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Gcd-closed sets and determinants of matrices associated
with arithmetical functions

by

SHAOFANG HONG (Chengdu)

1. Introduction. Smith [11] proved that if f is an arithmetical function
and [f(7,7)] is the n X n matrix having f evaluated at the greatest common
divisor of ¢ and j as its i, j-entry, then

det[f (i, 7)] = (f * w) (D) (f x p)(2) ... (f % p)(n),

where 1 is the Mobius function and f % p is the Dirichlet convolution of
f and p. Apostol [2] extended Smith’s result by showing that if f and g
are arithmetical functions and if § is defined for positive integers ¢ and r
by B(t,7) = > gty f(d)g(r/d), then det[3(i, )] = [g(1)]"f(1)... f(n). He
noted that as a consequence, det[C(3, j)] = n!, where C(t,r) is Ramanujan’s
sum. Paul McCarthy [8] generalized Smith’s and Apostol’s results to the
class of even functions (mod r). He evaluated the determinants of n x n
matrices of the form [3(i, j)], where (¢, r) is an even function of ¢ (mod 7).
A complex-valued function 3(t,r) of the positive integral variables ¢ and r is
said to be an even function of t (mod r) if 5(t,r) = B((t,r),r) for all values
of t. The functions considered by Smith and Apostol are even functions of
t (mod r) for every r. Bourque and Ligh [3] evaluated the determinants of
n X n matrices of the form [3(z;,z;)], where the set S = {z1,...,z,} of
distinct positive integers is factor-closed (i.e., S contains every divisor of
for any = € S) and ((t,r) is an even function of ¢ (mod r).

Throughout this paper, let S = {z1,...,x,} be a set of distinct positive
integers. The set S is said to be gcd-closed if (z;,x;) € S for 1 <i,5 < n.
Clearly, a factor-closed set is ged-closed but not conversely. Let f(t), g(t)
and h(t) be arithmetical functions. The ¥ (¢,r) is defined for all positive
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integers t and r as follows:

0 vier)= 3 1@ )n(5)

d|(t,r)

Define the class of arithmetical functions Lg = {I(t) : I(dy/d) = l(d2/d)
whenever d|d; for any dy,ds € S satistying dy | da}. In 1993, Bourque and
Ligh [3] evaluated the determinant of the n x n matrix [¥(z;,x;)] if the set
S = {x1,...,x,} is factor-closed. In this paper we will evaluate the deter-
minant of the n x n matrix [¥(z;, z;)], where S = {z1,..., 2, } is gcd-closed
and g € Lgor h € Lg. As applications, we evaluate the determinants of nxn
matrices of the form [C(z;,x;)], where S = {z1,...,2,} is gcd-closed, and
C(t,r) is Ramanujan’s trigonometric sum. These results generalize Bourque
and Ligh’s results [3]. We also evaluate the determinant of n x n matrix
[ﬁ ((mf—z]))], where f is completely multiplicative, g(m) = u(m)h(m), his
multiplicative, f(p) # 0 and f(p) # h(p) for all primes p, and (f *g)(d) # 0
for any positive integer d satisfying d |z, x € S, and S = {z1,...,x,} is
gcd-closed.

2. Determinant of the matrix [V (z;,z;)]. In the present section, we
evaluate the determinant of the n x n matrix ¥(x;,z;), where g € Lg or
he€ Lsand S ={zy,...,x,} is ged-closed.

LEMMA 1 ([3]). Let T={y1,...,Ym} be a factor-closed set containing S.
Then [ (z;, ;)] = GAH™, where A = diag(f(y1), ..., f(ym)) and the n x m
matrices G and H are defined by G = [g(z;/y;)] and H = [h(z;/y;)], re-
spectively. m

LEMMA 2. Let the set S = {x1,...,x,} of distinct positive integers be
gcd-closed. If g € Lg or h € Lg then there exist n X n lower triangular
matrices M and N with diagonal elements 1 and an n x n lower triangular
matriz P with diagonal elements

(3)
? 9

gf(d)9<%)h<%),d§ rao(2)n(2). ... ) sio()n
Ao dtanz <en

such that [W(x;,x;)] = MPN™.

Proof. Without loss of generality we may let 1 < z; < ... < x,. Let
Sy ={d:deZ", d|xg, dtxs, t < k}, 1 < k < n. Clearly Sk, NSk, = 0
for 1 < ky,ko < n, ky # ko and S;U...US, = S, where S is the min-
imal factor-closed set containing S (the factor closure of S). Let S; =
{Yk1s s Ykpe} (1 <k <mn)and m =p; +... +p, where yp1 < ... <
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Ykpr = Tk- For 1 < 7 <m, let

i1 <7 <p,

Yi Yet fj=pi+...+peo1+t(k>2,1<1t<py).
Thus S = {y1, ..

-2 Ym }. Let the n x m matrices A = (a;;) and B = (b;;) be
defined as follows:

a; = 4 9@y Fy;) ifyg @,
J 0 otherwise,
and
by = {h(xi/m ) i s,
0 otherwise.

It follows immediately from Lemma 1 that

(2) [ (xi,25)] = AB™.

Let {aq,...,ay} and {(1,..., B, } denote the systems of row vectors of A
and B respectively. Let {71,...,7,} and {d1,...,d,} denote the orthogonal-
ization systems obtained from {«,...,a,} and {f1,..., B, } respectively by

using the Gram-Schmidt orthogonalization process (see [7]), then we have
(where (33, 3) denotes the inner product)

T = Qq,
Yo = an — <042,’71> 1
<'71771> ’
Y =ty — <an77l> . <04n7'7n—1> .
" <71771> <7n—177n—1> e
and
o1 = b,
<ﬁ2761>
0o = (B9 — )
2 ﬂQ <51761> 1,
</8n751> <ﬁn75n—1>
671 = Mn — 01 — - 75717 .
\ ﬂ <61751> ! <5n—176n—1> !
Therefore
0(1 ]. O 0 ")/1
<a21’yl>
o X2y 1 0 Y2
®) N A e
(any1)  (anv2) '
An (v1,71) (v2,72) 1 Tn
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and
061 1 0
(B2,01)
(4) o S
6. (5;;7(;1> (5'n'7éz>
n (01,01) (92,92)

Let M and N be the left matrices on the right-hand sides of equations (3)

and (4) respectively. Then

0 P
1) \s,

aq 71
a2 V2
(5) (67 By Ba)=M| " [(6F oF dy ) NT.
ay, Tn
It follows from (2) and (5) that
il
72 T T Ty AT
Yn
Since x1 < ... < x,, it is easy to see that
(1)@ = { 9@1/yra)y/ f(yre) i1 <i<py,
0 if ¢ > pq,
and
(81 = hxy/yri)r/ fye) 1< <p,
0 if ¢ > pq,

and for k > 2,4 >p1 + ... 4+ pr_1, we have

(ak‘)(i) — ) 9@k/ye)\/ fyre) ifi=p1+
0 ifi >p; +

and
(B)@ = & P@w /vy flye) ifi=p1+
0 if i >p1 +

Thus fori=p1 + ...+ pr_1 +t (E>2,1<t

() = g(

L

yk,t> f(yrke) and  (0k)

(i :h<

ceFpr—1 +H (1<t <pp),
e+ Dk,

ceiFpE—1 +H (1<t <pg),
e+ Pk

< pk), we have

Tk
Ykt

To complete the proof of Lemma 2, we need the following:
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LEMMA 3. With the above notations, let S = {x1,...,x,} be ged-closed.
If g€ Lg, then

7= <g<yx1—:>\/ﬂ71,1)7--~,g<yxl >\/f<y1,p1),07---,0),

1,p1

and for k > 2, we have

Tk Tk
7k2< 077079<—> f(yk,l)a"'ag< > f(ykypk%()?"'a())'
v yk71 ykupk

pit...+Pr—1
Similarly, if h € Lg, then

o= (o (o)

and for k > 2, we have

T xT
5k:< 0,,0,h<—k> f(yk,1)7-~-7h< k ) f(yk7pk),0,...,0>.
S—— yk?I ykﬁpk

p1t...+pPr-1

Proof. Since the case h € Lg is similar to the case ¢ € Lg, we only
consider the latter. We argue by induction on k. Clearly Lemma 3 is true
for v1 (since y1 = «1). Since S is ged-closed, (x2, x1) = z1. Note that g € Lg

implies
g<£> =g<£> for 1 <j < ps.
Y1, Y1,
Thus

ap = <9<ﬁ>\/mg<yf;> FWip) g(yi—i)m
9(;2 )\/f(yg,m),o,...ﬁ).

)
27?2

Then {(ag,v1) = (71,71). Therefore

o )
’Y2=a2—7< 2 ’71>% =Q2—7"
<’71,71>
T2 x2
= <O,...,O,g<—>\/f(y2’1),...,g< )w/f(y27p2),0,...,0>.
N—— Y21 Y2.ps
p1

So the assertion is true for 5. Suppose that it is true for v, 1 <1 <k —1
(k > 3). Now consider ;. Since g € Lg, we have

(ox, )\
(ak— 'yl) =0, 1<1<p;.
<71,71>
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We claim that for each e € {2,...,k—1} and each i with p1 +... 4+ pe—1
<1< p1+...+ pe, we have

(4)
(Oék; - <ak7%>%) = 0.
(Ve Ye)

In fact, if (zx, ze) = @, then z. | . Note that g € Lg implies g(x/ye,i) =
9(xe/ye,i) for 1 < i < p.. Thus (ag,Ve) = (7Ve,7Ve). Hence for each i with
PrL4 ...+ Per1 <i<p1+...+ pe, we have

i)
(ks Ye) >( (i)
ar— e ) = (=) =0.
( (Yes Ve) ( )

If (xg,x.) = @, for some 1 < r < e, then y.;fxy for all 1 < ¢ < p,.
Otherwise, there exists i, 1 <1 < p,, such that y. ; | xx. So ye ; | z,. However,
as r < e we have y, ;{z,. This is a contradiction. Thus for p; +...+pe_1 <
i < pLF . Dey ()P =0. S0 (ag,v.) = 0. Hence for p; + ...+ pe_1 <
1 <p;+...+ pe, we have

ey N
(ak %wwe) — (o) = 0.

This completes the proof of the claim.
Thus it follows from the induction hypothesis and the claim that

B (o, 1) (ks Yh—1)
Ve =0 — V7 V1 — - — 77— Vk-1
(717’71> <7k—17'>’k—1>
Tk Tk
= ( 0,...,0 ,g(—)w/f(yhl),...,g( >,/f(yk7pk),0,...,0>.
N—— Yk,1 Yk,pr,
p1+...+Pr—1

The proof of Lemma 3 is complete. m

Now we continue to prove Lemma 2. Since g € Lg or h € Lg, it follows
from Lemma 3 that

Ba!
G N T
Yn
p1
Zlf(yl,j)g(y?j)h(yﬁj) 0 0
=

P2
* Zlf(yzj)g(yz—'f’j)h(yz—'f’j) 0
]:

. : . .
* * Zlf(yn,j)g(;i—f;)h( v)
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d‘z F(@d)g(G)h(Z) 0 0

. d; F(d)g(%)h(%) 0
) o

: . T @ nc)
dfwl, $;L<1n
Let
Y1
p=| ® st sT ... 6T

Tn

By (6) we have [¥(z;,z;)] = MPNT. Clearly the matrices M and N are
lower triangular matrices with diagonal elements 1. By (7), P is a lower
triangular matrix with diagonal elements

S @25 ) k=t

d|mk
dtzy, x;<zp

This completes the proof of Lemma 2. m
Now we are ready to give the main result of this paper.

THEOREM 1. Let S = {x1,...,2,} be ged-closed. If g € Lg or h € Lg,
then

®) det[m,xmzlf[l > f<d>g(%j)h(%).
dtz, x<xg

Proof. Since S = {z1,...,x,} is ged-closed and g € Lg or h € Lg, by
Lemma 2 there exist n x n lower triangular matrices M and N with diagonal
elements 1 and an n X n lower triangular matrix P with diagonal elements

3 f(d)g(%“>h<%“>, k=1,...n,

dl|z
dtzy, x;<wp

such that [¥(z;,7;)] = MPN™T. Thus
det[¥(z;, ;)] = (det M)(det P)(det N7T).
Note that det M = det N = 1. So det NT = 1. Note also that
. Tl Tl
d = = —— .
etP=]] > f(d)g( y >h< y >
k}:]. d|zk
d{xl,xl<xk

It follows that (8) holds. m
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REMARK 1. Let S = {x1,...,2,} be ged-closed. If g € Lg or h € Lg,
then (8) gives a formula for det[¥(z;,x;)]. If g, h & Lg, then we also expect
to have a formula for det[¥(x;,x;)]. This problem remains open.

3. Applications. In this section, we give some interesting applications
of our main result.

THEOREM 2. Let S = {x1,...,z,} be ged-closed. If (3 is defined for
positive integers t and r by

=3 (%),

det[B(zs, )] H 3y f(d)g(%“).

d|zk
d)(ml, T <Tp

Proof. Let h = (, where ( is defined by ((d) = 1 for all integers d.
Clearly ¢ € Lg. Then ¥(t,r) = ((t,r). Thus the result follows immediately
from Theorem 1. m

then

REMARK 2. If S = {1,...,n}, then Theorem 2 becomes Apostol’s re-
sult [2].

COROLLARY 1. If S ={x1,...,z,} is gcd-closed, then
n .
det[C(z;, — .
et[C(zi, xj)] H Z d,u< 4 )
k=1 d|zk
dtz;, z <z

Proof. Ramanujan’s trigonometric sum C(¢,r) is defined by

cit,r)= exp<27mt> Zdu<>

k (mod ) d|(t,r)
(k,r)=1

So if we set f(d) = d for all d, g = p, then this corollary follows from

Theorem 2. =

Define the quotient function g by

f f(m)

=(m) = ——=  for positive integers m.
9 g(m)

LEMMA 4 ([1, Theorem 8.8]). Let f be completely multiplicative. Let
g(m) = p(m)h(m), where h is multiplicative. Assume that f(p) # 0 and



Ged-closed sets 329

f(p) # h(p) for all primes p. Then

> sta() = Fo £

d|(t,k)
where F'= fxg, and N = k/(t,k). m
THEOREM 3. Let f be completely multiplicative. Let g(m) = u(m)h(m),
where h is multiplicative. Assume that f(p) # 0 and f(p) # h(p) for all

primes p. If S = {x1,...,x,} is gcd-closed and (f % g)(d) # 0 for any
positive integer d satisfying d |z, x € S, then

@) Lo £ o(d)

= d|Ik
dtzy, 1 <z)

Proof. Let s(k,t) = _ (1.5 (d)g(k/d). From Lemma 4, one can deduce
that

btaw] = 0+ 90e0) - 725 (755 )
= ding(( * o) (Fr o)) | 7 (05 )|

[*g (:Eivajj)

Thus we have

et |45 ()| =ttt H e

Therefore the result follows from the above equation and Theorem 2. m

COROLLARY 2. Let S ={z1,...,x,} be factor-closed, and let the arith-
metical functions f and g be as in Theorem 3. Then

[ () o 117

COROLLARY 3. Let the arithmetical functions f and g be as in Theo-
rem 3. Then

det [ﬁ(mﬂ :

An arithmetical function f(t¢) is said to be quadmmc if it is the Dirich-
let convolution of two completely multiplicative functions [9, 12]. In what
follows we use Theorem 1 and the following result of Vaidyanathaswamy,
concerning quadratic functions, to evaluate the determinants of n x n ma-
trices of the form [f(x;x;)], where f(t) is a quadratic function.

:Ek) n
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LEMMA 5 (Vaidyanathaswamy [12]). If f = g * h where g and h are
completely multiplicative functions, then f satisfies the identity

= 3 1(5)1(5)stmanca.

d|(t,r)

THEOREM 4. Let f = g+h, where g and h are completely multiplicative.
If S={x1,...,z,} is gcd-closed and f € Lg, then

det[f (zs;)] H 3 g(d)h(d)u(d)[f<%>r.

k=1 d|xy,
dtzy, z<zp

Proof. This result follows from Lemma 5 and Theorem 1. =

LEMMA 6 ([10]). The arithmetical function f is a semi-multiplicative
function if and only if for any positive integers m and n, f(m)f(n) =

f((m,n))f(lm,n]). =

LEMMA 7. Let f be an arithmetical function. Then for any positive in-

teger n,
> (fru)(d) = f(n).
d|n
Proof. Let the arithmetical function I be defined for any positive integer

m as follows: I(m) = [1/m], where [z] denotes the greatest integer not
greater than . Since p* ¢ = I (see [1]) and f = f* I, one has

) = (F DY) = (F () m) = ((f ) * )
=@ () = S
d|n

d|n
as desired. The proof of Lemma 7 is complete. m
THEOREM 5. Let f be a semi-multiplicative function and f[t,r] denote

f evaluated at the least common multiple of t and r. If S = {x1,...,x,} is
gcd-closed, then

©) det(flan ) = [[Uf@0l Y (l*u)w).

k=1 d|wk f
dtzy, x<zp

Proof. Since f is semi-multiplicative, it follows from Lemma 6 that
(flzi, z5]) = D(g(@s, 2;5)) D,
where g = 1/f and D = diag(f(z1),..., f(zn)). Thus

(10) det(flxs, z;]) = det[g(zi, x;) H
k=1
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Let ¢ = h = ( and substitute g x u for f in Theorem 1. By Lemma 7,
one has ¥ (z;,x;) = g(x;, ;). Thus it follows from Theorem 1 that

(11) det(glei, ) =[] D (gxm(@.
k=1

d|zy
dtzy, z <z

It then follows from (10) and (11) that (9) holds. =

REMARK 3. If we set f(d) = d for all integers d, then Theorem 5 reduces
to Bourque and Ligh’s result [4]. Bourque and Ligh [4] conjectured that
the LCM matrix ([z;,z;]) defined on a ged-closed set S = {x1,...,2,} is
nonsingular. We showed [5] that the Bourque—Ligh conjecture is true for a
certain class of ged-closed sets S = {z1,...,x,}. We proved [6] that the
Bourque-Ligh conjecture is true if n < 7, but not true if n > 8. We believe
that this result is true for general positive integer power LCM matrices. We
conclude this paper by raising the following conjecture.

CONJECTURE. Let m be a given positive integer and n any positive
integer. Then there is a positive integer k(m), depending only on m, such
that if n < k(m), then the power LCM matrix ([x;,z;]™) defined on any
ged-closed set S = {x1,...,x,} is nonsingular. But for n > k(m) + 1, there
exists a ged-closed set S = {z1,...,z,} so that the power LCM matrix
([zi, 2;]™) defined on S is singular.

From [6], one knows that the above conjecture holds when m = 1. In
fact, k(1) = 7. In a similar way to [6], one can show that for any integer
m > 2, one has k(m) > 7.
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