b,c)$-form.

Further he calculated tables of elliptic curves over quadratic fields with torsion groups of special types. Independently, Lecacheux [7], Washington [11] and Darmon [2] constructed generators of the field $A_1(N)$ explicitly and determined the equation of $X_1(N)$ for $N = 13, 16, 25$ respectively, for the purpose of obtaining a family of cyclic extensions over \mathbb{Q}. The authors [3]–[5] constructed generators of $A(N), A_1(N)$ for any $N \geq 6$ and showed that the equation of $A_1(N)$ can be deduced very easily from the equation of $A(N)$ deduced from the relation between them. However our equation given in [5] is not simple as compared with the “raw forms” of Reichert. In this paper, we construct new kind of generators of $A_1(N)$ for any integer greater than 10.

2000 Mathematics Subject Classification: Primary 14H05; Secondary 11F03, 11G18.
from similar functions used by Lecacheux, Washington and Darmon. The
equations obtained from these new generators are as simple as the “raw
forms” of Reichert.

In Sections 2 and 3, we shall introduce modular functions W_3, W_4, W_5 of
$I_1(N)$ which are modular units (for modular units, see Kubert and Lang [6])
and show that the pairs $(W_3, W_5), (W_3, W_4)$ generate $A_1(N)$ over \mathbb{C},
respectively. In Section 4, we shall study the properties of the equation of
$A_1(N)$ obtained from the relation between W_3 and W_5. In the last part of Section 4,
as examples, we shall give equations for $11 \leq N \leq 20, N \neq 12$. Let J be the
modular invariant function. In Section 5, we shall also show that the pairs
(J, W_3) and (J, W_5) of modular functions each generate $A_1(N)$ over \mathbb{C}.

Throughout this paper, we shall use the following notation. For finitely
many elements a_1, \ldots, a_m of a unique factorization domain, we denote by
$GCD(a_1, \ldots, a_m)$ the greatest common divisor of a_1, \ldots, a_m. For $x \in \mathbb{R}$, we
denote by $[x]$ the greatest integer not exceeding x. For a function $f(\tau)$ on
the complex upper half plane and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, we put
\[
f \mid_2 [A] = f(A(\tau))(c\tau + d)^{-2},
\]
where $A(\tau) = (a\tau + b)/(c\tau + d)$.

2. The function $W_r(\tau)$. Let N be a positive integer greater than 10.
For a complex number τ in the complex upper half plane, we denote by
L_τ the lattice in \mathbb{C} generated by 1 and τ and by $\wp(z; L_\tau)$ the Weierstrass
\wp-function associated with L_τ. For a pair (r, s) of integers such that $(r, s) \neq
(0, 0) \mod N$, consider the function
\[
E(\tau; r, s, N) = \wp\left(\frac{r\tau + s}{N}; L_\tau\right)
\]
on the complex upper half plane. Then it is easy to see that $E(\tau; r, s, N)$
has the following transformation formula:
\[
E(\tau; r, s, N) \mid_2 [A] = E(\tau; ar + cs, br + ds, N) \quad \text{for } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).
\]
In particular, for an integer s not congruent to 0 mod N, we know that the
function
\[
\phi_s(\tau) = \frac{1}{(2\pi i)^2} \wp\left(\frac{s}{N}; L_\tau\right) = \frac{1}{(2\pi i)^2} E(\tau; 0, s, N)
\]
is a modular form of weight 2 of the group $I_1(N)$. Further if r and s are
integers such that $r \neq \pm s \mod N$, then $\phi_r(\tau) - \phi_s(\tau)$ has neither zeros
nor poles on the complex upper half plane, because the function $\wp(z; L_\tau) -
\wp(s/N; L_\tau)$ has zeros (resp. poles) only at the points $z \equiv \pm s/N$ (resp. 0)
mod L_τ. For a positive integer r not congruent to 0, $\pm 1, \pm 2 \mod N$, we define
a modular function $W_r(\tau)$ with respect to $\Gamma_1(N)$ by

\begin{equation}
W_r(\tau) = \frac{\phi_2(\tau) - \phi_1(\tau)}{\phi_r(\tau) - \phi_1(\tau)}.
\end{equation}

The function $W_r(\tau)$ has neither zeros nor poles on the complex upper half plane. We shall determine the order of $W_r(\tau)$ at the cusps of $\Gamma_1(N)$. In Ogg [8], all inequivalent cusps of $\Gamma_1(N)$ are given by the pairs (u, t) of integers such that:

- $1 \leq t < N/2$, $1 \leq u \leq D$, GCD$(u, D) = 1$, or
- $t = N/2, N$, $1 \leq u \leq D/2$, GCD$(u, D) = 1$,

where $D = \text{GCD}(t, N)$. Let (u, t) be one of the above cusps. Then, since GCD$(u, t, N) = 1$, we can take a matrix $B(u, t) \in \text{SL}_2(\mathbb{Z})$ such that

\begin{equation}
B(u, t) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} u & * \\ t & * \end{pmatrix} \mod N.
\end{equation}

In the following, let $q = \exp(2\pi i \tau / N)$ and $\zeta = \exp(2\pi i / N)$. We know that q^D is the local parameter at the cusp (u, t). Therefore the order of $W_r(\tau)$ at the cusp (u, t) is equal to the order of the q^D-expansion of $W_r(B(u, t)(\tau))$. To describe the order of $W_r(\tau)$ at (u, t), we need the following notation. For an integer s, we denote by $\{s\}$ and $\mu(s)$ the integers uniquely determined by the following conditions:

\begin{align*}
0 \leq \{s\} \leq N/2, & \quad \mu(s) = \pm 1, \quad s \equiv \mu(s)\{s\} \mod N, \\
\text{and further if } \{s\} = 0 \text{ or } N/2, & \text{ then } \mu(s) = 1.
\end{align*}

Lemma 1. The function $\phi_s |_2 [B(u, t)]$ has the following q-expansion:

\[
\phi_s |_2 [B(u, t)] = \frac{1}{12} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1 - \zeta^{s^*}n)(1 - \zeta^{-s^*}n)q^{mnN} \quad \text{if } \{st\} = 0,
\]

\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(\zeta^{s^*}nq^{\{st\}n} + \zeta^{-s^*}nq^{-\{st\}n-2})q^{mnN} \quad \text{otherwise},
\]

where $s^* = \mu(st)sd$.

Proof. Since $\varphi(z; L_\tau)$ is an L_τ-invariant even function, we have

\[
\phi_s |_2 [B(u, t)] = \frac{1}{(2\pi i)^2} \varphi\left(\frac{st\tau + sd}{N}; L_\tau\right) = \frac{1}{(2\pi i)^2} \varphi\left(\frac{\{st\} \tau + s^*}{N}; L_\tau\right).
\]

The assertion follows from the well known expansion formula for $\varphi(z; L_\tau)$
(see Robert [10], II, 5):

$$\frac{1}{(2\pi i)^2} \phi(z; L_\tau) = \sum_{m=-\infty}^{\infty} \frac{e^{2\pi i z} q^{mN}}{(1 - e^{2\pi i z} q^{mN})^2} + \frac{1}{12} - 2 \sum_{m=1}^{\infty} \frac{q^{mN}}{(1 - q^{mN})^2}.$$

(Use the fact $x/(1 - x)^2 = \sum_{m=1}^{\infty} m x^m$.)

Lemma 2. Let s be an integer such that $s \neq 0 \mod N$. Further, for N odd (resp. even), assume $s \neq \pm 1 \mod N$ (resp. $N/2$). Then the order of the q-expansion of $(\phi_s - \phi_1)|_2 [B(u, t)]$ is $\min\{\{st\}, \{t\}\}$.

Proof. By Lemma 1, we know that the q-expansion of $\phi_s|_2 [B(u, t)] - 1/12$ begins with the term:

$$\begin{align*}
\left\{ \begin{array}{ll}
\zeta^{sd} & \text{if } \{st\} = 0, \\
\frac{(\zeta^{sd} - \zeta^{-\mu(st)sd}) q^{N/2}}{\zeta^{\mu(st)sd}q^{\{st\}}} & \text{if } N \text{ is even and } \{st\} = N/2, \\
\zeta^{sd} & \text{otherwise}.
\end{array} \right.
\end{align*}$$

It is to be noted that the coefficient $(\zeta^{\mu(st)sd} + \zeta^{-\mu(st)sd})$ of $q^{N/2}$ in the second case can be zero and the coefficients in the other cases are not zero. If $\{st\} \neq \{t\}$, then we get easily our assertion. Assume $\{st\} = \{t\}$. We must show that the coefficient C of $q^{\{st\}}$ of the q-expansion of the function $(\phi_s - \phi_1)|_2 [B(u, t)]$ is not zero.

First assume $\{st\} = \{t\} = 0$. Then $t = N$ and the coefficient C is

$$\frac{\zeta^{sd}}{(1 - \zeta^{sd})^2} - \frac{\zeta^d}{(1 - \zeta^d)^2} = -\frac{\zeta^d(\zeta^{(s-1)d} - 1)(\zeta^{(s+1)d} - 1)}{(1 - \zeta^{sd})^2(1 - \zeta^d)^2}.$$

Since $\gcd(d, N) = 1$ and $s \neq \pm 1 \mod N$, this is not zero.

Next assume $\{st\} = \{t\} = N/2$. Then we know s is odd, $t = N/2$, $\mu(st) = \mu(t) = 1$ and the coefficient C is

$$\zeta^{sd} + \zeta^{-sd} - \zeta^d - \zeta^{-d} = \frac{(\zeta^{(s+1)d} - 1)(\zeta^{(s-1)d} - 1)}{\zeta^{sd}}.$$

If this is zero, then $(s\pm 1)d \equiv 0 \mod N$. Since $t = N/2$, we have $\gcd(d, N/2) = 1$. Therefore, $s \equiv \pm 1 \mod N/2$. This contradicts our assumption.

Finally, assume $\{st\} = \{t\} \neq 0, N/2$. Then $C = \zeta^{\mu(st)sd} - \zeta^{\mu(t)d}$. If $C = 0$, then $\mu(st)sd \equiv \mu(t)d \mod N$. Furthermore, since $\{st\} = \{t\}$, we have $\mu(st)st \equiv \mu(t)t \mod N$. Since $\gcd(N, t, d) = 1$, these two congruences show $s \equiv \pm 1 \mod N$. This contradicts the assumption.

Since the local parameter at the cusp (u, t) is q^D, by Lemma 2, we have immediately

Proposition 1. Let r be a positive integer such that $r \neq 0, \pm 1, \pm 2 \mod N$. Further, for N even, assume that $r \neq \pm 1 \mod N/2$. Then W_r has
poles or zeros only at the cusps and the order of \(W_r \) at the cusp \((u, t)\) is

\[
\frac{\min(\{2t\}, \{t\}) - \min(\{rt\}, \{t\})}{D},
\]

where \(D = \gcd(t, N) \). Furthermore \(W_r \) takes the value 1 at the cusps \((u, t)\) for \(t \) such that \(t < \{2t\}, \{rt\} \). Note that the order is determined only by \(t \) and is independent of \(u \).

3. Generators \((W_3, W_4), (W_3, W_5)\). Let \(N \geq 11, N \neq 12 \). In this section, we shall show that the pairs \((W_3, W_4)\) and \((W_3, W_5)\) of functions each generate \(A_1(N) \) over \(\mathbb{C} \). Let us consider the representatives \((u, t)\) of inequivalent cusps of \(\Gamma_1(N) \) given in Section 1. Since the order of \(W_r \) at the cusp \((u, t)\) depends only on \(t \), we denote it by \(\nu_t(W_r) \). For a non-negative integer \(k \), if \(kN/2 \leq rt < (k + 1)N/2 \), then

\[
\{rt\} = \begin{cases}
rt - kN/2 & \text{if } k \text{ is even,} \\
(k + 1)N/2 - rt & \text{if } k \text{ is odd.}
\end{cases}
\]

Let \(D = \gcd(t, N) \). Then by Proposition 1 we obtain the following:

\[
\nu_t(W_3) = \begin{cases}
0 & \text{if } t \leq N/4, \\
(4t - N)/D & \text{if } N/4 \leq t \leq N/3, \\
(2N - 5t)/D & \text{if } N/3 \leq t \leq N/2, \\
-1 & \text{if } t = N/2, \\
0 & \text{if } t = N;
\end{cases}
\]

\[
\nu_t(W_4) = \begin{cases}
0 & \text{if } t \leq N/5, \\
(5t - N)/D & \text{if } N/5 \leq t \leq N/4, \\
(N - 3t)/D & \text{if } N/4 \leq t \leq 2N/5, \\
(2t - N)/D & \text{if } 2N/5 \leq t \leq N/2, \\
0 & \text{if } t = N/2, \\
0 & \text{if } t = N;
\end{cases}
\]

\[
\nu_t(W_5) = \begin{cases}
0 & \text{if } t \leq N/6, \\
(6t - N)/D & \text{if } N/6 \leq t \leq N/5, \\
(N - 4t)/D & \text{if } N/5 \leq t \leq N/4, \\
0 & \text{if } N/4 \leq t \leq N/3, \\
(3t - N)/D & \text{if } N/3 \leq t \leq 2N/5, \\
(3N - 7t)/D & \text{if } 2N/5 \leq t \leq N/2, \\
-1 & \text{if } t = N/2, \\
0 & \text{if } t = N.
\end{cases}
\]

We find easily that \(W_3 \) has poles only at the cusps \((u, t)\) such that \(2N/5 < t \leq N/2 \), \(W_4 \) has poles only at the cusps such that \(N/3 < t < N/2 \), and \(W_5 \) has poles only at the cusps such that \(3N/7 < t \leq N/2 \). In particular,

\[
W_5 \text{ has poles only at the points where } W_3 \text{ does.}
\]

We shall make use of this property in the following section.
Theorem 1. Let the notation be as above. Then
\[A_1(N) = \mathbb{C}(W_3, W_4) = \mathbb{C}(W_3, W_5). \]

Proof. Since we can prove \(A_1(N) = \mathbb{C}(W_3, W_4) \) and \(A_1(N) = \mathbb{C}(W_3, W_5) \) in the same way, we shall prove \(A_1(N) = \mathbb{C}(W_3, W_4) \) in detail, and for \(A_1(N) = \mathbb{C}(W_3, W_5) \) we shall only sketch the proof. For a non-constant function \(f \) of \(A_1(N) \), denote by \(d(f) \) the total degree of the poles of \(f \). Then \(d(f) = [A_1(N) : \mathbb{C}(f)] \). Therefore if we can find finitely many functions \(f_1, \ldots, f_n \) in \(\mathbb{C}(W_3, W_4) \) such that \(\text{GCD}(d(f_1), \ldots, d(f_n)) = 1 \), we will have \(A_1(N) = \mathbb{C}(W_3, W_4) \).

Let us consider the function \(W_3^i + W_4^j \) for some \((i, j)\). First, we assume \(N \) is odd. In this case, we take two pairs of \((i, j) = (4, N-10), (4, N-9)\). Let \((i, j) = (4, N-10)\). Then for \(2N/5 < t < N/2 \),
\[\nu_t(W_4^{N-10}) - \nu_t(W_3^4) = (N-10)(2t - N)/D + 4(5t - 2N)/D = D \left(t - \frac{N - 2}{2} \right) /D \]
\[\begin{cases} < 0 & \text{if } t < (N - 1)/2, \\ = 0 & \text{if } t = (N - 1)/2. \end{cases} \]
Therefore, by (3) and (4) we obtain
\[d(W_3^4 + W_4^{N-10}) = (N - 10) \left(N - 2 \cdot \frac{N - 1}{2} \right) + 4 \left(5 \cdot \frac{N - 1}{2} - 2N \right) \]
\[= (N - 10)d(W_4) + N. \]
It is noted that \(D = (t, N) = 1 \) for \(t = (N - 1)/2 \). Let \((i, j) = (4, N-9)\). Then
\[4(5t - 2N)/D - (N - 9)(N - 2t)/D = 2(N + 1) \left(t - \frac{N(N - 1)}{2(N + 1)} \right) /D. \]
Since we see easily that
\[\frac{N - 3}{2} < \frac{N(N - 1)}{2(N + 1)} < \frac{N - 1}{2}, \]
we deduce similarly
\[d(W_3^4 + W_4^{N-9}) = (N - 9)d(W_4) + N - 1. \]
Consequently, for \(N \) odd we have
\[\text{GCD}(d(W_4), d(W_3^4 + W_4^{N-10}), d(W_3^4 + W_4^{N-9})) = \text{GCD}(d(W_4), N, N-1) = 1. \]
Next, we assume \(N \) is even, and \(N \geq 16 \) for the present. In this case, we take three pairs of \((i, j) = (1, N - 2), (6, N - 15), (3, (N - 14)/2) \). Firstly, let \((i, j) = (1, N - 2) \).

Since

\[
(5t - 2N)/D - (N - 2)(N - 2t)/D = (2N + 1) \left(t - \frac{N^2}{2N + 1} \right)/D
\]

and

\[
\frac{N - 2}{2} < \frac{N^2}{2N + 1} < \frac{N}{2},
\]

we obtain

\[
d(W_3 + W_4^{N-2}) = (N - 2) \left\{ \sum_{N/3 < t \leq 2N/5} \frac{3t - N}{D} \cdot \varphi(D) + \sum_{2N/5 < t \leq N/2} \frac{N - 2t}{D} \cdot \varphi(D) \right\} + \frac{\varphi(N/2)}{2}
\]

\[
= (N - 2)d(W_4) + \frac{\varphi(N/2)}{2}.
\]

Let \((i, j) = (6, N - 15) \). Since

\[
6(5t - 2N)/D - (N - 15)(N - 2t)/D = 2N \left(t - \frac{N - 3}{2} \right)/D
\]

and \(\delta = ((N - 2)/2, N) = 1 \) (resp. 2) if \(N \equiv 0 \mod 4 \) (resp. \(N \equiv 2 \mod 4 \)), we obtain

\[
d(W_3^6 + W_4^{N-15}) = (N - 15)d(W_4)
\]

\[
- (N - 15) \left(\frac{N - 2}{2} \right)/\delta + 6 \left(5 \cdot \frac{N - 2}{2} - 2N \right)/\delta + 6 \cdot \frac{\varphi(N/2)}{2}
\]

\[
= (N - 15)d(W_4) + \frac{N}{\delta} + 6 \cdot \frac{\varphi(N/2)}{2}.
\]

Lastly, take \((i, j) = (3, (N - 14)/2) \). Then

\[
3(5t - 2N)/D - \frac{N - 14}{2}(N - 2t)/D = (N + 1) \left(t - \frac{N(N - 2)}{2(N + 1)} \right)/D.
\]

Since

\[
\frac{N - 4}{2} < \frac{N(N - 2)}{2(N + 1)} < \frac{N - 2}{2},
\]

we conclude similarly that

\[
d(W_3^3 + W_4^{(N-14)/2}) = \frac{N - 14}{2}d(W_4) + \frac{N - 2}{2\delta} + 3 \cdot \frac{\varphi(N/2)}{2}.
\]
Consequently,
\[\text{GCD}(d(W_4), d(W_3 + W_4^{N-2}), d(W_3^6 + W_4^{N-15}), d(W_3^3 + W_4^{(N-14)/2})) = \text{GCD}\left(d(W_4), \frac{\varphi(N/2)}{2}, \frac{N}{\delta}, \frac{N-2}{2\delta}\right) = 1. \]

For the remaining case of \(N = 14 \), we have \(\text{GCD}(d(W_4), d(W_3 + W_4^{12})) = 1 \). This completes the proof of \(A_1(N) = \mathbb{C}(W_3, W_4) \).

To prove \(A_1(N) = \mathbb{C}(W_3, W_5) \), we may take \((i, j) = (N - 14, N - 10)\) and \(((N - 13)/2, (N - 9)/2)\) for \(N \) odd, and \((i, j) = (N - 3, N - 2), (N - 21, N - 15)\) and \(((N - 20)/2, (N - 14)/2)\) for \(N \) even. \(\blacksquare \)

4. The defining equation of \(A_1(N) \). We shall study the minimal equation of \(W_5 \) over \(\mathbb{C}(W_3) \), which is a defining equation of \(A_1(N) \) and gives an affine model of the curve \(X_1(N) \). To simplify the notation, we write \(d_r \) instead of \(d(W_r) \). Since \(W_3, W_5 \) have \(q \)-expansions at the cusp \(i\infty \) with \(\mathbb{Q}(\zeta) \)-coefficients and \([A_1(N) : \mathbb{C}(W_3)] = d_3 \), the minimal equation \(F_N(W_3, Y) = 0 \) of \(W_5 \) over \(\mathbb{C}(W_3) \) can be of the form
\[F_N(X, Y) = \Phi_{d_3}(X)Y^{d_3} + \Phi_{d_3-1}(X)Y^{d_3-1} + \ldots + \Phi_1(X)Y + \Phi_0(X), \]
where \(\Phi_j(X) \in \mathbb{Q}(\zeta)[X] \) for all \(j \), the leading coefficient of \(\Phi_{d_3}(X) \) is equal to 1, and \(\Phi_{d_3}(X), \ldots, \Phi_1(X) \) and \(\Phi_0(X) \) have no common factors except non-zero constants. Because we shall use a similar argument to that in Section 3 of Ishida and Ishii [4], we shall be brief. For details see [4]. Assume \(F \) and \(G \) generate \(A_1(N) \) over \(\mathbb{C} \), that is, \(A_1(N) = \mathbb{C}(F, G) \). Let \(\Phi(X, Y) \in \mathbb{C}[X, Y] \) be the polynomial such that \(\Phi(F, Y) = 0 \) is the minimal equation of \(G \) over \(\mathbb{C} \). It has degree \(d = d(F) \) as a polynomial of \(Y \). Let \(R_1 \) denote the Riemann surface associated with \(A_1(N) \). Then the inclusion of \(\mathbb{C}(F) \) into \(A_1(N) \) induces a morphism \(\varphi \) of \(R_1 \) onto the projective space \(\mathbb{P}^1(\mathbb{C}) \) of dimension 1 such that
\[\varphi(Q) = \begin{cases} [F(Q), 1] & \text{if } F(Q) \neq \infty, \\ [1, 0] & \text{otherwise}. \end{cases} \]
For every point \(\alpha \in \mathbb{P}^1(\mathbb{C}) \), its inverse image \(\varphi^*(\alpha) \) under \(\varphi \) is a divisor on \(R_1 \) given by
\[(7) \quad \varphi^*(\alpha) = \sum_{i=1}^{M} e_iQ_i, \]
where \(Q_i \) are all the distinct points of \(R_1 \) such that \(F(Q_i) = \alpha \) and \(e_i \) is the absolute value of the order of \(F \) at the point \(Q_i \). Let \(T \) be an indeterminate and \(\mathbb{C}[[T]] \) the ring of formal power series in \(T \) and \(\mathbb{C}((T)) \) its fractional field. Put \(U = T + \alpha \) (resp. \(1/T \)) if \(\alpha \neq \infty \) (resp. \(\alpha = \infty \)). We can write
\[\Phi(U, Y) = h(T)\Psi(Y), \]
where
\[h(T) \in \mathbb{C}((T)), \]
\[\Psi(Y) = T^m Y^d + \Psi_{d-1}(T)Y^{d-1} + \ldots + \Psi_1(T)Y + \Psi_0(T), \]
m is a non-negative integer and \(\Psi_j(T) \in \mathbb{C}[[T]] \) for all \(j \). Further if \(m \geq 1 \) then at least one of \(\Psi_j(T)(0 \leq j \leq d-1) \) is not divisible by \(T \). By (7), we know that \(\Psi(Y) \) decomposes into a product of \(M \) irreducible polynomials \(G_i(Y) \) of degree \(e_i \) with coefficients in \(\mathbb{C}[[T]] \). Let \(| \cdot | \) be a valuation on \(\mathbb{C}((T)) \) defined by \(|T| = \lambda \) for a \(\lambda \in \mathbb{R}, 0 < \lambda < 1 \). Let \(f_i \) be the order of \(G \) at the point \(Q_i \). Then we know that \(G_i(Y) \) is pure of type \((e_i, -(f_i/e_i) \log \lambda) \). Further if we put
\[G_i(Y) = g_{i,e_i}(T)Y^{e_i} + \ldots + g_{i,1}(T)Y + g_{i,0}(T), \]
where \(g_{i,k}(T) \in \mathbb{C}[[T]] \) for all \(k \) and \(\text{GCD}(g_{i,e_i}(T), \ldots, g_{i,0}(T)) = 1 \), then (2.6) of [4] gives
\[G \text{ has a pole (resp. zero) at } Q_i \text{ if and only if} \]
\[|g_{i,e_i}(T)| \text{ (resp. } |g_{i,0}(T)|) < 1. \]

Lemma 3. Let the notation be as above. Assume that the coefficients of \(\Phi(X, Y) \) as a polynomial of \(Y \) have no common factors. Let \(P_1, \ldots, P_m \) be all the distinct points of \(R_1 \) where \(F \) has zeros. Let \(e_i \) be the order of the zero of \(F \) at \(P_i \). Further assume that \(G \) takes the value \(\infty, 0, 1 \) at \(P_i \) for \(1 \leq i \leq k, \ k+1 \leq i \leq l, \ l+1 \leq i \leq m \) respectively. Then
\[\Phi(0, Y) = c^*Y^a(Y - 1)^b, \]
where \(c^* \) is a non-zero constant and
\[a = \sum_{k+1 \leq i \leq l} e_i, \quad b = \sum_{l+1 \leq i \leq m} e_i. \]

Proof. Write \(\Phi(T, Y) = h(T)\Psi(Y) \) as above. Then by assumption \(h(0) \neq 0 \). Decompose \(\Psi(Y) \) into irreducible factors \(G_i(Y) \) which correspond to \(P_i \). Put
\[G_i(Y) = g_{i,e_i}(T)Y^{e_i} + \ldots + g_{i,1}(T)Y + g_{i,0}(T). \]
By assumption and (8), we have:
- if \(1 \leq i \leq k \), then
 \[|g_{i,0}(T)| = 1, \quad |g_{i,j}(T)| < 1 \text{ for } j \neq 0, \]
- if \(k+1 \leq i \leq l \), then
 \[|g_{i,e_i}(T)| = 1, \quad |g_{i,j}(T)| < 1 \text{ for } j \neq e_i. \]
For \(l+1 \leq i \leq m \), since \(G \) takes the value 1, \(G_i(Y) \) is written as a polynomial of \(Y - 1 \) in
\[G_i(Y) = g_{i,e_i}^*(T)(Y - 1)^{e_i} + \ldots + g_{i,1}^*(T)(Y - 1) + g_{i,0}^*(T), \]
where \(|g^*_{i,e_i}(T)| = 1, |g^*_{i,j}(T)| < 1\) for \(j \neq e_i\). Since, for any power series \(\omega(T) \in \mathbb{C}[[T]]\),

\[
|\omega(T)| < 1 \quad \text{if and only if} \quad \omega(0) = 0,
\]

we have

\[
\Phi(0,Y) = h(0) \prod_{1 \leq i \leq k} g_{i,0}(0) \prod_{k+1 \leq i \leq l} g_{i,e_i}(0)Y^{e_i} \prod_{l+1 \leq i \leq m} g^*_{i,e_i}(0)(Y-1)^{e_i} = c^* Y^a(Y - 1)^b.
\]

In the following, to simplify the notation, we write \(g_{i,k}\) instead of \(g_{i,k}(T)\) if it is unnecessary to say explicitly that \(g_{i,k}(T)\) is a power series of \(T\).

Theorem 2. Let the assumption and the notation be as above, and let \(N \geq 11, \neq 12\). Then:

(i) \(\Phi_{d_5}(X) = 1\).

(ii) \(\max_{0 \leq j \leq d_5} \deg \Phi_j(X) = d_5\). Furthermore, if \(7 \nmid N\), then

\[
\deg \Phi_j(X) < \deg \Phi_a(X) = d_5 \quad \text{for all} \quad j \neq a,
\]

where

\[
a = \sum_{2N/5 < t < 3N/7} \frac{5t - 2N}{D} \cdot \varphi(D) \quad \text{and} \quad D = \gcd(t, N).
\]

(iii) If \(N\) is odd, then

\[
\deg \Phi_j(X) \leq \min \left(d_5, \frac{(N-7)(d_3 - j)}{N - 5} \right).\]

If \(N\) is even, then

\[
\deg \Phi_j(X) \leq \min(d_5, d_3 - j).
\]

(iv) \(\Phi_j(X) \in \mathbb{Q}[X]\) for all \(j\).

Proof. Let \((F,G) = (W_3, W_5)\) in the above explanation. By (6), \(W_5\) has poles only at the points where \(W_3\) does. Therefore the same argument as in Lemma 2 of [4] shows (i).

Next we prove (ii). By applying the latter part of Lemma 3 of [4] to the functions \(W_3, W_5\) and the polynomial \(F_N(X,Y)\), we obtain, by (i), \(\max_j \deg \Phi_j(X) = d_5\). Let \(\alpha = \infty\) and consider the decomposition

\[
\Psi(Y) = T^{d_5} F_N(1/T, Y) = \prod_t G_{(u,t)}(Y).
\]

Here \(G_{(u,t)}(Y)\) are the irreducible factors corresponding to the cusps \((u,t)\) where \(W_3\) has poles, thus, the product runs through all the cusps \((u,t)\) such that

\[
2N/5 < t \leq N/2, \quad \text{and if} \quad t < N/2 \quad \text{(resp.} \quad t = N/2)\), \quad \text{then} \quad 1 \leq u \leq D \quad \text{(resp.} \quad 1 \leq u \leq D/2), \quad \gcd(u, D) = 1.
\]
Since the degree of $G_{(u,t)}$ and the order of W_5 at the cusp (u, t) depend only on t by Proposition 1, we denote them by e_t and f_t respectively. Now let $7 \nmid N$. Since W_5 has zeros (resp. poles) at the cusp (u, t) for $2N/5 < t < 3N/7$ (resp. $3N/7 < t \leq N/2$), by (8) and (2.6) of [4], for the coefficients $g_{(u,t),j}$ of $G_{(u,t)}$, we have

$$
(10) \quad \begin{cases}
|g_{(u,t),e_t}| = 1, & |g_{(u,t),j}| < 1, \quad j \neq e_t & \text{for } 2N/5 < t < 3N/7, \\
|g_{(u,t),0}| = 1, & |g_{(u,t),j}| < 1, \quad j \neq 0 & \text{for } 3N/7 < t \leq N/2.
\end{cases}
$$

Therefore

$$
T^{d_5} F_N(1/T, Y) = \left(\prod_{2N/5 < t < 3N/7} \prod_u g_{(u,t),e_t} \prod_{3N/7 < t \leq N/2} \prod_u g_{(u,t),0} \right) Y^a + TH(Y),
$$

where $H(Y)$ is an element of $\mathbb{C}[[T]](Y)$ and for each t, the u-product runs over all integers u such that the pair (u, t) satisfies (9). This shows (ii).

To prove (iii), let $\alpha = \infty$ again. By (5), $G_{(u,t)}(Y)$ is pure of type (e_t, γ_t), where

$$
e_t = 5t - 2N, \quad \gamma_t = -\frac{f_t}{e_t} \log \lambda = \frac{7t - 3N}{5t - 2N} \log \lambda.
$$

Since $\gamma_t < \gamma_{t'}$ for $t > t'$, $\gamma(N-1)/2$ (resp. $\gamma N/2$) is the smallest slope among γ_t’s if N is odd (resp. even). Put

$$c = \begin{cases}
\exp(-\gamma(N-1)/2) & \text{if } N \text{ is odd}, \\
\exp(-\gamma N/2) & \text{if } N \text{ is even}.
\end{cases}
$$

Further extend the valuation $|\cdot|$ to the valuation $\|\cdot\|_c$ of $\mathbb{C}((T))(Y)$. See Cassels [1] for the definition of $\|\cdot\|_c$. Then, from the choice of c, we know that $\log(|g_{(u,t),e_t}| c^{e_t}) \geq \log(|g_{(u,t),j}| c^j)$ for all j. Thus, by (10), we have

$$
\max_j \left(\Phi_j \left(\frac{1}{T} \right) T^{d_5} c^j \right) = \|\Psi(Y)\|_c = \prod \|G_{(u,t)}(Y)\|_c = \prod |g_{(u,t),e_t}| c^{e_t} = \lambda^{d_5} c^{d_3}.
$$

This shows

$$
\lambda^{d_5 - \deg \Phi_j(X)} c^j \leq \lambda^{d_5} c^{d_3}.
$$

By taking log on both sides, we have (iii).

To prove (iv), we shall transform W_3 and W_5 by the Atkin–Lehner involution. Put $V_3(\tau) = W_3(-1/(N\tau))$ and $V_5(\tau) = W_5(-1/(N\tau))$. Note that $A_1(N) = \mathbb{C}(V_3, V_5)$ and $F_N(V_3, Y) = 0$ is the minimal equation of V_5 over $\mathbb{C}(V_3)$. By the definition of the form $\phi_s(\tau)$ and the transformation formula for $E(\tau; r, s, N)$, we have

$$
\phi_s \left(\frac{-1}{N\tau} \right) (N\tau)^{-2} = \frac{1}{(2\pi i)^2} \varphi(s\tau, L_{N\tau}).
$$
Furthermore by the expansion formula for the \(\wp\)-function given in Lemma 1,
\[
\frac{1}{(2\pi i)^2} \wp(s\tau, L_{N\tau}) \text{ has a } q\text{-expansion with } \mathbb{Q}\text{-coefficients. Thus the } q\text{-expansion of } V_r \text{ lies in } \mathbb{Q}(\!(q)\!). \]
Let us extend any element \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})\) to an automorphism of \(\mathbb{Q}(\zeta)(\!(q)\!))\) by the mapping \(\sum c_n q^n \mapsto \sum c_n^{\sigma} q^n\). Then, since \(V_r^\sigma = V_r\) \((r = 3, 5)\), we have
\[
F_N(V_3, V_5)^\sigma = F_N^\sigma(V_3^\sigma, V_5^\sigma) = F_N^\sigma(V_3, V_5) = 0.
\]
This implies that \(F_N^\sigma(V_3, Y) = 0\) is the minimal equation of \(V_5\). Thus we have \(F_N(X, Y) = F_N(X, Y)\). Hence \(\Phi_j(X) \in \mathbb{Q}[X]\) for all \(j\).

From Lemma 3 we obtain some properties of \(F_N(X, Y)\).

Theorem 3. Let the notation be as above. Further assume \(N\) is prime. Then:

(i) \(F_N(0, Y) = F_N(1, Y) = Y^\alpha (Y - 1)^{d_3 - \alpha}\).

(ii) \(F_N(X, 0) = c_1 X^\beta (X - 1)^{\gamma - \beta}\).

(iii) \(F_N(X, 1) = c_2 X^\delta (X - 1)^{d_5 - \delta}\).

(iv) \(F_N(X, X) = X^\varepsilon (X - 1)^{d_3 - \varepsilon}\).

Here \(c_1, c_2\) are non-zero constants and
\[
\alpha = \sum_{N/3 < t < 2N/5} (2N - 5t), \quad \beta = \sum_{N/3 < t < 2N/5} (3t - N),
\]
\[
\gamma = \sum_{2N/5 < t < N/2} (7t - 3N),
\]
\[
\delta = \sum_{N/4 < t < 2N/7} (4t - N) + \sum_{2N/7 < t < N/3} (N - 3t),
\]
\[
\varepsilon = \sum_{N/3 < t < 3N/8} (3t - N) + \sum_{3N/8 < t < 2N/5} (2N - 5t).
\]

Proof. The assertions for \(F_N(0, Y), F_N(X, 0)\) are obtained from Proposition 1, (3) and (5) by applying Lemma 3 to the pairs \((F, G) = (W_3, W_5)\) and \((F, G) = (W_5, W_3)\) respectively.

Next we shall prove the assertion for \(F_N(1, Y)\). Consider the function
\[
V = W_3 - 1 = \frac{\phi_2 - \phi_3}{\phi_3 - \phi_1}.
\]
Then all the points where \(V\) has zeros are the cusps \((1, t)\) for \(t < N/4\). Further for \(t < N/4\), \(W_5\) takes the value 1 (resp. 0) for \(t < N/6\) (resp. \(N/6 < t < N/4\)). Put \(Z = X - 1\) and \(\Psi(Z, Y) = F_N(Z + 1, Y)\). Then \(\Psi(V, Y) = 0\) is the minimal equation of \(W_5\) over \(\mathbb{C}(V)\). Apply Lemma 3 to \((F, G) = (V, W_5)\). Because the order of \(V\) at \((1, t)\) is \(t\) for \(t < N/6\) and
$d(V) = d_3$, we see that
\[F_N(1,Y) = \Psi(0,Y) = Y^{d_3-h}(Y-1)^h, \]
where $h = \sum_{t < N/6} t$. Furthermore it is easy to see that
\[h = \sum_{N/4 < t < N/3} (4t - N) = d_3 - \alpha. \]
This completes the proof of (i). Applying Lemma 3 to $(F,G) = (W_5-1,W_3)$, similarly, we can show (iii).

Finally, we prove (iv). Let $V_1 = W_5 - W_3$. Since
\[V_1 = \frac{(\phi_2 - \phi_1)(\phi_3 - \phi_5)}{(\phi_5 - \phi_1)(\phi_3 - \phi_1)}, \]
by (3) and (5) all points where V_1 has zeros (resp. poles) are the cusps $(1,t)$ for $t < N/6$, $N/3 < t < 2N/5$ (resp. $t > 2N/5$) and
\[\nu_t(V_1) = \begin{cases} 3t - N & \text{if } N/3 < t < 3N/8, \\ 2N - 5t & \text{if } t > 3N/8. \end{cases} \]
Since $A_1(N) = \mathbb{C}(V_1,W_3)$, $d(V_1) = d_3$ and $G(X,Z) = F(X,Z+X)$ is a polynomial of X of degree d_3, $G(X,V_1) = 0$ is the minimal equation of W_3 over $\mathbb{C}(V_1)$. The function W_3 takes the value 1 (resp. 0) at the cusps $(1,t)$ for $t < N/6$ (resp. $N/3 < t < 2N/5$). If we apply Lemma 3 to $(F,G) = (V_1,W_3)$, we have
\[F(X,X) = G(X,0) = X^\varepsilon(X-1)^{d_3-\varepsilon}. \]

Let N be a prime. Since d_3 is also equal to the total degree of zeros of W_3, we have, by (3),
\[d_3 = \alpha + \sum_{N/4 < t < N/3} (4t - N). \]
Thus $0 < \alpha < d_3$ and $F_N(0,0) = F_N(1,1) = F_N(1,0) = F_N(0,1) = 0$. From this, the polynomials $F_N(X,X)$, $F_N(0,X)$, $F_N(X,0)$, and $F_N(X,1)$ are each divisible by $X(X-1)$. Put
\[R(X) = \frac{F_N(X,X) - F_N(0,X) - F_N(X,0)}{X(X-1)}, \]
\[S(X) = \frac{F_N(X,0) - F_N(X,1)}{X - 1}. \]
Then Theorem 3 yields

PROPOSITION 2. Let N be a prime. Then the polynomial $F_N(X,Y)$ can be written in the form:
\[F_N(X, Y) = F_N(X, X) + F_N(0, Y) - F_N(0, X) \\
+ (Y - X)(Y + X - 1)R(X) + YS(X) \\
+ X(X - 1)Y(Y - 1)(Y - X)U(X, Y), \]

where \(U(X, Y) \in \mathbb{Q}[X, Y] \).

Proof. This is obtained by simple computation. We omit the proof. ■

We can generalize the results of Theorem 3 to \(N \) composite as follows.

Theorem 4. (i) If \(3 \nmid N \), then \(F_N(0, Y) = Y^\alpha(Y - 1)^{d_3 - \alpha} \).

(ii) If \(6 \nmid N \), then \(F_N(1, Y) = Y^{\alpha'}(Y - 1)^{d_4 - \alpha'} \).

(iii) If \(5 \nmid N \), then \(F_N(X, 0) = c_1X^\beta(X - 1)^\gamma \).

(iv) \(F_N(X, 1) = c_2X^\delta(X - 1)^{d_5 - \delta} \).

(v) \(F_N(X, X) = c_3X^\varepsilon(X - 1)^{d_3 - \varepsilon} \).

Here \(c_1, c_2 \) and \(c_3 \) are non-zero constants and

\[
\alpha = \sum_{N/3 < t < 2N/5} ((2N - 5t)/D)\varphi(D),
\]

\[
\alpha' = \sum_{N/6 < t \leq N/5} (t/D)\varphi(D) + \sum_{N/5 < t \leq N/4} ((N - 4t)/D)\varphi(D),
\]

\[
\beta = \sum_{N/3 < t < 2N/5} ((3t - N)/D)\varphi(D),
\]

\[
\gamma = \sum_{N/6 < t \leq N/5} ((6t - N)/D)\varphi(D) + \sum_{N/5 < t \leq N/4} ((N - 4t)/D)\varphi(D),
\]

\[
\delta = \sum_{N/4 < t \leq 2N/7} ((4t - N)/D)\varphi(D) + \sum_{2N/7 < t < N/3} ((N - 3t)/D)\varphi(D),
\]

\[
\varepsilon = \sum_{N/3 < t \leq 3N/8} ((3t - N)/D)\varphi(D) + \sum_{3N/8 < t < 2N/5} ((2N - 5t)/D)\varphi(D).
\]

Proof. The proof is the same as in the case of \(N \) prime so we omit it. ■

Finally we give some examples.

Example. (I) \(N \) prime:

\[
F_{11}(X, Y) = Y^2(Y - 1) - X(X - 1).
\]

\[
F_{13}(X, Y) = Y(Y - 1)^3 + X(X - 1)Y + X^2(X - 1).
\]

\[
F_{17}(X, Y) = Y^4(Y - 1)^3 - 4X(X - 1)Y^4 - X(X - 1)(X - 10)Y^3 \\
+ 3(X^4 - X^3 - 3X^2 + 3X)Y^2 \\
- (X^5 - 5X^2 + 4X)Y + X(X - 1)^2.
\]
\[F_{19}(X, Y) = Y^3(Y - 1)^6 + 4X(X - 1)Y^6 - 5X(X - 1)(X - 2)Y^5 \\
- 3X(X - 1)(X^2 - 5X - 3)Y^4 \\
+ X(X - 1)(4X^3 + X^2 - 16X - 3)Y^3 \\
- X^2(X - 1)(X^3 + 2X^2 + 3X - 9)Y^2 \\
+ 3X^2(X - 1)^2Y + X^2(X - 1)^3. \]

(II) \(N \) composite:
\[F_{14}(X, Y) = Y^4 - (X + 1)Y^3 - (2X^2 - 3X)Y^2 + (X^3 - X)Y + X(X - 1)^2. \]
\[F_{15}(X, Y) = Y^5 - 3Y^4 - 3(X - 2)Y^3 + (6X - 7)Y^2 \\
+ (X - 1)(2X^2 - X - 4)Y - (X - 1)^2(X^2 + X + 1). \]
\[F_{16}(X, Y) = Y^5 + (2X - 4)Y^4 - (X^2 + 4X - 6)Y^3 + (4X - 4)Y^2 \\
+ (X^2 - 2X + 1)Y + X(X - 1)^2. \]
\[F_{18}(X, Y) = Y^5 - 3Y^4 - (X^2 - X - \frac{10}{3})Y^3 + (\frac{1}{3}X^3 + X^2 - \frac{4}{3}X - \frac{5}{3})Y^2 \\
- (\frac{2}{3}X^3 - \frac{1}{3}X^2 - \frac{1}{3}X - \frac{1}{3})Y + \frac{1}{3}X^3(X - 1). \]
\[F_{20}(X, Y) = Y^7 - (3X + 2)Y^6 + (X^2 + 8X + 1)Y^5 - 10XY^4 \\
- (5X^2 - 10X)Y^3 - (2X^3 - 10X^2 + 9X)Y^2 \\
+ (2X^4 - 2X^3 - 4X^2 + 4X)Y - X(X - 1)^2(X^2 + 1). \]

Comparing our result with Reichert’s [6], our equations seem to correspond to “raw forms” of Reichert.

5. Generators \((J, W_3), (J, W_5)\). Let \(J \) be the modular invariant function. We shall show that the pairs \((J, W_3)\) and \((J, W_5)\) are generators of \(A_1(N) \) over \(\mathbb{C} \).

Theorem 5. Let \(N = 11 \) or be an integer \(\geq 13 \). Then \(A_1(N) = \mathbb{C}(J, W_3) = \mathbb{C}(J, W_5) \).

Proof. Let \(r = 3, 5 \). We know that \(A(N) \) is a Galois extension over \(\mathbb{C}(J) \) with Galois group \(\text{SL}_2(\mathbb{Z})/\pm \Gamma(N) \) and \(A_1(N) \) is the invariant field associated with the subgroup \(\pm \Gamma_1(N)/\pm \Gamma(N) \). Therefore to prove \(A_1(N) = \mathbb{C}(J, W_r) \), it is sufficient to show that for \(A \in \text{SL}_2(\mathbb{Z}) \), \(W_r(A(\tau)) = W_r(\tau) \) implies \(A \in \Gamma_1(N)\{\pm 1\} \). Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \) be such that \(W_r(A(\tau)) = W_r(\tau) \).

First of all, we show that \(c \) is divisible by \(N \). Assume that \(c \not\equiv 0 \mod N \). Without loss of generality, we can regard the matrix \(A \) as one of the matrices \(B(u, t) \) given by (2) with \(c \equiv t \mod N \). Let \(C_r \) be the constant term of the \(q \)-extension of \(W_r \). By Lemma 2,
\[C_r = \frac{(\zeta^r - 1)^2(\zeta^3 - 1)(\zeta - 1)}{(\zeta^{r+1} - 1)(\zeta^{r-1} - 1)(\zeta^2 - 1)^2} \neq 0. \]
Proposition 1 shows that the order of the q-extension of $W_r(A(\tau))$ is
\[\min\{2c, \{c\}\} - \min\{\{rc\}, \{c\}\}. \]
Since $W_r(A(\tau)) = W_r(\tau)$, we see that
\[\min\{2c, \{c\}\} = \min\{\{rc\}, \{c\}\} \]
and the coefficient L_r of the leading term of $W_r(A(\tau))$ is equal to C_r.

First consider the case $\{2c\} = \{c\}$. Then $3c \equiv 0 \pmod{N}$ and $3 \mid N$. Thus
$\{c\} = \{2c\} = N/3, \mu(2c) = -\mu(c), \{3c\} = 0, \{5c\} = N/3, \mu(5c) = -\mu(c)$.
Therefore for $r = 3$ we have a contradiction. Let $r = 5$. Since, in Lemma 2,
we know that the coefficient of the leading term of the function $(\phi_s - \phi_1)|2[A]$ is
$\zeta^{\mu(sc)}d - \zeta^{\mu(c)}d$ in the case $\{c\} = \{sc\} \neq 0, N/2$ (line 19 in the proof
of Lemma 2), we have
\[L_5 = \frac{\zeta^{\mu(2c)2d} - \zeta^{\mu(c)}d}{\zeta^{\mu(5c)5d} - \zeta^{\mu(c)}d} = \frac{1}{1 + \zeta^{-\mu(c)3d}}. \]
Since $L_5 = C_5$, we have $|1/C_5 - 1| = 1$. Replacing C_5 by the value given by (11) for $r = 5$, we get
\[|1/C_5 - 1|^2 = \frac{(\zeta^6 + \zeta^5 + \zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1)(\zeta^{-6} + \zeta^{-5} + \zeta^{-4} + \zeta^{-3} + \zeta^{-2} + \zeta^{-1} + 1)}{(\zeta^4 + \zeta^3 + \zeta^2 + \zeta + 1)^2(\zeta^{-4} + \zeta^{-3} + \zeta^{-2} + \zeta^{-1} + 1)^2} = 1. \]
Since this equation is symmetric with respect to ζ and ζ^{-1}, after some elementary computation, we can obtain the following equation for $\xi = \zeta + \zeta^{-1}$:
\[\xi^8 + 4\xi^7 + \xi^6 - 10\xi^5 - 2\xi^4 + 14\xi^3 - 8\xi = 0. \]
However, since the irreducible equation of ξ over \mathbb{Q} has degree $\varphi(N)/2$, we
have a contradiction for N such that $\varphi(N)/2 > 7$. Further for N such that
$\varphi(N)/2 \leq 7$, by direct computation, we can show ξ does not satisfy the
above equation. Thus we also have a contradiction.

Next consider the case $\{2c\} > \{c\}$. Then $\{c\} = \min\{\{rc\}, \{c\}\}$, thus
$\{rc\} \geq \{c\}$. If $\{rc\} > \{c\}$, then we have $C_r = 1$. From this, we have an
equation for ζ, but we see immediately that ζ cannot satisfy it. Assume
$\{rc\} = \{c\}$. If $\{c\} = N/2$, then $\{2c\} = 0 < \{c\}$. This contradicts the
assumption. If $\{c\} < N/2$, then by Lemma 2,
\[L_r = \frac{-\zeta^{\mu(c)}d}{\zeta^{\mu(rc)rd} - \zeta^{\mu(c)}d}. \]
Thus $|1/C_r - 1| = 1$. Arguing as above, we get a contradiction.

Finally, consider the case $\{2c\} < \{c\}$. Then we must have $\{rc\} = \{2c\}$. If
$\{2c\} = 0$, we have $\{c\} = 0$, because r is odd. If $\{2c\} = N/2$, then $\{2c\} \geq \{c\}$.
Therefore \(\{rc\} = \{2c\} \neq 0, N/2 \). By Lemma 2,
\[
L_r = \frac{\zeta^{\mu(2c)}2d}{\zeta^{\mu(rc)r d}},
\]
thus \(|C_5| = 1\). However similarly we can show this equation is impossible. Hence at last we obtain \(c \equiv 0 \mod N \).

Now we show \(d \equiv \pm 1 \mod N \). By Proposition 1, \(W_3 \) (resp. \(W_5 \)) has poles only at the cusps \((u,t)\) such that \(2N/5 \leq t \leq N/2 \) (resp. \(3N/7 \leq t \leq N/2 \)) and the order of the pole at \((u,t)\), \(t \neq N/2 \), is \((5t - 2N)/D\) (resp. \((7t - 3N)/D\)), while the order of the pole at \((u,N/2)\) is 1. Note that the order is determined only by \(t \) and is independent of \(u \). Thus we denote by \(\nu_r(W_r) \) the order of the pole of the function \(W_r \) at the cusp \((u,t)\).

If \(N \) is odd (resp. \(N \equiv 0 \mod 4 \)), then we see at once that \(\nu_r(t) \) has the maximal value only at the cusp \((1,t_0)\), where \(t_0 = (N - 1)/2 \) (resp. \(N/2 - 1 \)). Since \(c \equiv 0 \mod N \), the matrix \(A \) transforms a cusp \((u,t)\) to a cusp \((*,\{dt\})\). Therefore \(dt_0 \equiv \pm t_0 \mod N \). This shows that \(d \equiv \pm 1 \mod N \) and \(A \in \{\pm 1\} \Gamma_1(N) \).

Let \(N \equiv 2 \mod 4 \). Then \(\nu_r(t) \) takes the maximal value at the cusp \((1,N/2 - 1)\) or \((1,N/2 - 2)\). We must compare \(\nu_r(N/2 - 1) \) with \(\nu_r(N/2 - 2) \). If \(r = 3 \) (resp. \(r = 5 \)), then \(\nu_r(N/2 - 2) > \nu_r(N/2 - 1) \) if and only if \(N > 30 \) (resp. \(N > 42 \)). Thus \(d(N/2 - 2) \equiv \pm(N/2 - 2) \mod N \) if \(N > 30 \) (resp. \(N > 42 \)), and \(d(N/2 - 1) \equiv \pm(N/2 - 1) \mod N \) if \(N < 30 \) (resp. \(N < 42 \)).

The former implies \(d \equiv \pm 1 \mod N \). The latter implies \(d \equiv \pm 1 \mod N/2 \) but since \(d \) is odd, we know \(d \equiv \pm 1 \mod 2 \), hence \(d \equiv \pm 1 \mod N \).

If \(r = 3, N = 30 \) or \(r = 5, N = 42 \), then \(\nu_r(N/2 - 2) = \nu_r(N/2 - 1) \) and one of the following congruences holds true: \(d(N/2 - 2) \equiv \pm(N/2 - 2) \mod N \), \(d(N/2 - 1) \equiv \pm(N/2 - 1) \mod N \), \(d(N/2 - 2) \equiv \pm(N/2 - 1) \mod N \). The third congruence is impossible because \(N, N/2 - 1 \) are even and \(d, N/2 - 2 \) are odd. Hence also in this case \(d \equiv \pm 1 \mod N \).

Acknowledgements. The authors would like to express their hearty thanks to the referee for valuable suggestions and comments.

References

