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1. Introduction. Smith [11] proved that if f is an arithmetical function
and [f(i, j)] is the n×n matrix having f evaluated at the greatest common
divisor of i and j as its i, j-entry, then

det[f(i, j)] = (f ∗ µ)(1)(f ∗ µ)(2) . . . (f ∗ µ)(n),

where µ is the Möbius function and f ∗ µ is the Dirichlet convolution of
f and µ. Apostol [2] extended Smith’s result by showing that if f and g
are arithmetical functions and if β is defined for positive integers t and r
by β(t, r) =

∑
d|(t,r) f(d)g(r/d), then det[β(i, j)] = [g(1)]nf(1) . . . f(n). He

noted that as a consequence, det[C(i, j)] = n!, where C(t, r) is Ramanujan’s
sum. Paul McCarthy [8] generalized Smith’s and Apostol’s results to the
class of even functions (mod r). He evaluated the determinants of n × n
matrices of the form [β(i, j)], where β(t, r) is an even function of t (mod r).
A complex-valued function β(t, r) of the positive integral variables t and r is
said to be an even function of t (mod r) if β(t, r) = β((t, r), r) for all values
of t. The functions considered by Smith and Apostol are even functions of
t (mod r) for every r. Bourque and Ligh [3] evaluated the determinants of
n × n matrices of the form [β(xi, xj)], where the set S = {x1, . . . , xn} of
distinct positive integers is factor-closed (i.e., S contains every divisor of x
for any x ∈ S) and β(t, r) is an even function of t (mod r).

Throughout this paper, let S = {x1, . . . , xn} be a set of distinct positive
integers. The set S is said to be gcd-closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n.
Clearly, a factor-closed set is gcd-closed but not conversely. Let f(t), g(t)
and h(t) be arithmetical functions. The Ψ(t, r) is defined for all positive
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integers t and r as follows:

(1) Ψ(t, r) =
∑

d|(t,r)
f(d)g

(
t

d

)
h

(
r

d

)
.

Define the class of arithmetical functions LS = {l(t) : l(d1/d) = l(d2/d)
whenever d | d1 for any d1, d2 ∈ S satisfying d1 | d2}. In 1993, Bourque and
Ligh [3] evaluated the determinant of the n× n matrix [Ψ(xi, xj)] if the set
S = {x1, . . . , xn} is factor-closed. In this paper we will evaluate the deter-
minant of the n×n matrix [Ψ(xi, xj)], where S = {x1, . . . , xn} is gcd-closed
and g ∈ LS or h ∈ LS . As applications, we evaluate the determinants of n×n
matrices of the form [C(xi, xj)], where S = {x1, . . . , xn} is gcd-closed, and
C(t, r) is Ramanujan’s trigonometric sum. These results generalize Bourque
and Ligh’s results [3]. We also evaluate the determinant of n × n matrix[
g
f∗g
(

xi
(xi,xj)

)]
, where f is completely multiplicative, g(m) = µ(m)h(m), h is

multiplicative, f(p) 6= 0 and f(p) 6= h(p) for all primes p, and (f ∗ g)(d) 6= 0
for any positive integer d satisfying d |x, x ∈ S, and S = {x1, . . . , xn} is
gcd-closed.

2. Determinant of the matrix [Ψ(xi, xj)]. In the present section, we
evaluate the determinant of the n × n matrix Ψ(xi, xj), where g ∈ LS or
h ∈ LS and S = {x1, . . . , xn} is gcd-closed.

Lemma 1 ([3]). Let T ={y1, . . . , ym} be a factor-closed set containing S.
Then [Ψ(xi, xj)] = GΛHT, where Λ = diag(f(y1), . . . , f(ym)) and the n×m
matrices G and H are defined by G = [g(xi/yj)] and H = [h(xi/yj)], re-
spectively.

Lemma 2. Let the set S = {x1, . . . , xn} of distinct positive integers be
gcd-closed. If g ∈ LS or h ∈ LS then there exist n × n lower triangular
matrices M and N with diagonal elements 1 and an n× n lower triangular
matrix P with diagonal elements
∑

d|x1

f(d)g
(
x1

d

)
h

(
x1

d

)
,
∑

d|x2
d - x1

f(d)g
(
x2

d

)
h

(
x2

d

)
, . . . ,

∑

d|xn
d - xl,xl<xn

f(d)g
(
xn
d

)
h

(
xn
d

)
,

such that [Ψ(xi, xj)] = MPNT.

Proof. Without loss of generality we may let 1 ≤ x1 < . . . < xn. Let
Sk = {d : d ∈ Z+, d |xk, d -xt, t < k}, 1 ≤ k ≤ n. Clearly Sk1 ∩Sk2 = ∅
for 1 ≤ k1, k2 ≤ n, k1 6= k2 and S1 ∪ . . . ∪ Sn = S, where S is the min-
imal factor-closed set containing S (the factor closure of S). Let Sk =
{yk,1, . . . , yk,pk} (1 ≤ k ≤ n) and m = p1 + . . . + pn where yk,1 < . . . <
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yk,pk = xk. For 1 ≤ j ≤ m, let

yj =
{
y1,j if 1 ≤ j ≤ p1,
yk,t if j = p1 + . . .+ pk−1 + t (k ≥ 2, 1 ≤ t ≤ pk).

Thus S = {y1, . . . , ym}. Let the n×m matrices A = (aij) and B = (bij) be
defined as follows:

aij =
{
g(xi/yj)

√
f(yj) if yj |xi,

0 otherwise,
and

bij =
{
h(xi/yj)

√
f(yj) if yj |xi,

0 otherwise.
It follows immediately from Lemma 1 that

(2) [Ψ(xi, xj)] = ABT.

Let {α1, . . . , αn} and {β1, . . . , βn} denote the systems of row vectors of A
and B respectively. Let {γ1, . . . , γn} and {δ1, . . . , δn} denote the orthogonal-
ization systems obtained from {α1, . . . , αn} and {β1, . . . , βn} respectively by
using the Gram–Schmidt orthogonalization process (see [7]), then we have
(where 〈β, β〉 denotes the inner product)





γ1 = α1,

γ2 = α2 −
〈α2, γ1〉
〈γ1, γ1〉

γ1,

...

γn = αn −
〈αn, γ1〉
〈γ1, γ1〉

γ1 − . . .−
〈αn, γn−1〉
〈γn−1, γn−1〉

γn−1,

and 



δ1 = β1,

δ2 = β2 −
〈β2, δ1〉
〈δ1, δ1〉

δ1,

...

δn = βn −
〈βn, δ1〉
〈δ1, δ1〉

δ1 − . . .−
〈βn, δn−1〉
〈δn−1, δn−1〉

δn−1.

Therefore

(3)




α1

α2
...
αn


 =




1 0 . . . 0
〈α2,γ1〉
〈γ1,γ1〉 1 . . . 0
. . . . . . . . . . . .
〈αn,γ1〉
〈γ1,γ1〉

〈αn,γ2〉
〈γ2,γ2〉 . . . 1







γ1

γ2
...
γn


 ,



324 S. F. Hong

and

(4)




β1

β2
...
βn


 =




1 0 . . . 0
〈β2,δ1〉
〈δ1,δ1〉 1 . . . 0
. . . . . . . . . . . .
〈βn,δ1〉
〈δ1,δ1〉

〈βn,δ2〉
〈δ2,δ2〉 . . . 1







δ1

δ2
...
δn


 .

Let M and N be the left matrices on the right-hand sides of equations (3)
and (4) respectively. Then

(5)




α1

α2
...
αn


 (βT

1 βT
2 . . . βT

n ) = M




γ1

γ2
...
γn


 ( δT

1 δT
2 . . . δT

n )NT.

It follows from (2) and (5) that

(6) [Ψ(xi, xj)] = M




γ1

γ2
...
γn


 ( δT

1 δT
2 . . . δT

n )NT.

Since x1 < . . . < xn, it is easy to see that

(α1)(i) =

{
g(x1/y1,i)

√
f(y1,i) if 1 ≤ i ≤ p1,

0 if i > p1,

and

(β1)(i) =

{
h(x1/y1,i)

√
f(y1,i) if 1 ≤ i ≤ p1,

0 if i > p1,

and for k ≥ 2, i > p1 + . . .+ pk−1, we have

(αk)(i) =

{
g(xk/yk,t)

√
f(yk,t) if i = p1 + . . .+ pk−1 + t (1 ≤ t ≤ pk),

0 if i > p1 + . . .+ pk,

and

(βk)(i) =

{
h(xk/yk,t)

√
f(yk,t) if i = p1 + . . .+ pk−1 + t (1 ≤ t ≤ pk),

0 if i > p1 + . . .+ pk.

Thus for i = p1 + . . .+ pk−1 + t (k ≥ 2, 1 ≤ t ≤ pk), we have

(γk)(i) = g

(
xk
yk,t

)√
f(yk,t) and (δk)(i) = h

(
xk
yk,t

)√
f(yk,t).

To complete the proof of Lemma 2, we need the following:
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Lemma 3. With the above notations, let S = {x1, . . . , xn} be gcd-closed.
If g ∈ LS , then

γ1 =
(
g

(
x1

y1,1

)√
f(y1,1), . . . , g

(
x1

y1,p1

)√
f(y1,p1), 0, . . . , 0

)
,

and for k ≥ 2, we have

γk =
(

0, . . . , 0︸ ︷︷ ︸
p1+...+pk−1

, g

(
xk
yk,1

)√
f(yk,1), . . . , g

(
xk
yk,pk

)√
f(yk,pk), 0, . . . , 0

)
.

Similarly , if h ∈ LS , then

δ1 =
(
h

(
x1

y1,1

)√
f(y1,1), . . . , h

(
x1

y1,p1

)√
f(y1,p1), 0, . . . , 0

)
,

and for k ≥ 2, we have

δk =
(

0, . . . , 0︸ ︷︷ ︸
p1+...+pk−1

, h

(
xk
yk,1

)√
f(yk,1), . . . , h

(
xk
yk,pk

)√
f(yk,pk), 0, . . . , 0

)
.

Proof. Since the case h ∈ LS is similar to the case g ∈ LS , we only
consider the latter. We argue by induction on k. Clearly Lemma 3 is true
for γ1 (since γ1 = α1). Since S is gcd-closed, (x2, x1) = x1. Note that g ∈ LS
implies

g

(
x2

y1,j

)
= g

(
x1

y1,j

)
for 1 ≤ j ≤ p1.

Thus

α2 =
(
g

(
x1

y1,1

)√
f(y1,1), . . . , g

(
x1

y1,p1

)√
f(y1,p1), g

(
x2

y2,1

)√
f(y2,1), . . . ,

g

(
x2

y2,p2

)√
f(y2,p2), 0, . . . , 0

)
.

Then 〈α2, γ1〉 = 〈γ1, γ1〉. Therefore

γ2 = α2 −
〈α2, γ1〉
〈γ1, γ1〉

γ1 = α2 − γ1

=
(

0, . . . , 0︸ ︷︷ ︸
p1

, g

(
x2

y2,1

)√
f(y2,1), . . . , g

(
x2

y2,p2

)√
f(y2,p2), 0, . . . , 0

)
.

So the assertion is true for γ2. Suppose that it is true for γl, 1 ≤ l ≤ k − 1
(k ≥ 3). Now consider γk. Since g ∈ LS , we have

(
αk −

〈αk, γ1〉
〈γ1, γ1〉

γ1

)(i)

= 0, 1 ≤ i ≤ p1.
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We claim that for each e ∈ {2, . . . , k− 1} and each i with p1 + . . .+ pe−1

< i ≤ p1 + . . .+ pe, we have
(
αk −

〈αk, γe〉
〈γe, γe〉

γe

)(i)

= 0.

In fact, if (xk, xe) = xe, then xe |xk. Note that g ∈ LS implies g(xk/ye,i) =
g(xe/ye,i) for 1 ≤ i ≤ pe. Thus 〈αk, γe〉 = 〈γe, γe〉. Hence for each i with
p1 + . . .+ pe−1 < i ≤ p1 + . . .+ pe, we have

(
αk −

〈αk, γe〉
〈γe, γe〉

γe

)(i)

= (αk − γe)(i) = 0.

If (xk, xe) = xr for some 1 ≤ r < e, then ye,i -xk for all 1 ≤ i ≤ pe.
Otherwise, there exists i, 1 ≤ i ≤ pe, such that ye,i |xk. So ye,i |xr. However,
as r < e we have ye,i -xr. This is a contradiction. Thus for p1 + . . .+ pe−1 <
i ≤ p1 + . . .+ pe, (αk)(i) = 0. So 〈αk, γe〉 = 0. Hence for p1 + . . . + pe−1 <
i ≤ p1 + . . .+ pe, we have

(
αk −

〈αk, γe〉
〈γe, γe〉

γe

)(i)

= (αk)(i) = 0.

This completes the proof of the claim.
Thus it follows from the induction hypothesis and the claim that

γk = αk −
〈αk, γ1〉
〈γ1, γ1〉

γ1 − . . .−
〈αk, γk−1〉
〈γk−1, γk−1〉

γk−1

=
(

0, . . . , 0︸ ︷︷ ︸
p1+...+pk−1

, g

(
xk
yk,1

)√
f(yk,1), . . . , g

(
xk
yk,pk

)√
f(yk,pk), 0, . . . , 0

)
.

The proof of Lemma 3 is complete.

Now we continue to prove Lemma 2. Since g ∈ LS or h ∈ LS , it follows
from Lemma 3 that

(7)




γ1

γ2
...
γn


 ( δT

1 δT
2 . . . δT

n )

=




p1∑
j=1

f(y1,j)g(
x1
y1,j

)h( x1
y1,j

) 0 . . . 0

∗
p2∑
j=1

f(y2,j)g(
x2
y2,j

)h( x2
y2,j

) . . . 0

...
...

...
...

∗ ∗ . . .
pn∑
j=1

f(yn,j)g(
xn
yn,j

)h( xn
yn,j

)



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=




∑
d|x1

f(d)g(x1
d )h(x1

d ) 0 . . . 0

∗ ∑
d|x2

d - x1

f(d)g(x2
d )h(x2

d ) . . . 0

...
...

...
...

∗ ∗ . . .
∑
d|xn

d - xl, xl<xn

f(d)g(xnd )h(xnd )




.

Let

P =




γ1

γ2
...
γn


 ( δT

1 δT
2 . . . δT

n ).

By (6) we have [Ψ(xi, xj)] = MPNT. Clearly the matrices M and N are
lower triangular matrices with diagonal elements 1. By (7), P is a lower
triangular matrix with diagonal elements

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
h

(
xk
d

)
, k = 1, . . . , n.

This completes the proof of Lemma 2.

Now we are ready to give the main result of this paper.

Theorem 1. Let S = {x1, . . . , xn} be gcd-closed. If g ∈ LS or h ∈ LS ,
then

(8) det[Ψ(xi, xj)] =
n∏

k=1

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
h

(
xk
d

)
.

Proof. Since S = {x1, . . . , xn} is gcd-closed and g ∈ LS or h ∈ LS , by
Lemma 2 there exist n×n lower triangular matrices M and N with diagonal
elements 1 and an n× n lower triangular matrix P with diagonal elements

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
h

(
xk
d

)
, k = 1, . . . , n,

such that [Ψ(xi, xj)] = MPNT. Thus
det[Ψ(xi, xj)] = (detM)(detP )(detNT).

Note that detM = detN = 1. So detNT = 1. Note also that

detP =
n∏

k=1

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
h

(
xk
d

)
.

It follows that (8) holds.
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Remark 1. Let S = {x1, . . . , xn} be gcd-closed. If g ∈ LS or h ∈ LS ,
then (8) gives a formula for det[Ψ(xi, xj)]. If g, h 6∈ LS , then we also expect
to have a formula for det[Ψ(xi, xj)]. This problem remains open.

3. Applications. In this section, we give some interesting applications
of our main result.

Theorem 2. Let S = {x1, . . . , xn} be gcd-closed. If β is defined for
positive integers t and r by

β(t, r) =
∑

d|(t,r)
f(d)g

(
r

d

)
,

then

det[β(xi, xj)] =
n∏

k=1

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
.

Proof. Let h = ζ, where ζ is defined by ζ(d) = 1 for all integers d.
Clearly ζ ∈ LS . Then Ψ(t, r) = β(t, r). Thus the result follows immediately
from Theorem 1.

Remark 2. If S = {1, . . . , n}, then Theorem 2 becomes Apostol’s re-
sult [2].

Corollary 1. If S = {x1, . . . , xn} is gcd-closed , then

det[C(xi, xj)] =
n∏

k=1

∑

d|xk
d - xl, xl<xk

dµ

(
xk
d

)
.

Proof. Ramanujan’s trigonometric sum C(t, r) is defined by

C(t, r) =
∑

k (mod r)
(k,r)=1

exp
(

2πit
k

)
=
∑

d|(t,r)
dµ

(
r

d

)
.

So if we set f(d) = d for all d, g = µ, then this corollary follows from
Theorem 2.

Define the quotient function f
g by

f

g
(m) =

f(m)
g(m)

for positive integers m.

Lemma 4 ([1, Theorem 8.8]). Let f be completely multiplicative. Let
g(m) = µ(m)h(m), where h is multiplicative. Assume that f(p) 6= 0 and
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f(p) 6= h(p) for all primes p. Then
∑

d|(t,k)

f(d)g
(
k

d

)
= F (k)

g

F
(N)

where F = f ∗ g, and N = k/(t, k).

Theorem 3. Let f be completely multiplicative. Let g(m) = µ(m)h(m),
where h is multiplicative. Assume that f(p) 6= 0 and f(p) 6= h(p) for all
primes p. If S = {x1, . . . , xn} is gcd-closed and (f ∗ g)(d) 6= 0 for any
positive integer d satisfying d |x, x ∈ S, then

det
[

g

f ∗ g

(
xi

(xi, xj)

)]
=

n∏

k=1

1
(f ∗ g)(xk)

∑

d|xk
d - xl, xl<xk

f(d)g
(
xk
d

)
.

Proof. Let s(k, t) =
∑
d|(t,k) f(d)g(k/d). From Lemma 4, one can deduce

that

[s(xi, xj)] =
[
(f ∗ g)(xi) ·

g

f ∗ g

(
xi

(xi, xj)

)]

= diag((f ∗ g)(x1), . . . , (f ∗ g)(xn)) ·
[

g

f ∗ g

(
xi

(xi, xj)

)]
.

Thus we have

det
[

g

f ∗ g

(
xi

(xi, xj)

)]
= det[s(xi, xj)]

n∏

k=1

1
(f ∗ g)(xk)

.

Therefore the result follows from the above equation and Theorem 2.

Corollary 2. Let S = {x1, . . . , xn} be factor-closed , and let the arith-
metical functions f and g be as in Theorem 3. Then

det
[

g

f ∗ g

(
xi

(xi, xj)

)]
= [g(1)]n

n∏

k=1

f

f ∗ g (xk).

Corollary 3. Let the arithmetical functions f and g be as in Theo-
rem 3. Then

det
[

g

f ∗ g

(
i

(i, j)

)]
= [g(1)]n

n∏

k=1

f

f ∗ g (k).

An arithmetical function f(t) is said to be quadratic if it is the Dirich-
let convolution of two completely multiplicative functions [9, 12]. In what
follows we use Theorem 1 and the following result of Vaidyanathaswamy,
concerning quadratic functions, to evaluate the determinants of n × n ma-
trices of the form [f(xixj)], where f(t) is a quadratic function.
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Lemma 5 (Vaidyanathaswamy [12]). If f = g ∗ h where g and h are
completely multiplicative functions, then f satisfies the identity

f(t, r) =
∑

d|(t,r)
f

(
t

d

)
f

(
r

d

)
g(d)h(d)µ(d).

Theorem 4. Let f = g ∗h, where g and h are completely multiplicative.
If S = {x1, . . . , xn} is gcd-closed and f ∈ LS , then

det[f(xixj)] =
n∏

k=1

∑

d|xk
d - xl, xl<xk

g(d)h(d)µ(d)
[
f

(
xk
d

)]2

.

Proof. This result follows from Lemma 5 and Theorem 1.

Lemma 6 ([10]). The arithmetical function f is a semi-multiplicative
function if and only if for any positive integers m and n, f(m)f(n) =
f((m,n))f([m,n]).

Lemma 7. Let f be an arithmetical function. Then for any positive in-
teger n, ∑

d|n
(f ∗ µ)(d) = f(n).

Proof. Let the arithmetical function I be defined for any positive integer
m as follows: I(m) = [1/m], where [x] denotes the greatest integer not
greater than x. Since µ ∗ ζ = I (see [1]) and f = f ∗ I, one has

f(n) = (f ∗ I)(n) = (f ∗ (µ ∗ ζ))(n) = ((f ∗ µ) ∗ ζ)(n)

=
∑

d|n
(f ∗ µ)(d)ζ

(
n

d

)
=
∑

d|n
(f ∗ µ)(d),

as desired. The proof of Lemma 7 is complete.

Theorem 5. Let f be a semi-multiplicative function and f [t, r] denote
f evaluated at the least common multiple of t and r. If S = {x1, . . . , xn} is
gcd-closed , then

(9) det(f [xi, xj ]) =
n∏

k=1

[f(xk)]2
∑

d|xk
d - xl, xl<xk

(
1
f
∗ µ
)

(d).

Proof. Since f is semi-multiplicative, it follows from Lemma 6 that

(f [xi, xj ]) = D(g(xi, xj))D,

where g = 1/f and D = diag(f(x1), . . . , f(xn)). Thus

(10) det(f [xi, xj ]) = det[g(xi, xj)]
n∏

k=1

[f(xk)]2.
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Let g = h = ζ and substitute g ∗ µ for f in Theorem 1. By Lemma 7,
one has Ψ(xi, xj) = g(xi, xj). Thus it follows from Theorem 1 that

(11) det(g[xi, xj ]) =
n∏

k=1

∑

d|xk
d - xl, xl<xk

(g ∗ µ)(d).

It then follows from (10) and (11) that (9) holds.

Remark 3. If we set f(d) = d for all integers d, then Theorem 5 reduces
to Bourque and Ligh’s result [4]. Bourque and Ligh [4] conjectured that
the LCM matrix ([xi, xj ]) defined on a gcd-closed set S = {x1, . . . , xn} is
nonsingular. We showed [5] that the Bourque–Ligh conjecture is true for a
certain class of gcd-closed sets S = {x1, . . . , xn}. We proved [6] that the
Bourque–Ligh conjecture is true if n ≤ 7, but not true if n ≥ 8. We believe
that this result is true for general positive integer power LCM matrices. We
conclude this paper by raising the following conjecture.

Conjecture. Let m be a given positive integer and n any positive
integer. Then there is a positive integer k(m), depending only on m, such
that if n ≤ k(m), then the power LCM matrix ([xi, xj ]m) defined on any
gcd-closed set S = {x1, . . . , xn} is nonsingular. But for n ≥ k(m) + 1, there
exists a gcd-closed set S = {x1, . . . , xn} so that the power LCM matrix
([xi, xj ]m) defined on S is singular.

From [6], one knows that the above conjecture holds when m = 1. In
fact, k(1) = 7. In a similar way to [6], one can show that for any integer
m ≥ 2, one has k(m) ≥ 7.
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